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Preface to the Second Edition

In God we trust, all others bring data.

~William Edwards Deming (1900-1993)!

We have been gratified by the popularity of the first edition of The
Elements of Statistical Learning. This, along with the fast pace of research
in the statistical learning field, motivated us to update our book with a
second edition.

We have added four new chapters and updated some of the existing
chapters. Because many readers are familiar with the layout of the first
edition, we have tried to change it as little as possible. Here is a summary
of the main changes:

1On the Web, this quote has been widely attributed to both Deming and Robert W.
Hayden; however Professor Hayden told us that he can claim no credit for this quote,
and ironically we could find no “data” confirming that Deming actually said this.
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Chapter

What’s new

1. Introduction
2. Overview of Supervised Learning
3. Linear Methods for Regression

4. Linear Methods for Classification
5. Basis Expansions and Regulariza-

LAR algorithm and generalizations
of the lasso

Lasso path for logistic regression
Additional illustrations of RKHS

tion
6. Kernel Smoothing Methods
7. Model Assessment and Selection

Strengths of cross-

validation

and pitfalls

8. Model Inference and Averaging
9. Additive Models, Trees, and
Related Methods

10. Boosting and Additive Trees New example from ecology; some
material split off to Chapter 16.
Bayesian neural nets and the NIPS
2003 challenge

Path algorithm for SVM classifier

11. Neural Networks

12. Support Vector Machines and
Flexible Discriminants

13. Prototype  Methods
Nearest-Neighbors

14. Unsupervised Learning

and

Spectral clustering, kernel PCA,
sparse PCA, non-negative matrix
factorization archetypal analysis,
nonlinear  dimension  reduction,
Google page rank algorithm, a
direct approach to ICA

15. Random Forests New
16. Ensemble Learning New
17. Undirected Graphical Models New
18. High-Dimensional Problems New

Some further notes:

e Qur first edition was unfriendly to colorblind readers; in particular,
we tended to favor red/green contrasts which are particularly trou-
blesome. We have changed the color palette in this edition to a large
extent, replacing the above with an /blue contrast.

e We have changed the name of Chapter 6 from “Kernel Methods” to
“Kernel Smoothing Methods”, to avoid confusion with the machine-
learning kernel method that is discussed in the context of support vec-
tor machines (Chapter 12) and more generally in Chapters 5 and 14.

e In the first edition, the discussion of error-rate estimation in Chap-
ter 7 was sloppy, as we did not clearly differentiate the notions of
conditional error rates (conditional on the training set) and uncondi-
tional rates. We have fixed this in the new edition.
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e Chapters 15 and 16 follow naturally from Chapter 10, and the chap-
ters are probably best read in that order.

e In Chapter 17, we have not attempted a comprehensive treatment
of graphical models, and discuss only undirected models and some
new methods for their estimation. Due to a lack of space, we have
specifically omitted coverage of directed graphical models.

e Chapter 18 explores the “p > N” problem, which is learning in high-
dimensional feature spaces. These problems arise in many areas, in-
cluding genomic and proteomic studies, and document classification.

We thank the many readers who have found the (too numerous) errors in
the first edition. We apologize for those and have done our best to avoid er-
rors in this new edition. We thank Mark Segal, Bala Rajaratnam, and Larry
Wasserman for comments on some of the new chapters, and many Stanford
graduate and post-doctoral students who offered comments, in particular
Mohammed AlQuraishi, John Boik, Holger Hoefling, Arian Maleki, Donal
McMahon, Saharon Rosset, Babak Shababa, Daniela Witten, Ji Zhu and
Hui Zou. We thank John Kimmel for his patience in guiding us through this
new edition. RT dedicates this edition to the memory of Anna McPhee.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Stanford, California
August 2008
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Preface to the First Edition

We are drowning in information and starving for knowledge.

—Rutherford D. Roger

The field of Statistics is constantly challenged by the problems that science
and industry brings to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical
problems have exploded both in size and complexity. Challenges in the
areas of data storage, organization and searching have led to the new field
of “data mining”; statistical and computational problems in biology and
medicine have created “bioinformatics.” Vast amounts of data are being
generated in many fields, and the statistician’s job is to make sense of it
all: to extract important patterns and trends, and understand “what the
data says.” We call this learning from data.

The challenges in learning from data have led to a revolution in the sta-
tistical sciences. Since computation plays such a key role, it is not surprising
that much of this new development has been done by researchers in other
fields such as computer science and engineering.

The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is to pre-
dict the value of an outcome measure based on a number of input measures;
in unsupervised learning, there is no outcome measure, and the goal is to
describe the associations and patterns among a set of input measures.

This is page xi
Printer: Opaque this
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This book is our attempt to bring together many of the important new
ideas in learning, and explain them in a statistical framework. While some
mathematical details are needed, we emphasize the methods and their con-
ceptual underpinnings rather than their theoretical properties. As a result,
we hope that this book will appeal not just to statisticians but also to
researchers and practitioners in a wide variety of fields.

Just as we have learned a great deal from researchers outside of the field
of statistics, our statistical viewpoint may help others to better understand
different aspects of learning:

There is no true interpretation of anything; interpretation is a
vehicle in the service of human comprehension. The value of
interpretation is in enabling others to fruitfully think about an
idea.

—Andreas Buja

We would like to acknowledge the contribution of many people to the
conception and completion of this book. David Andrews, Leo Breiman,
Andreas Buja, John Chambers, Bradley Efron, Geoffrey Hinton, Werner
Stuetzle, and John Tukey have greatly influenced our careers. Balasub-
ramanian Narasimhan gave us advice and help on many computational
problems, and maintained an excellent computing environment. Shin-Ho
Bang helped in the production of a number of the figures. Lee Wilkinson
gave valuable tips on color production. Ilana Belitskaya, Eva Cantoni, Maya
Gupta, Michael Jordan, Shanti Gopatam, Radford Neal, Jorge Picazo, Bog-
dan Popescu, Olivier Renaud, Saharon Rosset, John Storey, Ji Zhu, Mu
Zhu, two reviewers and many students read parts of the manuscript and
offered helpful suggestions. John Kimmel was supportive, patient and help-
ful at every phase; MaryAnn Brickner and Frank Ganz headed a superb
production team at Springer. Trevor Hastie would like to thank the statis-
tics department at the University of Cape Town for their hospitality during
the final stages of this book. We gratefully acknowledge NSF and NIH for
their support of this work. Finally, we would like to thank our families and
our parents for their love and support.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Stanford, California
May 2001

The quiet statisticians have changed our world; not by discov-
ering new facts or technical developments, but by changing the
ways that we reason, experiment and form our opinions ....

~Jan Hacking
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1

Introduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack. The prediction is to be based on demo-
graphic, diet and clinical measurements for that patient.

Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

Identify the numbers in a handwritten ZIP code, from a digitized
image.

Estimate the amount of glucose in the blood of a diabetic person,
from the infrared absorption spectrum of that person’s blood.

Identify the risk factors for prostate cancer, based on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have
an outcome measurement, usually quantitative (such as a stock price) or
categorical (such as heart attack/no heart attack), that we wish to predict
based on a set of features (such as diet and clinical measurements). We
have a training set of data, in which we observe the outcome and feature

This is page 1
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2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

measurements for a set of objects (such as people). Using this data we build
a prediction model, or learner, which will enable us to predict the outcome
for new unseen objects. A good learner is one that accurately predicts such
an outcome.

The examples above describe what is called the supervised learning prob-
lem. It is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only the features and have no measurements of the outcome.
Our task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of Chapter 14.

Here are some examples of real learning problems that are discussed in
this book.

Example 1: Email Spam

The data for this example consists of information from 4601 email mes-
sages, in a study to try to predict whether the email was junk email, or
“spam.” The objective was to design an automatic spam detector that
could filter out spam before clogging the users’ mailboxes. For all 4601
email messages, the true outcome (email type) email or spam is available,
along with the relative frequencies of 57 of the most commonly occurring
words and punctuation marks in the email message. This is a supervised
learning problem, with the outcome the class variable email/spam. It is also
called a classification problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule such as

if (%george < 0.6) & (%you > 1.5)  then spam
else email.

Another form of a rule might be:

if (0.2 %you — 0.3 - %george) >0  then spam
else email.
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FIGURE 1.1. Scatterplot matriz of the prostate cancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are categorical.

For this problem not all errors are equal; we want to avoid filtering out
good email, while letting spam get through is not desirable but less serious
in its consequences. We discuss a number of different methods for tackling
this learning problem in the book.

Ezxample 2: Prostate Cancer

The data for this example, displayed in Figure 1.1!, come from a study
by Stamey et al. (1989) that examined the correlation between the level of

IThere was an error in these data in the first edition of this book. Subject 32 had
a value of 6.1 for lweight, which translates to a 449 gm prostate! The correct value is
44.9 gm. We are grateful to Prof. Stephen W. Link for alerting us to this error.



4 1. Introduction

275
3926
3435 &
3456
2%Sé

OO0
P YN

=TT

it hin

7
.-l';l'
7z
P,
]
=

Y eocdoQen
O~ ~9-D

3US6

FIGURE 1.2. Ezamples of handwritten digits from U.S. postal envelopes.

prostate specific antigen (PSA) and a number of clinical measures, in 97
men who were about to receive a radical prostatectomy.

The goal is to predict the log of PSA (1psa) from a number of measure-
ments including log cancer volume (lcavol), log prostate weight lweight,
age, log of benign prostatic hyperplasia amount 1bph, seminal vesicle in-
vasion svi, log of capsular penetration lcp, Gleason score gleason, and
percent of Gleason scores 4 or 5 pggd5. Figure 1.1 is a scatterplot matrix
of the variables. Some correlations with 1psa are evident, but a good pre-
dictive model is difficult to construct by eye.

This is a supervised learning problem, known as a regression problem,
because the outcome measurement is quantitative.

Example 3: Handwritten Digit Recognition

The data from this example come from the handwritten ZIP codes on
envelopes from U.S. postal mail. Each image is a segment from a five digit
ZIP code, isolating a single digit. The images are 16 x 16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The images have been normalized to have approximately the same size
and orientation. The task is to predict, from the 16 x 16 matrix of pixel
intensities, the identity of each image (0,1,...,9) quickly and accurately. If
it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a classification problem
for which the error rate needs to be kept very low to avoid misdirection of
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mail. In order to achieve this low error rate, some objects can be assigned
to a “don’t know” category, and sorted instead by hand.

Example 4: DNA FExpression Microarrays

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relative to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random sample of 100 rows are shown. The fig-
ure displays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion profiles across genes?

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

(c) do certain genes show very high (or low) expression for certain cancer
samples?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples—with the response variable being
the level of expression. However, it is probably more useful to view it as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830—dimensional space, which we want
to cluster together in some way.
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Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics including linear regression.

We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlying concepts and considerations
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How This Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence, after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods such as
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

In Chapters 9-13 we describe a series of structured methods for su-
pervised learning, with Chapters 9 and 11 covering regression and Chap-
ters 12 and 13 focusing on classification. Chapter 14 describes methods for
unsupervised learning. Two recently proposed techniques, random forests
and ensemble learning, are discussed in Chapters 15 and 16. We describe
undirected graphical models in Chapter 17 and finally we study high-
dimensional problems in Chapter 18.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including how the computations scale
with the number of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.
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We recommend that Chapters 1-4 be first read in sequence. Chapter 7
should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.

(\lene

0
The symbol indicates a technically difficult section, one that can
be skipped without interrupting the flow of the discussion.

Book Website
The website for this book is located at

http://www-stat.stanford.edu/ElemStatLearn

It contains a number of resources, including many of the datasets used in
this book.

Note for Instructors

We have successively used the first edition of this book as the basis for a
two-quarter course, and with the additional materials in this second edition,
it could even be used for a three-quarter sequence. Exercises are provided at
the end of each chapter. It is important for students to have access to good
software tools for these topics. We used the R and S-PLUS programming
languages in our courses.
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Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapter 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the predictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. In the pattern recognition literature the term features is preferred,
which we use as well. The outputs are called the responses, or classically
the dependent variables.

2.2 Variable Types and Terminology

The outputs vary in nature among the examples. In the glucose prediction
example, the output is a quantitative measurement, where some measure-
ments are bigger than others, and measurements close in value are close
in nature. In the famous Iris discrimination example due to R. A. Fisher,
the output is qualitative (species of Iris) and assumes values in a finite set
G = { Virginica, Setosa and Versicolor}. In the handwritten digit example
the output is one of 10 different digit classes: G = {0,1,...,9}. In both of

This is page 9
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these there is no explicit ordering in the classes, and in fact often descrip-
tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and clas-
sification when we predict qualitative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can have some of each of qual-
itative and quantitative input variables. These have also led to distinctions
in the types of methods that are used for prediction: some methods are
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitative variables are typically represented numerically by codes. The
easiest case is when there are only two classes or categories, such as “suc-
cess” or “failure,” “survived” or “died.” These are often represented by a
single binary digit or bit as 0 or 1, or else by —1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is “on” at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X;. Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Observed values are written in lowercase; hence the
ith observed value of X is written as x; (where z; is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example, a
set of N input p-vectors z;, i = 1,..., N would be represented by the N xp
matrix X. In general, vectors will not be bold, except when they have N
components; this convention distinguishes a p-vector of inputs z; for the
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ith observation from the N-vector x; consisting of all the observations on
variable X;. Since all vectors are assumed to be column vectors, the 7th
row of X is 21, the vector transpose of z;.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a good prediction of the output Y,
denoted by Y (pronounced “y-hat”). If Y takes values in IR then so should
Y'; likewise for categorical outputs, G should take values in the same set G
associated with G.

For a two-class GG, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions Y will
typically lie in [0, 1], and we can assign to G the class label according to
whether ¢ > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a set of measurements (x;,y;) or (x;,¢:), 1 =
1,..., N, known as the training data, with which to construct our prediction
rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
linear model fit by least squares and the k-nearest-neighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but can be unstable.

2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
XT = (X1, Xo,...,X,), we predict the output Y via the model

P
Y =B+ X8 (2.1)

j=1

The term BO is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include BO in
the vector of coefficients B , and then write the linear model in vector form
as an inner product

Y =X"5, (2.2)
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where X7 denotes vector or matrix transpose (X being a column vector).
Here we are modeling a single output, so Yisa scalar; in general Y can be
a K—vector, in which case 8 would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input—output space, (X, Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an affine set cutting the Y-axis at the point
(0, BO). From now on we assume that the intercept is included in £.

Viewed as a function over the p-dimensional input space, f(X) = XT3
is linear, and the gradient f’(X) = g is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coefficients [ to minimize the
residual sum of squares

N
RSS(8) = _(yi -« B)*. (2.3)
i=1
RSS(p) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS(8) = (v — XB)" (y — X5), (2.4)

where X is an N X p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. 5 we get
the normal equations

XT(y - XpB) =0. (2.5)
If XX is nonsingular, then the unique solution is given by
f=(XTX)"'XTy, (2.6)

and the fitted value at the ith input z; is ¢; = g(x;) = x?ﬁ At an arbi-
trary input xo the prediction is §(x¢) = :EOTB The entire fitted surface is
characterized by the p parameters B Intuitively, it seems that we do not
need a very large data set to fit such a model.

Let’s look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs X; and
Xs. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values BLUE or ,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for BLUE and 1 for . The fitted values Y
are converted to a fitted class variable (@ according to the rule

. ifY > 0.
G = ity >05 (2.7)
BLUE ifY <0.5.
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Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by :vTB = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR? classified as ORANGE corresponds to {z: JJTB > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : 2Th = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of
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the component Gaussians to use, and then generates an observation from
the chosen density. In the case of one Gaussian per class, we will see in
Chapter 4 that a linear decision boundary is the best one can do, and that
our estimate is almost optimal. The region of overlap is inevitable, and
future data to be predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difficult to obtain.

We now look at another classification and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far better suited to the second scenario.

2.3.2  Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set 7 clos-
est in input space to x to form Y. Specifically, the k-nearest neighbor fit
for Y is defined as follows:

vw=r Y w (28)

x; €Ny (x)

where Ny (z) is the neighborhood of x defined by the k closest points z; in
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we find the k£ observations with
x; closest to x in input space, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method
of fitting. Thus Y is the proportion of ’s in the neighborhood, and
so assigning class to G if Y > 0.5 amounts to a majority vote in
the neighborhood. The colored regions indicate all those points in input
space classified as BLUE or by such a rule, in this case found by
evaluating the procedure on a fine grid in input space. We see that the
decision boundaries that separate the BLUE from the regions are far
more irregular, and respond to local clusters where one class dominates.

Figure 2.3 shows the results for 1-nearest-neighbor classification: Y is
assigned the value gy, of the closest point x, to x in the training data. In
this case the regions of classification can be computed relatively easily, and
correspond to a Voronoi tessellation of the training data. Each point x;
has an associated tile bounding the region for which it is the closest input
point. For all points z in the tile, G(z) = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although k£ = 1 would
be an unlikely choice.
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15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of %k, and will always be 0
for kK = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k£ = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.
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1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0,0RANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3  From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N((1,0)7,I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mj, at random with probability 1/10, and
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FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The orange curves are test and the blue are training er-
ror for k-nearest-neighbor classification. The results for linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.

then generated a N(my,I/5), thus leading to a mixture of Gaussian clus-
ters for each class. Figure 2.4 shows the results of classifying 10,000 new
observations generated from the model. We compare the results for least
squares and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.
The following list describes some ways in which these simple procedures
have been enhanced:

e Kernel methods use weights that decrease smoothly to zero with dis-
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.
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e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

e Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
linearly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IRP denote a
real valued random input vector, and ¥ € IR a real valued random out-
put variable, with joint distribution Pr(X,Y’). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a loss
function L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))2.
This leads us to a criterion for choosing f,

EPE(f) E(Y — f(X))? (2.9)

- / ly — £(2)] Pr(dw, dy), (2.10)

the expected (squared) prediction error . By conditioning! on X, we can
write EPE as
EPE(f) = ExEy|x ([Y — f(X)]?|X) (211)

and we see that it suffices to minimize EPE pointwise:
f(z) = argmin Ey x ([Y — ¢]*|X = z). (2.12)

The solution is
f(z) = B(Y|X =), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = x is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point x, we might ask for the average of all

L Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly.
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those y;s with input x; = x. Since there is typically at most one observation
at any point x, we settle for

f(x) = Ave(ys|z; € Ni(z)), (2.14)

where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k points in 7 closest to z. Two approximations are happening here:

e expectation is approximated by averaging over sample data;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to x, and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X,Y’), one can show that as N,k — oo such that k/N — 0,
f(#) — BE(Y|X = z). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(z) is approximately
linear in its arguments:

flz) = 2" B. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(x) into EPE (2.9) and differentiating
we can solve for S theoretically:

B =[BXXD'E(XY). (2.16)

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(x) is well approximated by a globally linear
function.
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e k-nearest neighbors assumes f(z) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

FX) =" fi(X5). (2.17)
j=1

This retains the additivity of the linear model, but each coordinate function
fj is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)7 What happens if we replace the
L loss function with the Li: E|Y — f(X)|? The solution in this case is the
conditional median,

f(x) = median(Y|X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L; criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G , the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,
where L(k,¢) is the price paid for classifying an observation belonging to
class Gy as Gy. Most often we use the zero—one loss function, where all
misclassifications are charged a single unit. The expected prediction error
is

EPE = E[L(G, G(X))], (2.19)

where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K
EPE = Ex » LGk, G(X)[Pr(Gx|X) (2-20)
k=1
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Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).

and again it suffices to minimize EPE pointwise:
K
G(z) = argmingeg ¥ L(Gk, g)Pr(Ge| X = ). (2.21)

k=1

With the 0-1 loss function this simplifies to

G(z) = argmin g[1 — Pr(g|X = z)] (2.22)
or simply
G(z) = Gy if Pr(Gp| X = z) = meaéiPr(g|X =2x). (2.23)
g

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.
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Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G,|X) if G corresponded to ¥ = 1.
Likewise for a K-class problem, E(Y;|X) = Pr(G = Gi|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
f(X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4.

2.5 Local Methods in High Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any x
and average them. This approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction r of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e, () = r'/?. In ten dimensions e1¢(0.01) =
0.63 and e1(0.1) = 0.80, while the entire range for each input is only 1.0.
So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.

Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

distance from the origin to the closest data point is given by the expression

1 1/N

d(p, N) = (1- 5 )Up (2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p, N) ~ 0.52, more than
halfway to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N/?_ where p is the dimension of the input space and N is the
sample size. Thus, if N; = 100 represents a dense sample for a single input
problem, then Njg = 100'° is the sample size required for the same sam-
pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing examples x; generated uniformly on [—1,1]P. Assume that the true
relationship between X and Y is

Y = f(X) = e 8IXIF,

without any measurement error. We use the 1-nearest-neighbor rule to
predict yo at the test-point xg = 0. Denote the training set by 7. We can
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compute the expected prediction error at xg for our procedure, averaging
over all such samples of size 1000. Since the problem is deterministic, this
is the mean squared error (MSE) for estimating f(0):

MSE(zo) E7(f(z0) — fo]*
E7[§o — Er(90))* + [E7 (o) — f(z0)]?

= Varr(go) + Bias?(f). (2.25)

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias—variance decomposition. Unless the nearest neighbor is at 0,
Jo will be smaller than f(0) in this example, and so the average estimate
will be biased downward. The variance is due to the sampling variance of
the 1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more often than not, and hence the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

Y =XT8+¢, (2.26)

where € ~ N(0,0%) and we fit the model by least squares to the train-
ing data. For an arbitrary test point xg, we have gy = xgﬁ, which can
be written as o = o 8 + 25\7:1 li(xo)e;, where £;(x) is the ith element
of X(XTX)~1zq. Since under this model the least squares estimates are
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FIGURE 2.7. A simulation example, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The input features are uniformly
distributed in [—1,1]" for p=1,...,10 The top left panel shows the target func-
tion (no noise) inR: f(X) = 678HXH2, and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
increases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-right panel shows the MSE, squared bias and
variance curves as a function of dimension p.



26 2. Overview of Supervised Learning

1-NN in One Dimension MSE vs. Dimension
n
< g B
| ]
MSE
| . Variance
® © Sq. Bias d
3
1A p—
Py w °
IS 2
S J g
o
— 8 | p
e 4
o N“
° g {o—o—o—0—0o—
T T T T T
2 4 6 8 10
X Dimension

FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: f(X) = (X1 + 1)>. The
variance dominates.

unbiased, we find that

EPE(z0) = Eg0u0E7(yo — fi0)?
= Var(yolzo) + Er[go — Evdo]® + [Erdo — x{ 8]
= Var(yo|zo) + Vars(jo) + Bias? (i)
0?2 + Bral (XTX) tzgo? + 02 (2.27)

Here we have incurred an additional variance o2 in the prediction error,
since our target is not deterministic. There is no bias, and the variance
depends on zq. If N is large and T were selected at random, and assuming
E(X) =0, then XTX — NCov(X) and

E.,EPE(z9) ~ EgalCov(X) t2go?/N + o?
= trace[Cov(X) *Cov(zo)]o?/N + o
= o*(p/N)+ o> (2.28)

Here we see that the expected EPE increases linearly as a function of p,
with slope 0?/N. If N is large and/or o2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality. Some of the technical details in (2.27) and (2.28) are
derived in Exercise 2.5.

Figure 2.9 compares 1-nearest neighbor vs. least squares in two situa-
tions, both of which have the form Y = f(X) + ¢, X uniform as before,
and € ~ N(0,1). The sample size is N = 500. For the orange curve, f(x)
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FIGURE 2.9. The curves show the expected prediction error (at xo = 0) for
1-nearest neighbor relative to least squares for the model Y = f(X) + . For the
orange curve, f(x) = x1, while for the blue curve f(x) = %(wl +1)3.

is linear in the first coordinate, for the blue curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in this case, and as discussed above the EPE is slightly above o2 = 1.
The EPE for 1-nearest neighbor is always above 2, since the variance of
F(wo) in this case is at least 02, and the ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could manufacture
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in 1-nearest neighbor is substantially
larger. However, if the assumptions are wrong, all bets are off and the
1-nearest neighbor may dominate. We will see that there is a whole spec-
trum of models between the rigid linear models and the extremely flexible
1-nearest-neighbor models, each with their own assumptions and biases,
which have been proposed specifically to avoid the exponential growth in
complexity of functions in high dimensions by drawing heavily on these
assumptions.

Before we delve more deeply, let us elaborate a bit on the concept of
statistical models and see how they fit into the prediction framework.
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2.6 Statistical Models, Supervised Learning and
Function Approximation

Our goal is to find a useful approximation f(z) to the function f(z) that
underlies the predictive relationship between the inputs and outputs. In the
theoretical setting of Section 2.4, we saw that squared error loss lead us
to the regression function f(x) = E(Y|X = x) for a quantitative response.
The class of nearest-neighbor methods can be viewed as direct estimates
of this conditional expectation, but we have seen that they can fail in at
least two ways:

e if the dimension of the input space is high, the nearest neighbors need
not be close to the target point, and can result in large errors;

e if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f(z), in many cases specif-
ically designed to overcome the dimensionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y")

Suppose in fact that our data arose from a statistical model
Y = f(X) +e¢, (2.29)

where the random error € has E(¢) = 0 and is independent of X. Note that
for this model, f(z) = E(Y|X = ), and in fact the conditional distribution
Pr(Y]X) depends on X only through the conditional mean f(x).

The additive error model is a useful approximation to the truth. For
most systems the input—output pairs (X,Y) will not have a deterministic
relationship Y = f(X). Generally there will be other unmeasured variables
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures from a deterministic re-
lationship via the error €.

For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in IR?.
The training data consist of colored examples from the map {z;,g;}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the = location of the training points.
For the moment we will not pursue such problems, but will see that they
can be handled by techniques appropriate for the error-based models.

The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind
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when we average squared errors uniformly in our EPE criterion. With such
a model it becomes natural to use least squares as a data criterion for
model estimation as in (2.1). Simple modifications can be made to avoid
the independence assumption; for example, we can have Var(Y|X = z) =
o(x), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y|X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs Gj in this case the tar-
get function p(X) is the conditional density Pr(G|X), and this is modeled
directly. For example, for two-class data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 — p(X). Thus if YV is
the 0-1 coded version of G, then E(Y|X = z) = p(x), but the variance
depends on z as well: Var(Y|X = ) = p(z)[1 — p(x)].

2.6.2  Supervised Learning

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model Y = f(X)+¢
is a reasonable assumption. Supervised learning attempts to learn f by
example through a teacher. One observes the system under study, both
the inputs and outputs, and assembles a training set of observations 7 =
(zi,yi), i =1,...,N. The observed input values to the system x; are also
fed into an artificial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f (z;) in response to the in-
puts. The learning algorithm has the property that it can modify its in-
put/output relationship f in response to differences y; — f (2;) between the
original and generated outputs. This process is known as learning by exam-
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be close enough to be useful for all sets of inputs likely
to be encountered in practice.

2.6.3  Function Approximation

The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied mathe-
matics and statistics has been from the perspective of function approxima-
tion and estimation. Here the data pairs {z;,y;} are viewed as points in a
(p + 1)-dimensional Euclidean space. The function f(x) has domain equal
to the p-dimensional input subspace, and is related to the data via a model
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such as y; = f(x;) + ;. For convenience in this chapter we will assume the
domain is IR?, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f(x) for all z in some region of IRP, given the representations in 7.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.

Many of the approximations we will encounter have associated a set of
parameters 6 that can be modified to suit the data at hand. For example,
the linear model f(x) = 73 has § = 3. Another class of useful approxi-
mators can be expressed as linear basis expansions

K
fo(z) = th($)9k, (2.30)
k=1

where the hj are a suitable set of functions or transformations of the input
vector x. Traditional examples are polynomial and trigonometric expan-
sions, where for example hj might be 2%, x123, cos(z1) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

1

() = 1+ exp(—aT )’

(2.31)
We can use least squares to estimate the parameters 6 in fy as we did
for the linear model, by minimizing the residual sum-of-squares

N

RSS(0) = > (i — fo(r:))” (2.32)

i=1

as a function of #. This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p + 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. The noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(6).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general
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FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters
of fo(x) are chosen so as to minimize the sum-of-squared vertical errors.

principle for estimation is mazimum likelihood estimation. Suppose we have
a random sample y;, i = 1,..., N from a density Pry(y) indexed by some
parameters 6. The log-probability of the observed sample is

N
= Zlog Pro(y;). (2.33)

The principle of maximum likelihood assumes that the most reasonable
values for 0 are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fy(X) + &, with
e ~ N(0,0?), is equivalent to maximum likelihood using the conditional
likelihood

Pr(Y|X,0) = N(fo(X),0?). (2.34)

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

N 1O
L(9) = -5 log(27) — Nlogo — 357 (yi — fo(x:))?, (2.35)
i=1
and the only term involving 6 is the last, which is RSS(6) up to a scalar
negative multiplier.

A more interesting example is the multinomial likelihood for the regres-
sion function Pr(G|X) for a qualitative output G. Suppose we have a model
Pr(G = Gy|X = x) = pro(x), k = 1,..., K for the conditional probabil-
ity of each class given X, indexed by the parameter vector 6. Then the
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log-likelihood (also referred to as the cross-entropy) is

N
L(0) = Zlogpgi’g(xi)7 (2.36)
i=1

and when maximized it delivers values of 6 that best conform with the data
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we discuss further the need for such classes.

2.7.1 Difficulty of the Problem
Consider the RSS criterion for an arbitrary function f,

N

RSS(f) = > (yi — f(@:))*. (2.37)

i=1

Minimizing (2.37) leads to infinitely many solutions: any function f passing
through the training points (z;,y;) is a solution. Any particular solution
chosen might be a poor predictor at test points different from the training
points. If there are multiple observation pairs x;,y;¢, £ = 1,..., N; at each
value of z;, the risk is limited. In this case, the solutions pass through
the average values of the y;; at each z;; see Exercise 2.6. The situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and densely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for finite /N, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometimes encoded via the parametric representation
of fy, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this
book. One thing should be clear, though. Any restrictions imposed on f
that lead to a unique solution to (2.37) do not really remove the ambiguity
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caused by the multiplicity of solutions. There are infinitely many possible
restrictions, each leading to a unique solution, so the ambiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as complexity restrictions of one kind or another. This usually
means some kind of regular behavior in small neighborhoods of the input
space. That is, for all input points x sufficiently close to each other in
some metric, f exhibits some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

The strength of the constraint is dictated by the neighborhood size. The
larger the size of the neighborhood, the stronger the constraint, and the
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraint depends on the metric used. Some methods,
such as kernel and local regression and tree-based methods, directly specify
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input g, the function does not change much, and
so close outputs can be averaged to produce f (zp). Other methods such
as splines, neural networks and basis-function methods implicitly define
neighborhoods of local behavior. In Section 5.4.1 we discuss the concept
of an equivalent kernel (see Figure 5.8 on page 157), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above—peaked at the target point and falling away smoothly
away from it.

One fact should be clear by now. Any method that attempts to pro-
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions—again the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated—and often implicit or adaptive—metric for measuring neighbor-
hoods, which basically does not allow the neighborhood to be simultane-
ously small in all directions.

2.8 Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions
imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since detailed descriptions
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are given in later chapters. Each of the classes has associated with it one
or more parameters, sometimes appropriately called smoothing parameters,
that control the effective size of the local neighborhood. Here we describe
three broad classes.

2.8.1 Roughness Penalty and Bayesian Methods

Here the class of functions is controlled by explicitly penalizing RSS(f)
with a roughness penalty

PRSS(f;\) = RSS(f) + A (f). (2.38)

The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
smoothing spline for one-dimensional inputs is the solution to the penalized
least-squares criterion

N

PRSS(fi) = Y (s — f(@)* A [ 1" (@Pde. (239)

i=1

The roughness penalty here controls large values of the second derivative
of f, and the amount of penalty is dictated by A > 0. For A = 0 no penalty
is imposed, and any interpolating function will do, while for A = oo only
functions linear in = are permitted.

Penalty functionals J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J(f) = ?:1 J(f;) are used in conjunction with
additive functions f(X) = >-"_, f;(X;) to create additive models with
smooth coordinate functions. Similarly, projection pursuit regression mod-
els have f(X) = Z%Zl gm(al X) for adaptively chosen directions a,, and
the functions ¢, can each have an associated roughness penalty.

Penalty function, or reqularization methods, express our prior belief that
the type of functions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corre-
sponds to a log-prior, and PRSS(f; ) the log-posterior distribution, and
minimizing PRSS(f; A\) amounts to finding the posterior mode. We discuss
roughness-penalty approaches in Chapter 5 and the Bayesian paradigm in
Chapter 8.

2.8.2 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the re-
gression function or conditional expectation by specifying the nature of the
local neighborhood, and of the class of regular functions fitted locally. The
local neighborhood is specified by a kernel function K(xo, z) which assigns
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weights to points z in a region around z (see Figure 6.1 on page 192). For
example, the Gaussian kernel has a weight function based on the Gaussian
density function

1 x — zol|?
Ky (zg,x) = 3, €XP {—H”\OH] (2.40)

and assigns weights to points that die exponentially with their squared
Euclidean distance from xy. The parameter A corresponds to the variance
of the Gaussian density, and controls the width of the neighborhood. The
simplest form of kernel estimate is the Nadaraya—Watson weighted average

7 _ fo’il K (zo,7:)yi
flxo) = Sy Ka(zo, zi)

In general we can define a local regression estimate of f(zg) as f;(zo),

(2.41)

where § minimizes
N
RSS(fo, x0) = > Kx(zo, z:)(yi — fo(:))?, (2.42)
i=1

and fy is some parameterized function, such as a low-order polynomial.
Some examples are:

e fo(x) = 0o, the constant function; this results in the Nadaraya—
Watson estimate in (2.41) above.

e fo(x) = 0y + 61z gives the popular local linear regression model.

Nearest-neighbor methods can be thought of as kernel methods having a
more data-dependent metric. Indeed, the metric for k-nearest neighbors is

Ky (z,z0) = I([|z — xo|| < [|z) — 20l])s

where ;) is the training observation ranked kth in distance from zg, and
I(S) is the indicator of the set S.

These methods of course need to be modified in high dimensions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.3 Basis Functions and Dictionary Methods

This class of methods includes the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f is a linear expansion of basis functions

M
fo@) =Y Omhum (), (2.43)
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where each of the h,, is a function of the input x, and the term linear here
refers to the action of the parameters 6. This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in = of total degree M.

For one-dimensional x, polynomial splines of degree K can be represented
by an appropriate sequence of M spline basis functions, determined in turn
by M — K —1 knots. These produce functions that are piecewise polynomials
of degree K between the knots, and joined up with continuity of degree
K — 1 at the knots. As an example consider linear splines, or piecewise
linear functions. One intuitively satisfying basis consists of the functions
bi(z) = 1, ba(z) = z, and byya(x) = (@ — tp)y, m = 1,..., M — 2,
where t,, is the mth knot, and z; denotes positive part. Tensor products
of spline bases can be used for inputs with dimensions larger than one
(see Section 5.2, and the CART and MARS models in Chapter 9.) The
parameter M controls the degree of the polynomial or the number of knots
in the case of splines.

Radial basis functions are symmetric p-dimensional kernels located at
particular centroids,

M
fo(x) = > K, (Hm, )0m; (2.44)

m=1

for example, the Gaussian kernel K (u,x) = e~lle=nl*/2X ig popular.

Radial basis functions have centroids pu,, and scales A, that have to
be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. Including these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice, shortcuts such as greedy
algorithms or two stage processes are used. Section 6.7 describes some such
approaches.

A single-layer feed-forward neural network model with linear output
weights can be thought of as an adaptive basis function method. The model
has the form

M
folx) =Y Bmolafz + by), (2.45)

m=1

where o(z) = 1/(1 + e~*) is known as the activation function. Here, as
in the projection pursuit model, the directions «.,, and the bias terms b,
have to be determined, and their estimation is the meat of the computation.
Details are given in Chapter 11.

These adaptively chosen basis function methods are also known as dictio-
nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.
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2.9 Model Selection and the Bias—Variance
Tradeoff

All the models described above and many others discussed in later chapters
have a smoothing or complexrity parameter that has to be determined:

e the multiplier of the penalty term;
e the width of the kernel;
e or the number of basis functions.

In the case of the smoothing spline, the parameter A indexes models ranging
from a straight line fit to the interpolating model. Similarly a local degree-
m polynomial model ranges between a degree-m global polynomial when
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. This means that we cannot use residual sum-of-squares
on the training data to determine these parameters as well, since we would
always pick those that gave interpolating fits and hence zero residuals. Such
a model is unlikely to predict future data well at all.

The k-nearest-neighbor regression fit fk(xo) usefully illustrates the com-
peting forces that affect the predictive ability of such approximations. Sup-
pose the data arise from a model Y = f(X) + ¢, with E(¢) = 0 and
Var(e) = o2. For simplicity here we assume that the values of z; in the
sample are fixed in advance (nonrandom). The expected prediction error
at xg, also known as test or generalization error, can be decomposed:

[(Y—fk( ))Q\X—fﬂo]
= 02 + [Bias®(fi(z0)) + Varr(fi(x0))] (2.46)

EPEg (z0)

o2

k
S flw ] = (247
/=1

The subscripts in parentheses (¢) indicate the sequence of nearest neighbors
to xg.

There are three terms in this expression. The first term o2 is the 4r-
reducible error—the variance of the new test target—and is beyond our
control, even if we know the true f(xz).

The second and third terms are under our control, and make up the
mean squared error of fi(x) in estimating f(zo), which is broken down
into a bias component and a variance component. The bias term is the
squared difference between the true mean f(xo) and the expected value of
the estimate—[E7(fi(x0)) — f(20)]2—where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k£ the few closest
neighbors will have values f(x(,)) close to f(zg), so their average should

w\»—

- ot [
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(zp). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias—variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 3>, (y; — 9;)?. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f (zo) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.



Exercises 39
Bibliographic Notes

Some good general books on the learning problem are Duda et al. (2000),
Bishop (1995),(Bishop, 2006), Ripley (1996), Cherkassky and Mulier (2007)
and Vapnik (1996). Parts of this chapter are based on Friedman (1994b).

Exercises

Ex. 2.1 Suppose each of K-classes has an associated target tj, which is a
vector of all zeros, except a one in the kth position. Show that classifying to
the largest element of § amounts to choosing the closest target, ming ||ty —
||, if the elements of § sum to one.

Ex. 2.2 Show how to compute the Bayes decision boundary for the simula-
tion example in Figure 2.5.

Ex. 2.3 Derive equation (2.24).

Ex. 2.4 The edge effect problem discussed on page 23 is not peculiar to
uniform sampling from bounded domains. Consider inputs drawn from a
spherical multinormal distribution X ~ N(0,1,). The squared distance
from any sample point to the origin has a X% distribution with mean p.
Consider a prediction point xg drawn from this distribution, and let a =
xo/||z0|| be an associated unit vector. Let z; = a”x; be the projection of
each of the training points on this direction.

Show that the z; are distributed N (0, 1) with expected squared distance
from the origin 1, while the target point has expected squared distance p
from the origin.

Hence for p = 10, a randomly drawn test point is about 3.1 standard
deviations from the origin, while all the training points are on average
one standard deviation along direction a. So most prediction points see
themselves as lying on the edge of the training set.

Ex. 2.5

(a) Derive equation (2.27). The last line makes use of (3.8) through a
conditioning argument.

(b) Derive equation (2.28), making use of the cyclic property of the trace
operator [trace(AB) = trace(BA)], and its linearity (which allows us
to interchange the order of trace and expectation).

Ex. 2.6 Consider a regression problem with inputs z; and outputs y;, and a
parameterized model fp(x) to be fit by least squares. Show that if there are
observations with tied or identical values of x, then the fit can be obtained
from a reduced weighted least squares problem.
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Ex. 2.7 Suppose we have a sample of N pairs z;,y; drawn i.i.d. from the
distribution characterized as follows:

x; ~ h(x), the design density

yi = f(x;) +€i, [ is the regression function

g; ~ (0,0?) (mean zero, variance o?)

We construct an estimator for f linear in the y;,
N

f(xo) = Zfi(xo;/v)yiy
i=1

where the weights ¢;(z¢; X') do not depend on the y;, but do depend on the
entire training sequence of x;, denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are mem-
bers of this class of estimators. Describe explicitly the weights ¢;(z¢; X)
in each of these cases.

(b) Decompose the conditional mean-squared error

Eyjx(f(zo) — f(20))?

into a conditional squared bias and a conditional variance component.
Like X, ) represents the entire training sequence of y;.

(c) Decompose the (unconditional) mean-squared error

Ey x(f(z0) — f(20))
into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in
the above two cases.

Ex. 2.8 Compare the classification performance of linear regression and k—
nearest neighbor classification on the zipcode data. In particular, consider
only the 2’s and 3’s, and £ = 1,3,5,7 and 15. Show both the training and
test error for each choice. The zipcode data are available from the book
website www-stat.stanford.edu/ElemStatLearn.

Ex. 2.9 Consider a linear regression model with p parameters, fit by least

squares to a set of training data (x1,v1),...,(xN,yn) drawn at random

from a population. Let 8 be the least squares estimate. Suppose we have

some test data (Z1,91), ..., (Zar, ¥ar) drawn at random from the same pop-
. . N

ulation as the training data. If Ry, (8) = + > (v — 72;)* and Ry.(B8) =

o Ziw(ﬂz — BT%;)?, prove that

E[Rtr(é)] S E[Rte(B)]a
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where the expectations are over all that is random in each expression. [This
exercise was brought to our attention by Ryan Tibshirani, from a homework
assignment given by Andrew Ng.]
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3

Linear Methods for Regression

3.1 Introduction

A linear regression model assumes that the regression function E(Y|X) is
linear in the inputs Xi,...,X,,. Linear models were largely developed in
the precomputer age of statistics, but even in today’s computer era there
are still good reasons to study and use them. They are simple and often
provide an adequate and interpretable description of how the inputs affect
the output. For prediction purposes they can sometimes outperform fancier
nonlinear models, especially in situations with small numbers of training
cases, low signal-to-noise ratio or sparse data. Finally, linear methods can be
applied to transformations of the inputs and this considerably expands their
scope. These generalizations are sometimes called basis-function methods,
and are discussed in Chapter 5.

In this chapter we describe linear methods for regression, while in the
next chapter we discuss linear methods for classification. On some topics we
go into considerable detail, as it is our firm belief that an understanding
of linear methods is essential for understanding nonlinear ones. In fact,
many nonlinear techniques are direct generalizations of the linear methods
discussed here.
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3.2 Linear Regression Models and Least Squares

As introduced in Chapter 2, we have an input vector X7 = (X1, Xa, ..., X,),
and want to predict a real-valued output Y. The linear regression model
has the form

F(X)=Bo+ > X,8;. (3.1)

Jj=1

The linear model either assumes that the regression function E(Y|X) is
linear, or that the linear model is a reasonable approximation. Here the
B;’s are unknown parameters or coefficients, and the variables X; can come
from different sources:

e quantitative inputs;

e transformations of quantitative inputs, such as log, square-root or
square;

e basis expansions, such as Xo = X?, X3 = X}, leading to a polynomial
representation;

e numeric or “dummy” coding of the levels of qualitative inputs. For
example, if G is a five-level factor input, we might create Xj;, j =
1,...,5, such that X; = I(G = j). Together this group of X; repre-
sents the effect of G by a set of level-dependent constants, since in
Z?:l X;pj, one of the Xs is one, and the others are zero.

e interactions between variables, for example, X3 = X7 - Xo.

No matter the source of the X, the model is linear in the parameters.

Typically we have a set of training data (x1,y1) ... (zn,yn) from which
to estimate the parameters 8. Each z; = (xi17xi2,...,$ip)T is a vector
of feature measurements for the ith case. The most popular estimation
method is least squares, in which we pick the coefficients 5 = (5o, 81, - - - ,Bp)T
to minimize the residual sum of squares

N
RSS(B) = Z(yz — flz))?
Z;l ) )
= Z(yz —Bo— foijﬁj) : (3.2)
i=1 Jj=1

From a statistical point of view, this criterion is reasonable if the training
observations (z;, y;) represent independent random draws from their popu-
lation. Even if the z;’s were not drawn randomly, the criterion is still valid
if the y;’s are conditionally independent given the inputs x;. Figure 3.1
illustrates the geometry of least-squares fitting in the IRP™'-dimensional
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FIGURE 3.1. Linear least squares fitting with X € R?. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)7 Denote by X the N x (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(8) = (v — XB)" (y — X5). (3-3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to 8 we obtain

ORSS

98 —2X"(y — XB)
PRSS g (384)
0BopT '

Assuming (for the moment) that X has full column rank, and hence XX
is positive definite, we set the first derivative to zero

X" (y -Xp)=0 (3.5)
to obtain the unique solution

B =(XTX)"'xTy. (3.6)
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FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection y represents the vector
of the least squares predictions

The predicted values at an input vector xg are given by f (zg) = (L: zo)TB ;
the fitted values at the training inputs are

y=Xb=XX"X)"'X"y, (3.7)

where §; = f(:nl) The matrix H = X(X7X)~!X” appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRY. We denote the column vectors of X by xq,X1,...,X
with x¢g = 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IR™, also referred to as the column
space of X. We minimize RSS(3) = ||y — XS||? by choosing 3 so that the
residual vector y — y is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate y is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x;). Then X”X is singular
and the least squares coefficients B are not uniquely defined. However,
the fitted values y = X} are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

Dy
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some strategy for removing them. Rank deficiencies can also occur in signal
and image analysis, where the number of inputs p can exceed the number
of training cases N. In this case, the features are typically reduced by
filtering or else the fitting is controlled by regularization (Section 5.2.3 and
Chapter 18).

Up to now we have made minimal assumptions about the true distribu-
tion of the data. In order to pin down the sampling properties of B , We Now
assume that the observations y; are uncorrelated and have constant vari-
ance o2, and that the z; are fixed (non random). The variance—covariance
matrix of the least squares parameter estimates is easily derived from (3.6)
and is given by

Var(8) = (XTX) o2 (3.8)
Typically one estimates the variance o2 by

1 N
~2 2
7 _N—p—lz(yz bi)”

i=1

The N — p — 1 rather than N in the denominator makes 42 an unbiased
estimate of 02: E(6%) = o2.

To draw inferences about the parameters and the model, additional as-
sumptions are needed. We now assume that (3.1) is the correct model for
the mean; that is, the conditional expectation of Y is linear in X1,..., X,,.
We also assume that the deviations of Y around its expectation are additive

and Gaussian. Hence

Y = E(Y|X1,...,X,)+e
P
= ﬁo+ZXj5j+€a (3.9)
j=1

where the error € is a Gaussian random variable with expectation zero and
variance o2, written & ~ N(0,0?).
Under (3.9), it is easy to show that

B~ NG, (XTX)o?). (3.10)

This is a multivariate normal distribution with mean vector and variance—
covariance matrix as shown. Also

(N=p—=1)8> ~0*xX_p_1, (3.11)

a chi-squared distribution with N —p — 1 degrees of freedom. In addition B
and 62 are statistically independent. We use these distributional properties
to form tests of hypothesis and confidence intervals for the parameters 3;.
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FIGURE 3.3. The tail probabilities Pr(|Z| > z) for three distributions, tso, tioo
and standard normal. Shown are the appropriate quantiles for testing significance
at the p = 0.05 and 0.01 levels. The difference between t and the standard normal
becomes negligible for N bigger than about 100.

To test the hypothesis that a particular coefficient 8; = 0, we form the
standardized coefficient or Z-score

B;
&\/17]-’

where v; is the jth diagonal element of (XTX)~!. Under the null hypothesis
that 3; = 0, z; is distributed as ty_,_1 (a ¢ distribution with N —p —1
degrees of freedom), and hence a large (absolute) value of z; will lead to
rejection of this null hypothesis. If ¢ is replaced by a known value o, then
z; would have a standard normal distribution. The difference between the
tail quantiles of a ¢-distribution and a standard normal become negligible
as the sample size increases, and so we typically use the normal quantiles
(see Figure 3.3).

Often we need to test for the significance of groups of coefficients simul-
taneously. For example, to test if a categorical variable with k levels can
be excluded from a model, we need to test whether the coefficients of the
dummy variables used to represent the levels can all be set to zero. Here
we use the F' statistic,

zj = (3.12)

(RSSp — RSS1)/(p1 — po)
RSS1/(N —p1 —1)

F= (3.13)

where RSS; is the residual sum-of-squares for the least squares fit of the big-
ger model with p; +1 parameters, and RSSy the same for the nested smaller
model with py + 1 parameters, having p; — py parameters constrained to be
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zero. The F statistic measures the change in residual sum-of-squares per
additional parameter in the bigger model, and it is normalized by an esti-
mate of o2. Under the Gaussian assumptions, and the null hypothesis that
the smaller model is correct, the F' statistic will have a F},, _p n—p, —1 dis-
tribution. It can be shown (Exercise 3.1) that the z; in (3.12) are equivalent
to the F' statistic for dropping the single coeflicient §; from the model. For
large N, the quantiles of F}, _p, N—p, —1 approach those of x2 _ /(p1—po).

Similarly, we can isolate §; in (3.10) to obtain a 1—2« confidence interval

for f3;:

. 1 R 1
(B — 21" w26, B+ 21702 6). (3.14)
Here 2(1=®) is the 1 — o percentile of the normal distribution:
z(170-025) = 1 96,
Z(1=05)  — 1645, ete.

Hence the standard practice of reporting 3 & 2 - se(3) amounts to an ap-
proximate 95% confidence interval. Even if the Gaussian error assumption
does not hold, this interval will be approximately correct, with its coverage
approaching 1 — 2« as the sample size N — oo.

In a similar fashion we can obtain an approximate confidence set for the
entire parameter vector 3, namely

5 5 ~ 11—«
Cs = {BI(B=BTXTX(B-B) <o ), (3.15)
where X?(lfa) is the 1 — « percentile of the chi-squared distribution on ¢
degrees of freedom: for example, X§(170'05) = 11.1, Xg(lfo‘l) = 9.2. This

confidence set for 8 generates a corresponding confidence set for the true
function f(z) = a7 B, namely {z78|3 € Cg} (Exercise 3.2; see also Fig-
ure 5.4 in Section 5.2.2 for examples of confidence bands for functions).

3.2.1 FExample: Prostate Cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (1lcavol), log prostate
weight (lweight), age, log of the amount of benign prostatic hyperplasia
(1bph), seminal vesicle invasion (svi), log of capsular penetration (lcp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a
binary variable, and gleason is an ordered categorical variable. We see, for
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TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol 1lweight age 1bph svi lcp gleason

lweight 0.300

age 0.286 0.317

lbph  0.063 0.437 0.287

svi  0.593 0.181 0.129 —0.139

lcp  0.692 0.157 0.173 —0.089 0.671
gleason  0.426 0.024 0.366 0.033 0.307 0.476

pgg45  0.483 0.074 0.276 —0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (8.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score

Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pegib 0.27 0.15 1.74

example, that both lcavol and lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostate-specific antigen, 1psa, after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 67 and a test set of size 30. We ap-
plied least squares estimation to the training set, producing the estimates,
standard errors and Z-scores shown in Table 3.2. The Z-scores are defined
in (3.12), and measure the effect of dropping that variable from the model.
A Z-score greater than 2 in absolute value is approximately significant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the tg7_g distribution are £2.002!) The predictor 1cavol shows
the strongest effect, with lweight and svi also strong. Notice that lcp is
not significant, once lcavol is in the model (when used in a model without
lcavol, 1lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F-statistic (3.13). For example, we
consider dropping all the non-significant terms in Table 3.2, namely age,
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lcp, gleason, and pgg45. We get

32.81 — 29.43)/(9 — 5)

_(
F = 13/67 -9

=1.67, (3.16)

which has a p-value of 0.17 (Pr(Fyss > 1.67) = 0.17), and hence is not
significant.

The mean prediction error on the test data is 0.521. In contrast, predic-
tion using the mean training value of 1psa has a test error of 1.057, which
is called the “base error rate.” Hence the linear model reduces the base
error rate by about 50%. We will return to this example later to compare
various selection and shrinkage methods.

3.2.2 The Gauss—Markov Theorem

One of the most famous results in statistics asserts that the least squares
estimates of the parameters § have the smallest variance among all linear
unbiased estimates. We will make this precise here, and also make clear
that the restriction to unbiased estimates is not necessarily a wise one. This
observation will lead us to consider biased estimates such as ridge regression
later in the chapter. We focus on estimation of any linear combination of
the parameters § = a® 3; for example, predictions f(zo) = 2 3 are of this
form. The least squares estimate of a3 is

0=ad"p=a"(X"X)'X"y. (3.17)

Considering X to be fixed, this is a linear function ¢!y of the response
vector y. If we assume that the linear model is correct, a” 3 is unbiased
since

E(a"f) = E("(XTX)"'X"y)
= oI(XTX)"IXTXp
= 47p. (3.18)

The Gauss-Markov theorem states that if we have any other linear estima-
tor § = ¢’y that is unbiased for o’ 3, that is, E(c’y) = a’ 3, then

Var(a® ) < Var(cTy). (3.19)

The proof (Exercise 3.3) uses the triangle inequality. For simplicity we have
stated the result in terms of estimation of a single parameter a” 3, but with
a few more definitions one can state it in terms of the entire parameter
vector 3 (Exercise 3.3).

Consider the mean squared error of an estimator 6 in estimating 6:

MSE(4) = E(0—6)?

= Var() + [E6) — 0]>. (3.20)
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The first term is the variance, while the second term is the squared bias.
The Gauss-Markov theorem implies that the least squares estimator has the
smallest mean squared error of all linear estimators with no bias. However,
there may well exist a biased estimator with smaller mean squared error.
Such an estimator would trade a little bias for a larger reduction in variance.
Biased estimates are commonly used. Any method that shrinks or sets to
zero some of the least squares coefficients may result in a biased estimate.
We discuss many examples, including variable subset selection and ridge
regression, later in this chapter. From a more pragmatic point of view, most
models are distortions of the truth, and hence are biased; picking the right
model amounts to creating the right balance between bias and variance.
We go into these issues in more detail in Chapter 7.

Mean squared error is intimately related to prediction accuracy, as dis-
cussed in Chapter 2. Consider the prediction of the new response at input
Lo,

Yy = f(:l?o) + €o- (321)
Then the expected prediction error of an estimate f (z9) = xgﬁ is
E(Yo — f(w0))® = o +E(«f B~ f(x0))?
= 0%+ MSE(f(20)). (3.22)

Therefore, expected prediction error and mean squared error differ only by
the constant o2, representing the variance of the new observation yq.

3.2.3  Multiple Regression from Simple Univariate Regression

The linear model (3.1) with p > 1 inputs is called the multiple linear
regression model. The least squares estimates (3.6) for this model are best
understood in terms of the estimates for the wnivariate (p = 1) linear
model, as we indicate in this section.

Suppose first that we have a univariate model with no intercept, that is,

Y=Xp+e. (3.23)
The least squares estimate and residuals are
B _ Zf[ Lili
Va2’ (3.24)
i =Yi — CCZB
In convenient vector notation, we let y = (y1,...,yn)", x = (z1,...,2n5)T

and define
N
<X»Y> = leyzv
i=1

= xTy, (3.25)
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the inner product between x and y'. Then we can write

A <X>y>
P= x) (3.26)
r=y-— XB.

As we will see, this simple univariate regression provides the building block
for multiple linear regression. Suppose next that the inputs xi,xs,...,%,
(the columns of the data matrix X) are orthogonal; that is (x;,xz) = 0
for all j # k. Then it is easy to check that the multiple least squares esti-
mates 3; are equal to (x;,y)/(x;,x;)—the univariate estimates. In other
words, when the inputs are orthogonal, they have no effect on each other’s
parameter estimates in the model.

Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational
data. Hence we will have to orthogonalize them in order to carry this idea
further. Suppose next that we have an intercept and a single input x. Then
the least squares coefficient of x has the form

A <X — 1, y>

== Tl 3.27
A (x —z1,x—z1)’ (3.27)
where T = Zl x;/N, and 1 = xq, the vector of N ones. We can view the
estimate (3.27) as the result of two applications of the simple regression
(3.26). The steps are:

1. regress x on 1 to produce the residual z = x — z1;
2. regress y on the residual z to give the coefficient Bi.

In this procedure, “regress b on a” means a simple univariate regression of b
on a with no intercept, producing coefficient ¥ = (a, b)/(a, a) and residual
vector b —ya. We say that b is adjusted for a, or is “orthogonalized” with
respect to a.

Step 1 orthogonalizes x with respect to xo = 1. Step 2 is just a simple
univariate regression, using the orthogonal predictors 1 and z. Figure 3.4
shows this process for two general inputs x; and x5. The orthogonalization
does not change the subspace spanned by x; and x5, it simply produces an
orthogonal basis for representing it.

This recipe generalizes to the case of p inputs, as shown in Algorithm 3.1.
Note that the inputs zg, ..., z;_1 in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regres-
sion coefficients.

IThe inner-product notation is suggestive of generalizations of linear regression to
different metric spaces, as well as to probability spaces.
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FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector Xz is regressed on the vector X1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit y.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize zg = xg = 1.
2. For j=1,2,...)p

Regress x; on zg,%1,...,,2;-1 to produce coeflicients 4, =
(ze,x;)/{(20,20), £ = 0,...,5 — 1 and residual vector z; =

-1 o
Xj = D p—o VkjZk-

3. Regress y on the residual z, to give the estimate Bp.

The result of this algorithm is

Bp — <Zp’y> ] (328)
(zp, zp)

Re-arranging the residual in step 2, we can see that each of the x; is a linear
combination of the z;, k£ < j. Since the z; are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is y. Since z, alone involves x,, (with coefficient 1), we
see that the coefficient (3.28) is indeed the multiple regression coefficient of
y on x,. This key result exposes the effect of correlated inputs in multiple
regression. Note also that by rearranging the x;, any one of them could
be in the last position, and a similar results holds. Hence stated more
generally, we have shown that the jth multiple regression coefficient is the
univariate regression coefficient of y on X;.012...(j—1)(j+1)...,p, the residual
after regressing X5 Ol X0, X1ye ey Xjo1, Xj41y 000y Xpt
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The multiple regression coefficient Bj represents the additional
contribution of x; on'y, after x; has been adjusted for xo,X1,...,X;_1,
Xjtly---9Xp-

If x,, is highly correlated with some of the other x;’s, the residual vector
z,, will be close to zero, and from (3.28) the coefficient Bp will be very
unstable. This will be true for all the variables in the correlated set. In
such situations, we might have all the Z-scores (as in Table 3.2) be small—
any one of the set can be deleted—yet we cannot delete them all. From
(3.28) we also obtain an alternate formula for the variance estimates (3.8),

~ 0'2 0'2

Var(By) = s = (3.29)

In other words, the precision with which we can estimate Bp depends on
the length of the residual vector z,; this represents how much of x, is
unexplained by the other x;’s.

Algorithm 3.1 is known as the Gram-Schmidt procedure for multiple
regression, and is also a useful numerical strategy for computing the esti-
mates. We can obtain from it not just pr but also the entire multiple least
squares fit, as shown in Exercise 3.4.

We can represent step 2 of Algorithm 3.1 in matrix form:

X = 7T, (3.30)

where Z has as columns the z; (in order), and I" is the upper triangular ma-
trix with entries 4;;. Introducing the diagonal matrix D with jth diagonal
entry Dj; = ||z, we get

X

ZD~'DIr
QR, (3.31)

the so-called QR decomposition of X. Here Q is an N x (p+ 1) orthogonal

matrix, Q7Q =1, and Ris a (p+ 1) x (p+ 1) upper triangular matrix.
The QR decomposition represents a convenient orthogonal basis for the

column space of X. It is easy to see, for example, that the least squares

solution is given by

s = R'QTy, (3.32)

y = QQ'y. (3.33)

Equation (3.32) is easy to solve because R is upper triangular
(Exercise 3.4).
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3.2.4  Multiple Outputs
Suppose we have multiple outputs Y7,Ys,...,Yx that we wish to predict

from our inputs Xo, X1, Xs,...,X,. We assume a linear model for each
output
P
Vi = Box+ Y XiBjk+ex (3.34)
j=1
= fi(X)+ e (3.35)

With N training cases we can write the model in matrix notation
Y =XB+E. (3.36)

Here Y is the N x K response matrix, with ik entry y;x, X is the N x (p+1)
input matrix, B is the (p + 1) x K matrix of parameters and E is the
N x K matrix of errors. A straightforward generalization of the univariate
loss function (3.2) is

K N

RSS(B) = > > (v — fulz:)® (3.37)
k=11i=1

= tr[(Y - XB)T(Y - XB)]. (3.38)

The least squares estimates have exactly the same form as before
B=(X"X)"'x"Y. (3.39)

Hence the coefficients for the kth outcome are just the least squares es-
timates in the regression of y; on x¢,X1,...,X,. Multiple outputs do not
affect one another’s least squares estimates.

If the errors € = (e1,...,ex) in (3.34) are correlated, then it might seem
appropriate to modify (3.37) in favor of a multivariate version. Specifically,
suppose Cov(g) = 3, then the multivariate weighted criterion

N

RSS(B; X) = z:(yz — Flae)TZ Yy — f(20)) (3.40)

i=1

arises naturally from multivariate Gaussian theory. Here f(x) is the vector
function (f1(x),..., fr(z))T, and y; the vector of K responses for obser-
vation i. However, it can be shown that again the solution is given by
(3.39); K separate regressions that ignore the correlations (Exercise 3.11).
If the 3; vary among observations, then this is no longer the case, and the
solution for B no longer decouples.

In Section 3.7 we pursue the multiple outcome problem, and consider
situations where it does pay to combine the regressions.
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3.3 Subset Selection

There are two reasons why we are often not satisfied with the least squares
estimates (3.6).

e The first is prediction accuracy: the least squares estimates often have
low bias but large variance. Prediction accuracy can sometimes be
improved by shrinking or setting some coefficients to zero. By doing
so we sacrifice a little bit of bias to reduce the variance of the predicted
values, and hence may improve the overall prediction accuracy.

e The second reason is interpretation. With a large number of predic-
tors, we often would like to determine a smaller subset that exhibit
the strongest effects. In order to get the “big picture,” we are willing
to sacrifice some of the small details.

In this section we describe a number of approaches to variable subset selec-
tion with linear regression. In later sections we discuss shrinkage and hybrid
approaches for controlling variance, as well as other dimension-reduction
strategies. These all fall under the general heading model selection. Model
selection is not restricted to linear models; Chapter 7 covers this topic in
some detail.

With subset selection we retain only a subset of the variables, and elim-
inate the rest from the model. Least squares regression is used to estimate
the coefficients of the inputs that are retained. There are a number of dif-
ferent strategies for choosing the subset.

3.3.1 Best-Subset Selection

Best subset regression finds for each k& € {0,1,2,...,p} the subset of size k
that gives smallest residual sum of squares (3.2). An efficient algorithm—
the leaps and bounds procedure (Furnival and Wilson, 1974)—makes this
feasible for p as large as 30 or 40. Figure 3.5 shows all the subset models
for the prostate cancer example. The lower boundary represents the models
that are eligible for selection by the best-subsets approach. Note that the
best subset of size 2, for example, need not include the variable that was
in the best subset of size 1 (for this example all the subsets are nested).
The best-subset curve (red lower boundary in Figure 3.5) is necessarily
decreasing, so cannot be used to select the subset size k. The question of
how to choose k involves the tradeoff between bias and variance, along with
the more subjective desire for parsimony. There are a number of criteria
that one may use; typically we choose the smallest model that minimizes
an estimate of the expected prediction error.

Many of the other approaches that we discuss in this chapter are similar,
in that they use the training data to produce a sequence of models varying
in complexity and indexed by a single parameter. In the next section we use
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2  Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:
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o Computational; for large p we cannot compute the best subset se-
quence, but we can always compute the forward stepwise sequence
(even when p > N).

e Statistical; a price is paid in variance for selecting the best subset
of each size; forward stepwise is a more constrained search, and will
have lower variance, but perhaps more bias.
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FIGURE 3.6. Comparison of four subset-selection techniques on a simulated lin-
ear regression problem Y = XT3 +¢. There are N = 300 observations on p = 31
standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of
the variables, the coefficients are drawn at random from a N(0,0.4) distribution;
the rest are zero. The noise € ~ N(0,6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown is the mean-squared error
of the estimated coefficient B(k) at each step from the true (.

Backward-stepwise selection starts with the full model, and sequentially
deletes the predictor that has the least impact on the fit. The candidate for
dropping is the variable with the smallest Z-score (Exercise 3.10). Backward
selection can only be used when N > p, while forward stepwise can always
be used.

Figure 3.6 shows the results of a small simulation study to compare
best-subset regression with the simpler alternatives forward and backward
selection. Their performance is very similar, as is often the case. Included in
the figure is forward stagewise regression (next section), which takes longer
to reach minimum error.
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On the prostate cancer example, best-subset, forward and backward se-
lection all gave exactly the same sequence of terms.

Some software packages implement hybrid stepwise-selection strategies
that consider both forward and backward moves at each step, and select
the “best” of the two. For example in the R package the step function uses
the AIC criterion for weighing the choices, which takes proper account of
the number of parameters fit; at each step an add or drop will be performed
that minimizes the AIC score.

Other more traditional packages base the selection on F-statistics, adding
“significant” terms, and dropping “non-significant” terms. These are out
of fashion, since they do not take proper account of the multiple testing
issues. It is also tempting after a model search to print out a summary of
the chosen model, such as in Table 3.2; however, the standard errors are
not valid, since they do not account for the search process. The bootstrap
(Section 8.2) can be useful in such settings.

Finally, we note that often variables come in groups (such as the dummy
variables that code a multi-level categorical predictor). Smart stepwise pro-
cedures (such as step in R) will add or drop whole groups at a time, taking
proper account of their degrees-of-freedom.

3.3.8  Forward-Stagewise Regression

Forward-stagewise regression (F'S) is even more constrained than forward-
stepwise regression. It starts like forward-stepwise regression, with an in-
tercept equal to g, and centered predictors with coefficients initially all 0.
At each step the algorithm identifies the variable most correlated with the
current residual. It then computes the simple linear regression coefficient
of the residual on this chosen variable, and then adds it to the current co-
efficient for that variable. This is continued till none of the variables have
correlation with the residuals—i.e. the least-squares fit when N > p.

Unlike forward-stepwise regression, none of the other variables are ad-
justed when a term is added to the model. As a consequence, forward
stagewise can take many more than p steps to reach the least squares fit,
and historically has been dismissed as being inefficient. It turns out that
this “slow fitting” can pay dividends in high-dimensional problems. We
see in Section 3.8.1 that both forward stagewise and a variant which is
slowed down even further are quite competitive, especially in very high-
dimensional problems.

Forward-stagewise regression is included in Figure 3.6. In this example it
takes over 1000 steps to get all the correlations below 10~*. For subset size
k, we plotted the error for the last step for which there where k nonzero
coefficients. Although it catches up with the best fit, it takes longer to
do so.
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3.3.4  Prostate Cancer Data Ezample (Continued)

Table 3.3 shows the coefficients from a number of different selection and
shrinkage methods. They are best-subset selection using an all-subsets search,
ridge regression, the lasso, principal components regression and partial least
squares. Each method has a complexity parameter, and this was chosen to
minimize an estimate of prediction error based on tenfold cross-validation;
full details are given in Section 7.10. Briefly, cross-validation works by divid-
ing the training data randomly into ten equal parts. The learning method
is fit—for a range of values of the complexity parameter—to nine-tenths of
the data, and the prediction error is computed on the remaining one-tenth.
This is done in turn for each one-tenth of the data, and the ten prediction
error estimates are averaged. From this we obtain an estimated prediction
error curve as a function of the complexity parameter.

Note that we have already divided these data into a training set of size
67 and a test set of size 30. Cross-validation is applied to the training set,
since selecting the shrinkage parameter is part of the training process. The
test set is there to judge the performance of the selected model.

The estimated prediction error curves are shown in Figure 3.7. Many of
the curves are very flat over large ranges near their minimum. Included
are estimated standard error bands for each estimated error rate, based on
the ten error estimates computed by cross-validation. We have used the
“one-standard-error” rule—we pick the most parsimonious model within
one standard error of the minimum (Section 7.10, page 244). Such a rule
acknowledges the fact that the tradeoff curve is estimated with error, and
hence takes a conservative approach.

Best-subset selection chose to use the two predictors lcvol and lweight.
The last two lines of the table give the average prediction error (and its
estimated standard error) over the test set.

3.4 Shrinkage Methods

By retaining a subset of the predictors and discarding the rest, subset selec-
tion produces a model that is interpretable and has possibly lower predic-
tion error than the full model. However, because it is a discrete process—
variables are either retained or discarded—it often exhibits high variance,
and so doesn’t reduce the prediction error of the full model. Shrinkage
methods are more continuous, and don’t suffer as much from high
variability.

3.4.1  Ridge Regression

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The ridge coefficients minimize a penalized residual sum of
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FIGURE 3.7. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complexity parameter for that method. The horizontal axis
has been chosen so that the model complexity increases as we move from left to
right. The estimates of prediction error and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen, indicated by the purple
vertical broken lines.
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TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS

Intercept 2.465 2.477 2.452  2.468 2.497 2.452

lcavol 0.680 0.740 0.420 0.533 0.543 0.419

lweight 0.263 0.316 0.238  0.169 0.289 0.344

age —0.141 —0.046 —0.152 —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079

gleason —0.021 0.040 0.232 0.011

pggds  0.267 0.133 —0.056  0.084

Test Error 0.521 0.492 0.492  0.479 0.449 0.528

Std Error 0.179 0.143 0.165 0.164 0.105 0.152

squares,
- N P ) P
Bndge — arg;nin{Z(yi — Po — Z a:ijﬁj) + A Z ,3]2} (341)
i=1 j=1 j=1

Here A > 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of A, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

N p 2
Bndge = arg;ninZ(yi — Bo — injﬁj) ,

i =t (3.42)
subject to ZBJQ <t,

j=1

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters A in (3.41) and ¢ in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin. By imposing a
size constraint on the coefficients, as in (3.42), this problem is alleviated.
The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41). In addition,
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notice that the intercept By has been left out of the penalty term. Penal-
ization of the intercept would make the procedure depend on the origin
chosen for Y; that is, adding a constant ¢ to each of the targets y; would
not simply result in a shift of the predictions by the same amount c. It
can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each z;; gets
replaced by z;; — z;. We estimate 5y by y = % Eiv y;. The remaining co-
efficients get estimated by a ridge regression without intercept, using the
centered z;;. Henceforth we assume that this centering has been done, so
that the input matrix X has p (rather than p + 1) columuns.
Writing the criterion in (3.41) in matrix form,

RSS(A) = (v = XB)" (y — XB) + A8" 5, (3.43)
the ridge regression solutions are easily seen to be
pridee — (XTX 4+ A1) "1 X"y, (3.44)

where I is the p X p identity matrix. Notice that with the choice of quadratic
penalty A73, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of X7 X before
inversion. This makes the problem nonsingular, even if XX is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.8 shows the ridge coeflicient estimates for the prostate can-
cer example, plotted as functions of df()), the effective degrees of freedom
implied by the penalty A (defined in (3.50) on page 68). In the case of or-
thonormal inputs, the ridge estimates are just a scaled version of the least
squares estimates, that is, 448° = B/(l +A).

Ridge regression can also be derived as the mean or mode of a poste-
rior distribution, with a suitably chosen prior distribution. In detail, sup-
pose y; ~ N(Bo + af 8,0?), and the parameters 3; are each distributed as
N(0,72), independently of one another. Then the (negative) log-posterior
density of 3, with 72 and o2 assumed known, is equal to the expression
in curly braces in (3.41), with A\ = 02/72 (Exercise 3.6). Thus the ridge
estimate is the mode of the posterior distribution; since the distribution is
Gaussian, it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
composition is extremely useful in the analysis of many statistical methods.
The SVD of the N x p matrix X has the form

X = UDVT. (3.45)
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter X is varied. Coefficients are plotted versus df(X), the effective
degrees of freedom. A wertical line is drawn at df = 5.0, the value chosen by
cross-validation.
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Here U and V are N x p and p X p orthogonal matrices, with the columns
of U spanning the column space of X, and the columns of V spanning the
row space. D is a p X p diagonal matrix, with diagonal entries dy > do >
-+ > dp > 0 called the singular values of X. If one or more values d; = 0,
X is singular.

Using the singular value decomposition we can write the least squares
fitted vector as

X = X(XTX)'XTy
= UUTy, (3.46)

after some simplification. Note that UTy are the coordinates of y with
respect to the orthonormal basis U. Note also the similarity with (3.33);
Q and U are generally different orthogonal bases for the column space of
X (Exercise 3.8).

Now the ridge solutions are

Xpidee = X(XTX+ M) Xy
= UD(D?+ ) 'DU"y

p d2 -
_ J
= LWy (3.47)
=1 J

where the u; are the columns of U. Note that since A > 0, we have d?/(d? +
A) < 1. Like linear regression, ridge regression computes the coordinates of
y with respect to the orthonormal basis U. It then shrinks these coordinates
by the factors d? / (dj2 + A). This means that a greater amount of shrinkage
is applied to the coordinates of basis vectors with smaller d?.

What does a small value of d? mean? The SVD of the centered matrix
X is another way of expressing the principal components of the variables
in X. The sample covariance matrix is given by S = X7X/N, and from
(3.45) we have

XTX = vD?V7T, (3.48)

which is the eigen decomposition of XTX (and of S, up to a factor N).
The eigenvectors v; (columns of V) are also called the principal compo-
nents (or Karhunen—Loeve) directions of X. The first principal component
direction vy has the property that z; = Xv; has the largest sample vari-
ance amongst all normalized linear combinations of the columns of X. This

sample variance is easily seen to be

2
_ a7
TN

Var(z;) = Var(Xuv;) (3.49)

and in fact z; = Xv; = uid;. The derived variable z; is called the first
principal component of X, and hence u; is the normalized first principal
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FIGURE 3.9. Principal components of some input data points. The largest prin-
cipal component is the direction that mazimizes the variance of the projected data,
and the smallest principal component minimizes that variance. Ridge regression
projects y onto these components, and then shrinks the coefficients of the low—
variance components more than the high-variance components.

component. Subsequent principal components z; have maximum variance
d? /N, subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues d; correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.

Figure 3.9 illustrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y-axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, since predictors are
often chosen for study because they vary with the response variable, but
need not hold in general.
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In Figure 3.7 we have plotted the estimated prediction error versus the
quantity

df(\) = tr[X(XTX 4+ AI1)~1X7],
= tr(H)\)

d2
— J
= 2 iy (3.50)

j=1 "7

This monotone decreasing function of \ is the effective degrees of freedom
of the ridge regression fit. Usually in a linear-regression fit with p variables,
the degrees-of-freedom of the fit is p, the number of free parameters. The
idea is that although all p coefficients in a ridge fit will be non-zero, they
are fit in a restricted fashion controlled by A. Note that df(\) = p when
A = 0 (no regularization) and df(\) — 0 as A — oo. Of course there
is always an additional one degree of freedom for the intercept, which was
removed apriori. This definition is motivated in more detail in Section 3.4.4
and Sections 7.4-7.6. In Figure 3.7 the minimum occurs at df(\) = 5.0.
Table 3.3 shows that ridge regression reduces the test error of the full least
squares estimates by a small amount.

3.4.2 The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

N p 2
ﬂlasso = arg;nin Z(yz — ﬂo — Z fijﬁj)
i—1 J=1

P
subject to Z |6 < t. (3.51)
j=1

Just as in ridge regression, we can re-parametrize the constant 3y by stan-
dardizing the predictors; the solution for BO is g, and thereafter we fit a
model without an intercept (Exercise 3.5). In the signal processing litera-
ture, the lasso is also known as basis pursuit (Chen et al., 1998).

We can also write the lasso problem in the equivalent Lagrangian form

N

P P
Blasso — argénin{; Z(yz —Bo— injﬁj)z + )\Z |5J} (3.52)
j=1 J=1

i=1

Notice the similarity to the ridge regression problem (3.42) or (3.41): the
Ly ridge penalty Y-} 87 is replaced by the Ly lasso penalty Y 7 |3;|. This
latter constraint makes the solutions nonlinear in the y;, and there is no
closed form expression as in ridge regression. Computing the lasso solution
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is a quadratic programming problem, although we see in Section 3.4.4 that
efficient algorithms are available for computing the entire path of solutions
as A is varied, with the same computational cost as for ridge regression.
Because of the nature of the constraint, making ¢ sufficiently small will
cause some of the coefficients to be exactly zero. Thus the lasso does a kind
of continuous subset selection. If ¢ is chosen larger than tg = > 7 | BJ| (where
Bj = B}S, the least squares estimates), then the lasso estimates are the Bj’s.
On the other hand, for ¢ = ty/2 say, then the least squares coefficients are
shrunk by about 50% on average. However, the nature of the shrinkage
is not obvious, and we investigate it further in Section 3.4.4 below. Like
the subset size in variable subset selection, or the penalty parameter in
ridge regression, ¢t should be adaptively chosen to minimize an estimate of
expected prediction error.

In Figure 3.7, for ease of interpretation, we have plotted the lasso pre-
diction error estimates versus the standardized parameter s = ¢/ 7 |3].
A value § ~ 0.36 was chosen by 10-fold cross-validation; this caused four
coefficients to be set to zero (fifth column of Table 3.3). The resulting
model has the second lowest test error, slightly lower than the full least
squares model, but the standard errors of the test error estimates (last line
of Table 3.3) are fairly large.

Figure 3.10 shows the lasso coefficients as the standardized tuning pa-
rameter s = t/ 3 7|3;] is varied. At s = 1.0 these are the least squares
estimates; they decrease to 0 as s — 0. This decrease is not always strictly
monotonic, although it is in this example. A vertical line is drawn at
s = 0.36, the value chosen by cross-validation.

3.4.8 Discussion: Subset Selection, Ridge Regression and the
Lasso

In this section we discuss and compare the three approaches discussed so far
for restricting the linear regression model: subset selection, ridge regression
and the lasso.

In the case of an orthonormal input matrix X the three procedures have
explicit solutions. Each method applies a simple transformation to the least
squares estimate [3;, as detailed in Table 3.4.

Ridge regression does a proportional shrinkage. Lasso translates each
coefficient by a constant factor A, truncating at zero. This is called “soft
thresholding,” and is used in the context of wavelet-based smoothing in Sec-
tion 5.9. Best-subset selection drops all variables with coefficients smaller
than the Mth largest; this is a form of “hard-thresholding.”

Back to the nonorthogonal case; some pictures help understand their re-
lationship. Figure 3.11 depicts the lasso (left) and ridge regression (right)
when there are only two parameters. The residual sum of squares has ellip-
tical contours, centered at the full least squares estimate. The constraint
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ .7 |3;|. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do mot. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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TABLE 3.4. Estimators of B; in the case of orthonormal columns of X. M and A
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (£1), and x4 denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45° line in gray shows the unrestricted estimate

for reference.

Estimator

Formula

Best subset (size M) ;- I(|5;] > |/§(M)|)

Ridge Bj/(l +A)
Lasso sign(Bj)(|ﬁj| - A+
Best Subset Ridge Lasso
. 2
B | a ,"’/
0.0 7100 -7 710.0)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2] < t and B} + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

71
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region for ridge regression is the disk 37 + 35 < t, while that for lasso is
the diamond |81] + |B2| < ¢. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
B; equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

N P p
B = argénin{z:(yi = Bo — Zﬂsijﬁj)Q + )\Z |ﬁj|q} (3.53)
=1 j=1

i=1

for ¢ > 0. The contours of constant value of 3. [3;|? are shown in Fig-
ure 3.12; for the case of two inputs.

Thinking of |3;]? as the log-prior density for 5;, these are also the equi-
contours of the prior distribution of the parameters. The value ¢ = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; ¢ = 1 corresponds to the lasso, while ¢ = 2 to ridge
regression. Notice that for ¢ < 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the ¢ = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/27)exp(—|3|/7) and 7 = 1/A.
The case ¢ = 1 (lasso) is the smallest ¢ such that the constraint region
is convex; non-convex constraint regions make the optimization problem
more difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.53), we might try using other values
of ¢ besides 0, 1, or 2. Although one might consider estimating ¢ from
the data, our experience is that it is not worth the effort for the extra
variance incurred. Values of ¢ € (1,2) suggest a compromise between the
lasso and ridge regression. Although this is the case, with ¢ > 1, [3;]? is
differentiable at 0, and so does not share the ability of lasso (¢ = 1) for

2 q

1 q=20.5 q=0.1

qg=4 q
|
\

FIGURE 3.12. Contours of constant value of 3 |B;|* for given values of q.
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FIGURE 3.13. Contours of constant value of Zj |B;]7 for ¢ = 1.2 (left plot),
and the elastic-net penalty 3~ (aBF+(1—a)|B;|) for a = 0.2 (right plot). Although
visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penalty does not.

setting coeflicients exactly to zero. Partly for this reason as well as for
computational tractability, Zou and Hastie (2005) introduced the elastic-
net penalty

A

J

p
(af; + (1 - a)l5)), (3.54)
=1
a different compromise between ridge and lasso. Figure 3.13 compares the
Lq penalty with ¢ = 1.2 and the elastic-net penalty with a = 0.2; it is
hard to detect the difference by eye. The elastic-net selects variables like
the lasso, and shrinks together the coefficients of correlated predictors like
ridge. It also has considerable computational advantages over the L, penal-
ties. We discuss the elastic-net further in Section 18.4.

3.4.4 Least Angle Regression

Least angle regression (LAR) is a relative newcomer (Efron et al., 2004),
and can be viewed as a kind of “democratic” version of forward stepwise
regression (Section 3.3.2). As we will see, LAR is intimately connected
with the lasso, and in fact provides an extremely efficient algorithm for
computing the entire lasso path as in Figure 3.10.

Forward stepwise regression builds a model sequentially, adding one vari-
able at a time. At each step, it identifies the best variable to include in the
active set, and then updates the least squares fit to include all the active
variables.

Least angle regression uses a similar strategy, but only enters “as much”
of a predictor as it deserves. At the first step it identifies the variable
most correlated with the response. Rather than fit this variable completely,
LAR moves the coefficient of this variable continuously toward its least-
squares value (causing its correlation with the evolving residual to decrease
in absolute value). As soon as another variable “catches up” in terms of
correlation with the residual, the process is paused. The second variable
then joins the active set, and their coeflicients are moved together in a way
that keeps their correlations tied and decreasing. This process is continued
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until all the variables are in the model, and ends at the full least-squares
fit. Algorithm 3.2 provides the details. The termination condition in step 5
requires some explanation. If p > N — 1, the LAR algorithm reaches a zero
residual solution after N — 1 steps (the —1 is because we have centered the
data).

Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit norm. Start
with the residual r =y —y, f1,582,..., 8, = 0.

2. Find the predictor x; most correlated with r.

3. Move (3, from 0 towards its least-squares coefficient (x;, r), until some
other competitor x; has as much correlation with the current residual
as does x;.

4. Move ; and B in the direction defined by their joint least squares
coefficient of the current residual on (x;,x}), until some other com-
petitor x; has as much correlation with the current residual.

5. Continue in this way until all p predictors have been entered. After
min(N — 1, p) steps, we arrive at the full least-squares solution.

Suppose Ay, is the active set of variables at the beginning of the kth
step, and let 54, be the coeflicient vector for these variables at this step;
there will be k — 1 nonzero values, and the one just entered will be zero. If
ry =y — X4, 54, is the current residual, then the direction for this step is

o = (X%, Xoa,) ' XY, 1. (3.55)

The coefficient profile then evolves as S84, (a) = S4, + « - Ji. Exercise 3.23
verifies that the directions chosen in this fashion do what is claimed: keep
the correlations tied and decreasing. If the fit vector at the beginning of
this step is f'k, then it evolves as fk(a) = f'k + «a - ug, where up = X 4, 0
is the new fit direction. The name “least angle” arises from a geometrical
interpretation of this process; ui makes the smallest (and equal) angle
with each of the predictors in Ay (Exercise 3.24). Figure 3.14 shows the
absolute correlations decreasing and joining ranks with each step of the
LAR algorithm, using simulated data.

By construction the coefficients in LAR change in a piecewise linear fash-
ion. Figure 3.15 [left panel] shows the LAR coefficient profile evolving as a
function of their L; arc length 2. Note that we do not need to take small

2The L; arc-length of a differentiable curve (s) for s € [0, S] is given by TV(j, S) =
fOS [16(s)||1ds, where 3(s) = AB(s)/ds. For the piecewise-linear LAR coefficient profile,
this amounts to summing the L norms of the changes in coefficients from step to step.
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with siz predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.
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FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the Ly arc length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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steps and recheck the correlations in step 3; using knowledge of the covari-
ance of the predictors and the piecewise linearity of the algorithm, we can
work out the exact step length at the beginning of each step (Exercise 3.25).

The right panel of Figure 3.15 shows the lasso coeflicient profiles on the
same data. They are almost identical to those in the left panel, and differ
for the first time when the blue coefficient passes back through zero. For the
prostate data, the LAR coefficient profile turns out to be identical to the
lasso profile in Figure 3.10, which never crosses zero. These observations
lead to a simple modification of the LAR algorithm that gives the entire
lasso path, which is also piecewise-linear.

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

The LAR(lasso) algorithm is extremely efficient, requiring the same order
of computation as that of a single least squares fit using the p predictors.
Least angle regression always takes p steps to get to the full least squares
estimates. The lasso path can have more than p steps, although the two
are often quite similar. Algorithm 3.2 with the lasso modification 3.2a is
an efficient way of computing the solution to any lasso problem, especially
when p > N. Osborne et al. (2000a) also discovered a piecewise-linear path
for computing the lasso, which they called a homotopy algorithm.

We now give a heuristic argument for why these procedures are so similar.
Although the LAR algorithm is stated in terms of correlations, if the input
features are standardized, it is equivalent and easier to work with inner-
products. Suppose A is the active set of variables at some stage in the
algorithm, tied in their absolute inner-product with the current residuals
y — X 3. We can express this as

x[(y —XB)=7-s;, ¥VjeA (3.56)

where s; € {—1,1} indicates the sign of the inner-product, and v is the
common value. Also |x} (y — Xj)| < v Vk ¢ A. Now consider the lasso
criterion (3.52), which we write in vector form

R(B) = 5lly — XBII3 + Al|Bl]1- (3.57)

Let B be the active set of variables in the solution for a given value of .
For these variables R(3) is differentiable, and the stationarity conditions
give

x; (y — XB) = X -sign(B;), Vj € B (3.58)
Comparing (3.58) with (3.56), we see that they are identical only if the
sign of ; matches the sign of the inner product. That is why the LAR
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algorithm and lasso start to differ when an active coefficient passes through
zero; condition (3.58) is violated for that variable, and it is kicked out of the
active set B. Exercise 3.23 shows that these equations imply a piecewise-
linear coefficient profile as A\ decreases. The stationarity conditions for the
non-active variables require that

X} (y — XB)| < A, Vk & B, (3.59)

which again agrees with the LAR algorithm.

Figure 3.16 compares LAR and lasso to forward stepwise and stagewise
regression. The setup is the same as in Figure 3.6 on page 59, except here
N = 100 here rather than 300, so the problem is more difficult. We see
that the more aggressive forward stepwise starts to overfit quite early (well
before the 10 true variables can enter the model), and ultimately performs
worse than the slower forward stagewise regression. The behavior of LAR
and lasso is similar to that of forward stagewise regression. Incremental
forward stagewise is similar to LAR and lasso, and is described in Sec-
tion 3.8.1.

Degrees-of-Freedom Formula for LAR and Lasso

Suppose that we fit a linear model via the least angle regression procedure,
stopping at some number of steps k < p, or equivalently using a lasso bound
t that produces a constrained version of the full least squares fit. How many
parameters, or “degrees of freedom” have we used?

Consider first a linear regression using a subset of k features. If this subset
is prespecified in advance without reference to the training data, then the
degrees of freedom used in the fitted model is defined to be k. Indeed, in
classical statistics, the number of linearly independent parameters is what
is meant by “degrees of freedom.” Alternatively, suppose that we carry out
a best subset selection to determine the “optimal” set of k predictors. Then
the resulting model has k parameters, but in some sense we have used up
more than k£ degrees of freedom.

We need a more general definition for the effective degrees of freedom of
an adaptively fitted model. We define the degrees of freedom of the fitted

vector y = (gbg% s 7:gN) as
1 N
df(y) = po) Z Cov(9i, yi)- (3.60)
i=1

Here Cov(y;,y;) refers to the sampling covariance between the predicted
value 7; and its corresponding outcome value ;. This makes intuitive sense:
the harder that we fit to the data, the larger this covariance and hence
df(y). Expression (3.60) is a useful notion of degrees of freedom, one that
can be applied to any model prediction y. This includes models that are
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FIGURE 3.16. Comparison of LAR and lasso with forward stepwise, forward
stagewise (FS) and incremental forward stagewise (FSo) regression. The setup
is the same as in Figure 3.6, except N = 100 here rather than 300. Here the
slower FS regression ultimately outperforms forward stepwise. LAR and lasso
show similar behavior to F'S and FSo. Since the procedures take different numbers
of steps (across simulation replicates and methods), we plot the MSE as a function
of the fraction of total L1 arc-length toward the least-squares fit.

adaptively fitted to the training data. This definition is motivated and
discussed further in Sections 7.4-7.6.

Now for a linear regression with k fixed predictors, it is easy to show
that df(y) = k. Likewise for ridge regression, this definition leads to the
closed-form expression (3.50) on page 68: df(y) = tr(Sy). In both these
cases, (3.60) is simple to evaluate because the fit y = H,y is linear in y.
If we think about definition (3.60) in the context of a best subset selection
of size k, it seems clear that df(y) will be larger than &, and this can be
verified by estimating Cov(#;,y;)/o? directly by simulation. However there
is no closed form method for estimating df(y) for best subset selection.

For LAR and lasso, something magical happens. These techniques are
adaptive in a smoother way than best subset selection, and hence estimation
of degrees of freedom is more tractable. Specifically it can be shown that
after the kth step of the LAR procedure, the effective degrees of freedom of
the fit vector is exactly k. Now for the lasso, the (modified) LAR procedure
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often takes more than p steps, since predictors can drop out. Hence the
definition is a little different; for the lasso, at any stage df(y) approximately
equals the number of predictors in the model. While this approximation
works reasonably well anywhere in the lasso path, for each k it works best
at the last model in the sequence that contains k predictors. A detailed
study of the degrees of freedom for the lasso may be found in Zou et al.
(2007).

3.5 Methods Using Derived Input Directions

In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
Zm, m=1,..., M of the original inputs X;, and the Z,, are then used in
place of the X as inputs in the regression. The methods differ in how the
linear combinations are constructed.

3.5.1 Principal Components Regression

In this approach the linear combinations Z,, used are the principal com-
ponents as defined in Section 3.4.1 above.

Principal component regression forms the derived input columns z,, =
Xy, and then regresses y on z, Zo, . . .,z for some M < p. Since the z,,
are orthogonal, this regression is just a sum of univariate regressions:

M
In =01+ Y Oz, (3.61)
m=1

where O, = (Zm,y)/(Zm, Zm). Since the z,, are each linear combinations
of the original x;, we can express the solution (3.61) in terms of coefficients
of the x; (Exercise 3.13):

N M A~
chr(M) = Z emvmn (362)

m=1

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we first standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
Z = UD span the column space of X. For M < p we get a reduced regres-
sion. We see that principal components regression is very similar to ridge
regression: both operate via the principal components of the input ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.17), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p — M smallest
eigenvalue components. Figure 3.17 illustrates this.
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FIGURE 3.17. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d?/(d? + A) as in (3.47). Principal
component regression truncates them. Shown are the shrinkage and truncation
patterns corresponding to Figure 3.7, as a function of the principal component
indez.

In Figure 3.7 we see that cross-validation suggests seven terms; the re-
sulting model has the lowest test error in Table 3.3.

3.5.2  Partial Least Squares

This technique also constructs a set of linear combinations of the inputs
for regression, but unlike principal components regression it uses y (in ad-
dition to X) for this construction. Like principal component regression,
partial least squares (PLS) is not scale invariant, so we assume that each
x; is standardized to have mean 0 and variance 1. PLS begins by com-
puting ¢1; = (x;,y) for each j. From this we construct the derived input
7| = Zj (1%, which is the first partial least squares direction. Hence
in the construction of each z,,, the inputs are weighted by the strength
of their univariate effect on y®. The outcome y is regressed on z; giving
coefficient 6, and then we orthogonalize x1, ... ,x, with respect to z;. We
continue this process, until M < p directions have been obtained. In this
manner, partial least squares produces a sequence of derived, orthogonal
inputs or directions zy,zo,...,zy. As with principal-component regres-
sion, if we were to construct all M = p directions, we would get back a
solution equivalent to the usual least squares estimates; using M < p di-
rections produces a reduced regression. The procedure is described fully in
Algorithm 3.3.

3Since the x; are standardized, the first directions ¢1; are the univariate regression
coefficients (up to an irrelevant constant); this is not the case for subsequent directions.
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Algorithm 3.3 Partial Least Squares.

1. Standardize each x; to have mean zero and variance one. Set y(*) =

41, and XEO) =xj,j=1,...,p.

2. Form=1,2,....,p

~ —1
m Z?:l (ij xgm )

m <Z7n7 y>/<z7n7 Z’m>

= y(mil) + émzm-

(m—-1)
J

(2, ") (2 20 2o, 5 = 1,2, .

, where ¢p,; = (x;mfl)

(a
(b
(¢
(d

N

) Y-

) 0

)

) (m) _ _(m-1) _

with respect to z,,: x; X;

yim
Orthogonahze each x ]

3. Output the sequence of fitted vectors {y(™}}. Since the {z,}7" are
linear in the original x;, so is y(m) = X3P (m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

In the prostate cancer example, cross-validation chose M = 2 PLS direc-
tions in Figure 3.7. This produced the model given in the rightmost column
of Table 3.3.

What optimization problem is partial least squares solving? Since it uses
the response y to construct its directions, its solution path is a nonlinear
function of y. It can be shown (Exercise 3.15) that partial least squares
seeks directions that have high variance and have high correlation with the
response, in contrast to principal components regression which keys only
on high variance (Stone and Brooks, 1990; Frank and Friedman, 1993). In
particular, the mth principal component direction v, solves:

max, Var(Xa) (3.63)
subject to ||a]| =1, aTSv, =0, £=1,...,m — 1,

where S is the sample covariance matrix of the x;. The conditions aTSv, =
0 ensures that z,, = Xa is uncorrelated with all the previous linear com-
binations zy = Xwvy. The mth PLS direction ¢, solves:

max,, Corr®(y, Xa)Var(Xa) (3.64)
subject to ||a]| =1, 'S¢y =0, £ =1,...,m — 1.

Further analysis reveals that the variance aspect tends to dominate, and
so partial least squares behaves much like ridge regression and principal
components regression. We discuss this further in the next section.

If the input matrix X is orthogonal, then partial least squares finds the
least squares estimates after m = 1 steps. Subsequent steps have no effect
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since the ¢,,; are zero for m > 1 (Exercise 3.14). It can also be shown that
the sequence of PLS coefficients for m = 1,2, ..., p represents the conjugate
gradient sequence for computing the least squares solutions (Exercise 3.18).

3.6 Discussion: A Comparison of the Selection and
Shrinkage Methods

There are some simple settings where we can understand better the rela-
tionship between the different methods described above. Consider an exam-
ple with two correlated inputs X; and X5, with correlation p. We assume
that the true regression coefficients are f; = 4 and f = 2. Figure 3.18
shows the coefficient profiles for the different methods, as their tuning pa-
rameters are varied. The top panel has p = 0.5, the bottom panel p = —0.5.
The tuning parameters for ridge and lasso vary over a continuous range,
while best subset, PLS and PCR take just two discrete steps to the least
squares solution. In the top panel, starting at the origin, ridge regression
shrinks the coefficients together until it finally converges to least squares.
PLS and PCR show similar behavior to ridge, although are discrete and
more extreme. Best subset overshoots the solution and then backtracks.
The behavior of the lasso is intermediate to the other methods. When the
correlation is negative (lower panel), again PLS and PCR roughly track
the ridge path, while all of the methods are more similar to one another.

It is interesting to compare the shrinkage behavior of these different
methods. Recall that ridge regression shrinks all directions, but shrinks
low-variance directions more. Principal components regression leaves M
high-variance directions alone, and discards the rest. Interestingly, it can
be shown that partial least squares also tends to shrink the low-variance
directions, but can actually inflate some of the higher variance directions.
This can make PLS a little unstable, and cause it to have slightly higher
prediction error compared to ridge regression. A full study is given in Frank
and Friedman (1993). These authors conclude that for minimizing predic-
tion error, ridge regression is generally preferable to variable subset selec-
tion, principal components regression and partial least squares. However
the improvement over the latter two methods was only slight.

To summarize, PLS, PCR and ridge regression tend to behave similarly.
Ridge regression may be preferred because it shrinks smoothly, rather than
in discrete steps. Lasso falls somewhere between ridge regression and best
subset regression, and enjoys some of the properties of each.
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FIGURE 3.18. Coefficient profiles from different methods for a simple problem:
two inputs with correlation £0.5, and the true regression coefficients = (4,2).
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3.7 Multiple Outcome Shrinkage and Selection
v

As noted in Section 3.2.4, the least squares estimates in a multiple-output
linear model are simply the individual least squares estimates for each of
the outputs.

To apply selection and shrinkage methods in the multiple output case,
one could apply a univariate technique individually to each outcome or si-
multaneously to all outcomes. With ridge regression, for example, we could
apply formula (3.44) to each of the K columns of the outcome matrix Y,
using possibly different parameters A, or apply it to all columns using the
same value of X\. The former strategy would allow different amounts of
regularization to be applied to different outcomes but require estimation
of k separate regularization parameters Ay, ..., \;, while the latter would
permit all £ outputs to be used in estimating the sole regularization pa-
rameter \.

Other more sophisticated shrinkage and selection strategies that exploit
correlations in the different responses can be helpful in the multiple output
case. Suppose for example that among the outputs we have

Vi = f(X)+ex (3.65)
Yo = f(X)+es (3.66)

i.e., (3.65) and (3.66) share the same structural part f(X) in their models.
It is clear in this case that we should pool our observations on Y; and Y;
to estimate the common f.

Combining responses is at the heart of canonical correlation analysis
(CCA), a data reduction technique developed for the multiple output case.
Similar to PCA, CCA finds a sequence of uncorrelated linear combina-
tions Xv,,, m = 1,...,M of the x;, and a corresponding sequence of
uncorrelated linear combinations Ywu,, of the responses yg, such that the
correlations

Corr? (Y iy, Xy (3.67)

are successively maximized. Note that at most M = min(K, p) directions
can be found. The leading canonical response variates are those linear com-
binations (derived responses) best predicted by the x;; in contrast, the
trailing canonical variates can be poorly predicted by the x;, and are can-
didates for being dropped. The CCA solution is computed using a general-
ized SVD of the sample cross-covariance matrix Y7 X /N (assuming Y and
X are centered; Exercise 3.20).

Reduced-rank regression (Izenman, 1975; van der Merwe and Zidek, 1980)
formalizes this approach in terms of a regression model that explicitly pools
information. Given an error covariance Cov(e) = X, we solve the following
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restricted multivariate regression problem:

N
B (m) = argmin Z(yl —BTz)T2  (y; — BTx). (3.68)

rank(B)=m

With ¥ replaced by the estimate YZY /N, one can show (Exercise 3.21)
that the solution is given by a CCA of Y and X:

B"(m)=BU,,U,,, (3.69)

where U,, is the K x m sub-matrix of U consisting of the first m columns,
and U is the K x M matrix of left canonical vectors uj,us,...,unr. U,
is its generalized inverse. Writing the solution as

B (M) = (XTX)"'X"(YU,,)U;,, (3.70)

we see that reduced-rank regression performs a linear regression on the
pooled response matrix YU,,, and then maps the coefficients (and hence
the fits as well) back to the original response space. The reduced-rank fits
are given by

YU (m) = X(XTX)"'x"YU,, U,

(3.71)
=HYP,,,

where H is the usual linear regression projection operator, and P,, is the
rank-m CCA response projection operator. Although a better estimate of
> would be (Y =XB)7 (Y —XB)/(N —pK), one can show that the solution
remains the same (Exercise 3.22).

Reduced-rank regression borrows strength among responses by truncat-
ing the CCA. Breiman and Friedman (1997) explored with some success
shrinkage of the canonical variates between X and Y, a smooth version of
reduced rank regression. Their proposal has the form (compare (3.69))

BtV = BUAU !, (3.72)

where A is a diagonal shrinkage matrix (the “c+w” stands for “Curds
and Whey,” the name they gave to their procedure). Based on optimal
prediction in the population setting, they show that A has diagonal entries

2

m . m=1,...,M, (3.73)

M = g ——
G+ RI—a)

where ¢,, is the mth canonical correlation coefficient. Note that as the ratio
of the number of input variables to sample size p/N gets small, the shrink-
age factors approach 1. Breiman and Friedman (1997) proposed modified
versions of A based on training data and cross-validation, but the general
form is the same. Here the fitted response has the form

YerY = HYS Y, (3.74)
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where S = UAU™! is the response shrinkage operator.
Breiman and Friedman (1997) also suggested shrinking in both the Y
space and X space. This leads to hybrid shrinkage models of the form

yridse ety — A Y8, (3.75)

where A = X(XTX+ AI)~!X7 is the ridge regression shrinkage operator,
as in (3.46) on page 66. Their paper and the discussions thereof contain
many more details.

3.8 More on the Lasso and Related Path
Algorithms

Since the publication of the LAR algorithm (Efron et al., 2004) there has
been a lot of activity in developing algorithms for fitting regularization
paths for a variety of different problems. In addition, L, regularization has
taken on a life of its own, leading to the development of the field compressed
sensing in the signal-processing literature. (Donoho, 2006a; Candes, 2006).
In this section we discuss some related proposals and other path algorithms,
starting off with a precursor to the LAR algorithm.

3.8.1 Incremental Forward Stagewise Regression

Here we present another LAR-like algorithm, this time focused on forward
stagewise regression. Interestingly, efforts to understand a flexible nonlinear
regression procedure (boosting) led to a new algorithm for linear models
(LAR). In reading the first edition of this book and the forwar