7.13 文献笔记¶
原文 | The Elements of Statistical Learning |
---|---|
翻译 | szcf-weiya |
发布 | 2017-02-20 |
交叉验证的主要参考文献为Stone(1974)1,Stone(1977)2和Allen(1974)3.AIC由Akaike(1973)4提出,而BIC由Schwarz(1978)5提出.Madigan and Raftery(1994)6概述了贝叶斯模型选择.MDL准则归功于Rissanen(1983)7.Cover and Thomas(1991)8包含编码理论和复杂性的很好的描述.VC维在Vapnik(1996)8中有描述.Stone(1977)2证明了AIC和舍一交叉验证渐进相等.一般的交叉验证由Golub et. al(1979)9和Wahba(1980)10描述.也可以参见Hastie and Tibshirani(1990)11的第三章.自助法归功于Efron(1979)12;它的概述可以参见Efron and Tibshirani(1993)13.Efron(1983)14提出一系列预测误差的自助法估计,包括乐观估计和.632估计.Efron(1986)15比较CV和GCV以及误差率的自助法估计.Breiman and Spector(1992)16,Breiman(1992)17,Shao(1996)18,Zhang(1993)19和Kohavi(1995)20等人研究了模型选择的交叉验证和自助法..632+估计由Efron and Tibshirani(1997)21提出.
Cherkassky and Ma(2003)22发表了回归中SRM用于模型选择的表现的研究,这对应本书的7.9.1节.他们抱怨我们对待SRM不公平,因为没有正确地应用它.我们的回复可以在期刊的同一个问题中找到(Hastie et. al(2003)23).
-
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society Series B 36: 111–147. ↩
-
Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion, Journal of the Royal Statistical Society Series B. 39: 44–7. ↩↩
-
Allen, D. (1974). The relationship between variable selection and data augmentation and a method of prediction, Technometrics 16: 125–7. ↩
-
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, pp. 267–281. ↩
-
Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics 6(2): 461–464. ↩
-
Madigan, D. and Raftery, A. (1994). Model selection and accounting for model uncertainty using Occam’s window, Journal of the American Statistical Association 89: 1535–46. ↩
-
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length, Annals of Statistics 11: 416–431. ↩
-
Vapnik, V. (1996). The Nature of Statistical Learning Theory, Springer, New York. ↩↩
-
Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21: 215–224. ↩
-
Wahba, G. (1980). Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data, Proceedings of the International Conference on Approximation theory in Honour of George Lorenz, Academic Press, Austin, Texas, pp. 905–912. ↩
-
Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, Chapman and Hall, London. ↩
-
Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals of Statistics 7: 1–26. ↩
-
Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman and Hall, London. ↩
-
Efron, B. (1983). Estimating the error rate of a prediction rule: some improvements on cross-validation, Journal of the American Statistical Association 78: 316–331. ↩
-
Efron, B. (1986). How biased is the apparent error rate of a prediction rule?, Journal of the American Statistical Association 81: 461–70. ↩
-
Breiman, L. and Spector, P. (1992). Submodel selection and evaluation in regression: the X-random case, International Statistical Review 60: 291–319. ↩
-
Breiman, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error, Journal of the American Statistical Association 87: 738–754. ↩
-
Shao, J. (1996). Bootstrap model selection, Journal of the American Statistical Association 91: 655–665. ↩
-
Zhang, P. (1993). Model selection via multifold cross-validation, Annals of Statistics 21: 299–311. ↩
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection, International Joint Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann, pp. 1137–1143. ↩
-
Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the 632+ bootstrap: method, Journal of the American Statistical Association 92: 548–560. ↩
-
Cherkassky, V. and Ma, Y. (2003). Comparison of model selection for regression, Neural computation 15(7): 1691–1714. ↩
-
Hastie, T., Tibshirani, R. and Friedman, J. (2003). A note on “Comparison of model selection for regression” by Cherkassky and Ma, Neural computation 15(7): 1477–1480. ↩