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 "PRECONDITIONING" FOR FEATURE SELECTION AND
 REGRESSION IN HIGH-DIMENSIONAL PROBLEMS'

 BY DEBASHIS PAUL, ERIC BAIR, TREVOR HASTIE1
 AND ROBERT TIBSHIRANI2

 University of California, Davis, Stanford University,
 Stanford University and Stanford University

 We consider regression problems where the number of predictors greatly
 exceeds the number of observations. We propose a method for variable selec
 tion that first estimates the regression function, yielding a "preconditioned"
 response variable. The primary method used for this initial regression is su
 pervised principal components. Then we apply a standard procedure such
 as forward stepwise selection or the LASSO to the preconditioned response
 variable. In a number of simulated and real data examples, this two-step pro
 cedure outperforms forward stepwise selection or the usual LASSO (applied
 directly to the raw outcome). We also show that under a certain Gaussian la
 tent variable model, application of the LASSO to the preconditioned response
 variable is consistent as the number of predictors and observations increases.
 Moreover, when the observational noise is rather large, the suggested proce
 dure can give a more accurate estimate than LASSO. We illustrate our method
 on some real problems, including survival analysis with microarray data.

 1. Introduction. In this paper, we consider the problem of fitting linear (and
 other related) models to data for which the number of features p greatly exceeds
 the number of samples n. This problem occurs frequently in genomics, for exam
 ple, in microarray studies in which p genes are measured on n biological samples.

 The problem of model selection for data where number of variables is typically
 comparable or much larger than the sample size has received a lot of attention re
 cently. In particular, various penalized regression methods are being widely used
 as means of selecting the variables having nonzero contribution in a regression
 model. Among these tools the L 1 penalized regression or LASSO (Tibshirani [ 16])
 is one of the most popular techniques. The Least Angle Regression (LAR) proce
 dure Efron et al. [5] provides a method for fast computation of LASSO solution
 in regression problems. Osborne, Presnell and Turlach [12] derived the optimality
 conditions associated with the LASSO solution. Donoho and Elad [4] and Donoho
 [3] proved some analytical properties of the L1 penalization approach for deter
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 mining the sparsest solution for an underdetermined linear system. Some statis
 tical properties of the LASSO-based estimator of the regression parameter have
 been derived by Knight and Fu [9]. In the context of high-dimensional graphs,
 Meinshausen and Buhlmann [11] showed that the variable selection method based
 on LASSO can be consistent if the underlying model satisfies some conditions.
 Various other model selection criteria have been proposed in high-dimensional re
 gression problems. Fan and Li [6] and Shen and Ye [15] gave surveys of some of
 these methods.

 However, when the number of variables (p) is much larger than the number
 of observations [precisely p, - cnt for some t E (0, 1)] [10] showed that the
 convergence rate of risk of the LASSO estimator can be quite slow. For finite
 dimensional problems, Zou [20] found a necessary condition for the covariance
 matrix of the observations, without which the LASSO variable selection approach
 is inconsistent. Zhao and Yu [19] derived a related result for their p > N case.
 Various modifications to LASSO have been proposed to ensure that on one

 hand, the variable selection process is consistent and on the other, the estimated
 regression parameter has a fast rate of convergence. Fan and Li [6] proposed the
 Smoothly Clipped Absolute Deviation (SCAD) penalty for variable selection. Fan
 and Peng [7] discussed the asymptotic behavior of this and other related penal
 ized likelihood procedures when the dimensionality of the parameter is growing.
 [20] proposed a nonnegative Garrote-type penalty (that is reweighted by the least
 squares estimate of the regression parameter) and showed that this estimator has
 adaptivity properties when p is fixed. Meinshausen [10] proposed a relaxation to
 the LASSO penalty after initial model selection to address the problem of high
 bias of LASSO estimate when p is very large.

 All of these methods try to solve two problems at once: (1) find a good predictor
 y and, (2) find a (hopefully small) subset of variables to form the basis for this
 prediction. When p >> n, these problems are especially difficult. In this paper, we
 suggest that they should be solved separately, rather than both at once. Moreover,
 the method we propose utilizes the correlation structure of the predictors, unlike
 most of the methods cited. We propose a two-stage approach:

 (a) find a consistent predictor 5 of the true response,
 (b) using the preconditioned outcome y, apply a model fitting procedure (such

 as forward stagewise selection or the LASSO) to the data (x, y).

 In this paper, we show that the use of 5 in place of y in the model selection step
 (b) can mitigate the effects of noisy features on the selection process under the
 setting of a latent variable model for the response, when the number of predictor
 variables that are associated with the response grows at a slower rate than the
 number of observations, even though the nominal dimension of the predictors can
 grow at a much faster rate.

 This paper is organized as follows. In Section 2, we define the preconditioning
 method and give an example from a latent variable model. Section 3 discusses a
 real example from a kidney cancer microarray study, and application of the idea to
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 "PRECONDITIONING" FOR FEATURE SELECTION 1597

 other settings such as survival analysis. In Section 4, we give details of the latent
 variable model, and show that the LASSO applied to the preconditioned response
 yields a consistent set of predictors, as the number of features and samples goes to
 infinity. Finally, in Section 5, we discuss and illustrate the preconditioning idea for
 classification problems.

 2. Preconditioning. Suppose that the feature measurements are xi = (xil,
 Xi2, .. . , xip) and outcome values yi, for i = 1, 2, ... , n. Our basic model has the
 form

 p

 (1) ]E(yi ixi) = OoL + E xijO, i=1 2, ..., n.
 j=l

 Two popular methods for fitting this model are forward stepwise selection (FS) and
 the LASSO (Tibshirani [16]). The first method successively enters the variable
 that most reduces the residual sum of squares, while the second minimizes the
 penalized criterion

 I v~~ 2 p
 (2) 0(0 1I) Yi - fo + EO1jxij + ) E ? oj.

 Efron et al. [5] develop the least angle regression (LAR) algorithm, for fast com

 putation of the LASSO for all values of the tuning parameter ta > 0.
 Usually model selection in the general model (1) is quite difficult when p ?> n,

 and our simulations confirm this. To get better results, we may need further as
 sumptions about the underlying model relating yi to xi. In this paper, we assume
 that yi and xi are connected via a low-dimensional latent variable model, and use
 a method that we shall refer to as preconditioning to carry out model selection. In
 this approach, we first find a consistent estimate 'i by utilizing the latent variable
 structure, and then apply a fitting procedure such as forward stepwise regression
 or the LASSO to the data (xi, 'i), i = 1, 2, . . ., n. The main technique that we con
 sider for the initial preconditioning step is supervised principal components (SPC)
 [1, 2]. This method works as follows:

 (a) we select the features whose individual correlation with the outcome is
 large, and

 (b) using just these features, wecompute the principal components of the ma
 trix of features, giving Vi, V2 . Vmin{N,p}. The prediction Yi is the least squares
 regression of yi on the first K of these components.

 Typically, we use just the first or first few supervised principal components. Bair
 et al. [1] show that under an assumption about the sparsity of the population princi

 pal components, as p, n - oo, supervised principal components gives consistent
 estimates for the regression coefficients while the usual principal components re
 gression does not. We give details of this model in Section 4, and provide a simple
 example next.

This content downloaded from 104.238.140.142 on Sun, 29 Apr 2018 09:47:32 UTC
All use subject to http://about.jstor.org/terms



 1598 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 2.1. Example: latent variable model. The following example shows the main
 idea in this paper. Consider a model of the form:

 (3) Y = 80?,+ V +? Z.
 In addition, we have measurements on a set of features Xj indexed by j E A, for
 which

 (4) Xj =aoj +?alj V +ooej, j El ..., p.
 The quantity V is an unobserved or latent variable. The set A represents the

 important features (meaning that aIj 7& 0, for j E A) for predicting Yi. The errors
 Zi and eij are assumed to have mean zero and are independent of all other ran
 dom variables in their respective models. All random variables (V, Z, ej) have a
 standard Gaussian distribution.

 2.2. Example 1. For illustration, we generated data on p = 500 features and

 n = 20 samples, according to this model, with ,13 = 2, P3o = 0, aoj = 0, a11 = 1,
 a1 = 2.5, A = {1, 2,..., 20). Our goal is to predict Y from X1, X2, ..., Xp,, and
 in the process, discover the fact that only the first 20 features are relevant. This is
 a difficult problem. However if we guess (correctly) that the data were generated
 from model (4), our task is made easier. The left panel of Figure 1 shows the

 correlations Corr(V, Xj) plotted versus Corr(Y, Xj) for each feature j. The first

 0 ' S04. 08l Q aXQ .

 0I~~~~~~~~~~~~~~

 C~~~~~~~~~~~~~~

 o 0 0
 0.0'I .204060810.0 0.2 0* . .

 corr(Y,X) corr(Y,lX)
 FIG. 1. Results for simulated data. Left panel showas the correlation between the true latent vari
 able V and gene expression X for each of the genes plotted against the correlation between Y and
 gene expression. The tridv nonnull genes are shown in red. The right panel is the same, except that
 the estimated latent variable V (from supervised principal components) replac es V . We see that cor
 relation w ith either the true or estimated latent factor does a better job at isolating the truly nonnull
 genes.
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 "PRECONDITIONING" FOR FEATURE SELECTION 1599

 20 features are plotted in red, and can be distinguished much more easily on the

 basis of Corr(V, Xj) than Corr(Y, Xj). However this requires knowledge of the
 underlying latent factor V, which is not observed.

 The right panel shows the result when we instead estimate Vi from the data,
 using the first supervised principal component. We see that the correlations of
 each feature with the estimated latent factor also distinguishes the relevant from
 the irrelevant features.

 Not surprisingly, this increased correlation leads to improvements in the per
 formance of selection methods, as shown in Table 1. We applied four selection
 methods to the 20 simulated data sets from this model: FS: simple forward step
 wise regression; SPC/FS: forward stepwise regression applied to the precondi
 tioned outcome from supervised principal components; LASSO and SPC/LASSO:
 LASSO applied to preconditioned outcome from supervised principal components.
 The table shows the average number of good variables selected among the first 1, 2,
 5, 10 and 20 variables selected and the corresponding test errors. Preconditioning
 clearly helps both forward selection and the LASSO.

 2.3. Example 2. The second example was suggested by a referee. It is some
 what artificial but exposes an important assumption that is made by our procedure.
 We define random variables (Y, XI, X2, X3) having a Gaussian distribution with
 mean zero and inverse covariance matrix

 2 1 1 1I
 _1 1 2 0 1

 E = 1 0 2 1.
 I1 I 1 2,

 We define 297 additional predictors that are N(0, 1). The population regression
 coefficient is = (-1, -1, -1, 0, 0, . . .) while the (marginal) correlation of each

 TABLE 1
 Four selection methods to the 20 simulated data sets from the model of Example 1. Shown are the

 number of good variables selected among the first 1, 2, 10 and 20 variables selected and the
 corresponding test errors. Preconditioning clearly helps in both cases, and the LASSO

 outperforms forward selection

 Mean # of good variables
 when selecting first Test error when selecting first

 Method 1 5 10 20 1 5 10 20

 FS 0.82 0.98 1.12 1.58 267.36 335.4 353.52 357.07
 SPC/FS 0.94 2.66 2.86 3.12 241.88 229.47 231.52 232.28
 LASSO 0.88 2.05 3.17 3.29 206.54 184.56 186.71 205.85
 SPC/LASSO 0.92 4.21 7.75 9.71 212.23 197.07 183.04 178.19
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 TABLE 2
 Performance of LASSO and preconditioned LASSO in the second

 simulation example

 Mean # of good variables when selecting first

 Method 1 2 3 4

 LASSO 1.0 2.0 3.0 3.0
 SPC/LASSO 1.0 2.0 2.0 2.0

 predictor with Y is p = (-0.5, -0.5, 0, 0, 0, . . .). Hence X3 has zero marginal cor
 relation with Y but has a nonzero partial correlation with Y [since (E- 1)14 = 1].
 The number of good variables when selecting the first 1, 2, 3 or 4 predictors is
 shown in Table 2.
 We see that the LASSO enters the 3 good predictors first in every simulation,

 while the preconditioned version ignores the 3rd predictor. Supervised princi
 pal components screens out this predictor, because it is marginally independent
 of Y.

 Preconditioning with supervised principal components assumes that any impor
 tant predictor (in the sense of having significantly large nonzero regression coeffi
 cient) will also have a substantial marginal correlation with the outcome. This need
 not be true in practice, but we believe it will often be a good working hypothesis
 in many practical problems.

 2.4. Example 3. Our third simulation study compares the LASSO to the pre
 conditioned LASSO, in a more neutral setting. We generated 1000 predictors, each
 having a N (0, 1) distribution marginally. The first 40 predictors had a pairwise cor
 relation of 0.5, while the remainder were uncorrelated.

 The outcome was generated as

 40

 (5) Y=3/pjXj+uoZ
 j=1

 with Z, bj - N(0, 1) and a = 5. Hence the outcome is only a function of the first
 40 ("good") predictors.
 We generated 100 datasets from this model: the average number of good vari

 ables selected by the LASSO and preconditioned LASSO is shown in Table 3. Note
 that with just n = 50 samples, the maximum number of predictors in the model is
 also 50. While neither method is successful at isolating the bulk of the 40 good
 predictors, the preconditioned LASSO finds twice as many good predictors as the
 LASSO in the full model.

This content downloaded from 104.238.140.142 on Sun, 29 Apr 2018 09:47:32 UTC
All use subject to http://about.jstor.org/terms
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 TABLE 3
 Performance of LASSO and preconditioned LASSO in the third

 simulation example

 Mean # of good variables when selecting first

 Method 5 10 20 50

 LASSO 2.92 5.88 9.04 9.16
 SPC/LASSO 2.49 5.13 10.32 19.73

 3. Examples.

 3.1. Kidney cancer data. Zhao, Tibshirani and Brooks [18] collected gene ex
 pression data on 14,814 genes from 177 kidney patients. Survival times (possibly
 censored) were also measured for each patient, as well as a number of clinical
 predictors including the grade of the tumor: 1 (good) to 4 (poor).

 The data were split into 88 samples to form the training set and the remaining
 89 formed the test set. For illustration, in this section, we try to predict grade
 from gene expression. In the next section we predict survival time (the primary
 outcome of interest) from gene expression. Figure 2 shows the training and test
 set correlations between grade and its prediction from different methods. We see
 that for both forward selection and the LASSO, use of the supervised principal
 component prediction 5 as the outcome variable (instead of y itself) makes the
 procedure less greedy in the training set and yields higher correlations in the test
 set. While the correlations in the test set are not spectacularly high, for SPC/FS
 and SPC/LASSO they do result in a better prediction in the test set.

 3.2. Application to other regression settings. Extension of our proposal to
 other kinds of regression outcomes is very simple. The only change is in step (a) of
 supervised principal components algorithm, where we replace the correlation by
 an appropriate measure of association. In particular, the likelihood score statistic
 is an attractive choice.

 3.3. Survival analysis. Perhaps the most common version of the p > n re
 gression problem in genomic studies is survival analysis, where the outcome is
 patient survival (possibly censored). Then we use the partial likelihood score sta
 tistic from Cox's proportional hazards score statistic (see Chapter 4 of Kalbfleisch
 and Prentice [8]), in step (a) of supervised principal components. After that, we
 can (conveniently) use the usual least squares version of FS or LASSO in step (2)
 of the modeling process. Hence, the computational advantages of the least angle
 regression algorithm can be exploited.

 Figure 3 shows the result of applying forward stepwise Cox regression (top left
 panel), forward stepwise selection applied to the SPC predictor (top right panel),
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 FIG. 2. Kidnev cancer data: predicting tumor grade. Correlation of different predictors wvith the
 true olutcome, in the trcdining anid test sets, as more and more genes are enitered.

 LASSO for the Cox model (bottom left panel) and LASSO applied to the SPC pre
 dictor (bottom right panel). The bottom left panel was computed using the glm
 path R package of Park and Hastie L13], available in the CRAN collection. In
 each case, we obtain a predictor y, and then use y as a covariate in a Cox model,
 in either the training or test set. The resulting p-values from these Cox models are

 shown in the figure. We see that forward stepwise Cox regression tends to over
 fit in the training set, and hence, the resulting test-set p-values are not significant.
 The two stage SPC/FS procedure fits more slowly in the training set, and hence
 achieves smaller p-values in the test set. "SPC/LASSO," the LASSO applied to the
 preconditioned response from supervised principal components, performs best and
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 FIG. 3. Kidney cancer data: predicting survival time. Training set p-values (red) and test set
 p-values (green) for four different selection methods as more and more genes are entered. Hori
 zontal broken lines are drawn at 0.05 (black) and the test set p-value for the supervised principal
 component predictor 0.00042 (green).

 is also computationally convenient: it uses the fast LAR algorithm for the LASSO,
 applied to the preconditioned response variable.
 The horizontal green line shows the test set p-value of the supervised principal

 component predictor. We see that the first 10 or 15 genes chosen by the LASSO
 have captured the signal in this predictor.
 We have used the preconditioning procedure in real microarray studies. We have

 found that it is useful to report to investigators not just the best 10 or 15 gene
 model, but also any genes that have high correlation with this set. The enlarged set
 can be useful in understanding the underlying biology in experiment, and also for
 building assays for future clinical use. A given gene might not be well measured
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 IIv:

 0 _________ VO..

 FIG. 4. Kidniey cancer data: predicting survival time. Left panel shows the average absolute Cox
 score of the first k genes entered by forward stepwise selection (red) anld the preconditioned version
 (green), as k runs from 1 to 30. The right panel shows the average absolute pairwise correlation of
 the genes for both methods.

 on a microarray for a variety of reasons, and hence it is useful to identify surrogate
 genes that may be used in its place.
 Figure 4 shows the average absolute Cox score of the first k features entered by

 forward stepwise selection (red) and the preconditioned version (green), as k runs
 from 1 to 30. The right panel shows the average absolute pairwise correlation of
 the genes for both methods. We see that the methods enter features of about the
 same strength, but preconditioning enters genes that are more highly correlated
 with one another.

 4. Asymptotic analysis. In this section we lay down a mathematical formula
 tion of the problem and preconditioning procedure in the context of a latent factor
 model for the response. We show that the procedure combining SPC with LASSO,
 under some assumptions about the correlation structure among the variables, leads
 to asymptotically consistent variable selection in the Gaussian linear model set
 ting. We consider the class of problems where one observes n independent sam
 ples (yi, xi) where Yi is a one-dimensional response and xi is a p-dimensional
 predictor. Individual coordinates of the vector xi are denoted by xij where the in
 dex j e {1, . p} correspond to the jth predictor. We denote the n x p matrix
 ((Xi ))I< <n, I < by X and the vector (yi)'> by Y. Henceforth, unless other
 wise stated, we do not make a distinction between the realized value (Y, X) and
 the random elements (viz., the response and the p predictors) that they represent.

 The interest is in identifying the set of predictors Xj which are (linearly) related
 to Y. A regression model will be of the form E(Ylx) = OTx for some 0 E RP.
 Here we assume that the joint distribution of X is Gaussian with zero mean and
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 "PRECONDITIONING" FOR FEATURE SELECTION 1605

 covariance matrix E- p. The relationship between Y and X is assumed to be
 specified by a latent component model to be described below.

 4.1. Model for X. Suppose that the spectral decomposition of E is given by

 i= L =l ekUkUT, where e1 > ... > 0 and ul, .. . , u form an orthonormal
 basis of IRP. We consider the following model for E.

 Assume that there exists an M > 1 such that

 ek=xk?+2 k= l,...,M, and
 (6) 2

 fk=6, kk=M+ l,... pI
 where X1 > ... > kvM > 0 and oo > 0. This model will be referred to as the "noisy
 factor model." To see this, notice that under the Gaussian assumption the matrix X
 can be expressed as

 M
 (7) X = kVkuk + ? E,

 k=1

 where vi, .I. , VM are i.i.d. Nn (0, I) vectors (the factors), and E is an n x p matrix
 with i.i.d. N(0, 1) entries, and is independent of vI, . . . VM. This matrix is viewed
 as a noise matrix.

 In the analysis presented in this paper throughout, we use (7) as the model
 for X, even though it can be shown that the analysis applies even in the case where

 fK+19 ... I, p are decreasing and sufficiently well separated from I ., K.

 4.2. Modelfor Y. Assume the following regression model for Y. Note that this
 is a more general version of (3), even though we assume that Y has (unconditional)

 mean 0.
 K

 (8) Y = LkVk +rlZ,
 k=1I

 where ol > 0, 1 < K < M, and Z has N, (0, I) distribution and is independent
 of X.

 4.3. Least squares and feature selection. We derive expressions for the mar
 ginal correlations between Y and Xj, for j = 1, . .. , p and the (population) least
 squares solution, namely 0 = arg mint E 11 Y -X 11 2, in terms of the model para

 meters. Let Y (1, ..., p}. The marginal correlation between X = (Xj) U1 and
 Y is given by

 K
 (9) Eyy := (E(XjY))P= = L3k k4Uk.

 k=l
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 1606 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 The population regression coefficient of Y on X, is given by

 0 K

 -[ExkUkUk ?aOIY [E1 XkUk] -k=l Lk=I
 [M1iM\1FK 1

 (10) [2 UkUkT +2 ( -LUkUT)J k klUkJ
 K

 k=1 Xk + Co6
 K

 =L E 4kfk VXkUk.
 k=I

 Now, define wj = (VXuIjI, . I.K., UX jK)T. Let O = {j: l1wj 112 0 0). Observe
 that Ejy = flTwj and Oj = fTDl wj, where DK = diag(el,.. ., eK). So if we
 define B := {j: Ejy 0 01 and A = 1j: Oj # 0), then $ C D and A c D.

 This gives rise to the regression model:

 (11) Y =XO + Uy,

 where

 ~2 IEy'-l 17i = a -Ey ?i1
 K K

 (12) =Xk E0
 k=1 k=I Xk

 2 Or2 T 1 =1 +o0r DK13,
 and E has i.i.d. N(0, 1) entries and is independent of X.

 Note also that, the population partial covariance between Y and Xc given X'D
 (given by Eyc I. := Eyc - y E q o I EDc), for any subset C c DC, where D':
 ,P \ D, is 0. However, the corresponding statement is not true in general if one
 replaces D by either A or S. Therefore, ideally, one would like to identify D1.
 However, it may not be possible to accomplish this in general when the dimension
 p grows with the sample size n. Rather, we define the feature selection problem as
 the problem of identifying A, while the estimation problem is to obtain an estimate
 of 0 from model (1 1).
 Observe that, if either K = 1 or X1 = = AK, then A = BI3. In the former case,

 we actually have A = B = AD. In these special cases, the feature selection prob
 lem reduces to finding the set 2, which may be done (under suitable identifiability
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 "PRECONDITIONING" FOR FEATURE SELECTION 1607

 conditions) just by computing the sample marginal correlations between the re
 sponse and the predictors and selecting those variables (coordinates) for which the
 marginal correlation exceeds an appropriate threshold. The major assumptions that
 we shall make here for solving the problem are that (i) A c B, (ii) AB can be iden
 tified from the data (at least asymptotically), (iii) cardinality of AB (and hence that
 of A) is small compared to n, and (iv) the contribution of the coordinates A3C in
 the vectors ul, . . ., UK is asymptotically negligible in an L2 sense. If these condi
 tions are satisfied, then it will allow for the identification of A, even as dimension
 increases with the sample size. We make these (and other) conditions more precise
 in Section 4.7.

 4.4. SPC as a preconditioner. The formulation in the previous section indi
 cates that one may use some penalized regression methods to estimate the regres
 sion parameter 0 from the model (11). However, standard methods like LASSO do
 not use the covariance structure of the data. Therefore, if one uses the underlying
 structure for E, and has good estimates of the parameters (Uk, ek), then one can
 hope to be able to obtain a better estimate 0, as well as identify A as n -x oc.

 We focus on (7) and (8). In general, it is not possible to eliminate the contri
 bution of E entirely from an estimate of Vk, even if we had perfect knowledge of
 (Uk, ek). To understand this, note that, the conditional distribution of vk given X is
 the same as the conditional distribution of vk given XUk. The latter distribution is

 normal with mean XUk and covariance matrix e? In. This means that any rea
 sonable procedure that estimates the parameters (Uk, ek) can only hope to reduce
 the effect of the measurement noise in Y, namely a1 Z.

 Keeping these considerations in mind, we employ a two stage procedure de
 scribed in the following section for estimating 0. In order to fit the model (1 1) us
 ing SPC procedure, it is necessary to estimate the eigenvectors Uk, k = 1, ..., M.

 When P is large (in the sense that the fraction does not converge to O as n --*oo), n
 in general it is not possible to estimate Uk consistently. However, if Uk are sparse,
 in the sense of having say q nonzero components, where q -+ 0, then [1] showed n
 that under suitable identifiability conditions, it is possible to get asymptotically
 consistent estimators of ul, i. . . UK, where the consistency is measured in terms of
 convergence of the L2 distance between the parameter and its estimator.

 4.5. Algorithm. In this section, we present the algorithm in detail.

 Step 1 Estimate (ul, 1), ..., (UK, eK) by SPC procedure in which only those pre
 dictors Xj whose empirical correlation with response Y is above a thresh
 old Tn are used in the eigen-analysis. Call these estimates {uk, ek}k=l.

 Step 2 Let PK := Proj(Vi,..., VK) be the projection onto V1.-, VK, where
 Vk 1= Xik is the kth principal component of the predictors (under the

 SPC procedure). Define Y = PK Y
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 1608 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 Step 3 Estimate 0 from the linear model Y = XO+ error, using the LASSO ap

 proach with penalty It > 0.

 Since by definition I (Xuk, Xiik') = TkSkk', it follows that

 PK =Proj(Xu 1, . XUK )
 K 1

 (13) = IIXk 112 (Xuk)(XUk)T
 K

 = Et --(XUk)(Xuk)T.
 k=1en

 4.6. Analysis of the projection. We present an expansion of the projected re
 sponse Y := PK Y that will be useful for all the asymptotic analyses that follow.
 Using the representation of PK in (13) and invoking (7) and (8), we get

 K Pk 1
 y= L p-(XUk, Vk)XUk

 K K

 k= k=lk k n

 + crl - - -(XUk, Z) XU-k K

 =I Vk II (ik, Uk )XUk
 k=1 fk n

 K M~y~

 + E E Pk N _(Vl, Vk) (Ul, iik) XUk
 k=1 l#k fkn
 K K M ,

 + , E - -(Vl, Vk/ ) (Ul, Uk) )XUk k=l k'#k 1=1 k
 K K

 , E fk k, k Uk
 K I -
 k=1 k n
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 "PRECONDITIONING" FOR FEATURE SELECTION 1609

 K (1IlVkll'
 =XO + X E: PkVT e (Uk, -Uk) Uk- Uk) kXO?Xfkf3k k

 KEE K k Xk IlVk' 112( )Xk
 k= lk'k f n )k
 K K

 ? E Y, ~ ~(Vk,Vkl)(Uk,iik)XUk
 k=lIk'#Ak ek n

 K K fPk' I
 k=Ilk'=1 ek n
 K

 ? CL E -(Xuk, Z)Xilk + Rn,

 for some vector Rn E in. This is an asymptotically unbiased regression model
 for estimating 0 provided (uk, ek)kK= is an asymptotically consistent estimator for

 (Uk, fk k= P

 4.7. Assumptions. In this section we give sufficient conditions for the consis
 tency of the variable selection aspect of the SPC preconditioning procedure. The
 methods of Zou [20] and Knight and Fu [9] are not applicable in our situation
 since the dimension is growing with the sample size. For most parts, we make as
 sumptions similar to those in Meinshausen and Buhlmann [ 1] for the relationship
 among the variables.

 A1 The eigenvalues Xl, . .. , XM satisfy:

 () XI > *-- > XK > XK+1 > ... > XM > O.
 (ii) mini<k<K(Xk - Xk+1) > Co for some Co > 0 (fixed).
 (iii) XI < Amax for some Amax fixed. Also, ao is fixed.

 A2 a2 - Q(nKO) for some Ko E (0, 1 )

 A3 JAI =qn, II = qn such that qn = 0(n KI) for some K1 E (0, 2)
 A3' Pn, the number of variables, satisfies the condition that there is an a > 0 such

 that log1pn = O (na) for some ( E (0, 1).

 A4 There exists a Pn satisfying pn l/2 (log Pn) -1/2 o> c as n oo such that

 (15) min m /|> Pn

 A5 There exists a S with An = O( qgn ) such thatL W I w112 <8n
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 1610 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 A6 There exists an q,n > 0 satisfying 17n-1 = 0(nK2)for some K2 < (1-Ko V KI),
 such that

 (16) min II I > jEA

 A7 There exists a 8 E (0, 1) such that

 (17) 11 EAcA, E sign(OA) Ioo < .
 A8 There is a e < oo such that,

 (18) maxII,,Y,jIIi <I where Aj :=A \ {j}.
 A few remarks about these conditions are in order. First, condition Al about the

 separation of the eigenvalues is not really necessary, but is assumed to avoid the
 issue of unidentifiability of an eigenvector. However, the scaling of the eigenvalues
 is important for the analysis. We remark that it is not necessary that the eigenvalues

 XI, ... ., m are the M largest eigenvalues of E in order for the conclusions to hold.
 All that is necessary is that these are the leading eigenvalues of the matrix E 9
 and there is enough separation from the other eigenvalues of E. However, this
 assumption is made to simplify the exposition.

 Next, the condition that qn = o(n) (implicit from condition A3) is necessary
 for the consistency of the estimated eigenvectors uk from supervised PCA. Condi
 tion A4 is necessary for the identifiability of the set 2B. Condition A5 implies that

 the contribution of the predictors {Xj: j E D \ 2B1 is negligible in our analysis.
 Note that 8n is essentially measuring the "selection bias" for restricting analysis
 to 2 rather than D. Again, the assumption about the rate of decay of 8n can be
 relaxed at the cost of more involved analysis and smaller range of values for A,U
 (see also the remark following Corollary 1). Too large a value of T, may mean
 that we may not be able to select the variables consistently. Condition A6 is an
 identifiability condition for set A.

 Condition A7 is needed to guarantee consistency of the variable selection by
 LASSO after projection. This condition was shown to be necessary for variable
 selection in finite-dimensional LASSO regression by Zou [20] and also, implicitly
 by Meinshausen and Buihlmann [11]. Zhao and Yu [19] termed this the "irrepre
 sentable condition" and showed that it is nearly necessary and sufficient for con
 sistency of model selection by LASSO when p, n -* ox. A sufficient condition

 1 A I .Osreta 1 Eji h for this to hold is that maxjeAc 11EA,,4A j Ii <8 . Observe that A is the
 population regression coefficient in the regression of Xj on {Xl: 1 E A}. If we are

 using the estimate 04 / then (see proof of Lemma 2) we can replace A7 by the
 weaker requirement

 AcIcn.B A E sign(OA)I oo < 8 for some 8 E (0, 1).
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 "PRECONDITIONING" FOR FEATURE SELECTION 1611

 4.8. LASSO solution. We use the symbol ,u to denote the penalty parameter in
 LASSO. The LASSO estimate of 0, after preconditioning, is given by

 (19) 0' =argmin-IIY-- Xi- 2 + /ll(
 ,ERp n

 We also define the selected LASSO estimate of 0 by

 (20) 0, = arg min - r1 - 12 +y1(1
 ERP, c& =O n

 For future use, we define the restricted LASSO estimate of 0 to be

 (21) o 41= argmin -Ily-X01l2+y14011.
 ERP, yAc O n

 The notation used here follow Meinshausen and Buhlmann [I I].

 4.9. Consistency of variable selection. We shall prove most of our consistency

 results for the estimate J0 ,J and indicate how (and under what conditions) the
 same may be proved for the unrestricted estimator O,'. As we shall see, when the
 model assumptions hold the former estimator is more reliable under a wider range
 of possible dimensions. The latter can consistently select the model essentially
 when p, = O(nK) for some K < o0. In order to prove these results, it will be
 convenient for us to assume that we have two independent subsamples of size n
 each, so that the total sample size is 2n. And we also assume that Step 1 of the
 variable selection algorithm (estimating 2) is performed on the first subsample
 and the other steps are performed on the second subsample. This extra assumption
 simplifies our proofs (see the proof of Proposition 4 in the Appendix) somewhat.
 Further, we shall assume that K, the number of latent components for response Y,
 is known. The results presented here hold uniformly w.r.t. the parameters satisfying
 assumptions Al-A8.

 Let A B , (resp. AH4) denote the set of nonzero coordinates of the vector
 (resp. 0). Whenever the context is clear, we shall drop the subscripts from A. In
 the following, ? will be used to denote a generic value of the parameter.

 PROPOSITION 1. Let 2 denote the set of coordinates selected by the prelim

 inary thresholding scheme of SPC with threshold Trn. Given any cl > 1, and there

 isa rn(cl) :=di lO9 n for some constant di >2, such that,for n>ncl,

 (22) P(2 = 23) > 1-nc-c.

 Proposition 1 tells us that we can restrict our analysis to the set B while an
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 1612 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 alyzing the effect of preconditioning and studying the estimator 5*4. Our next
 result is about the behavior of the estimated eigenvalues and eigenvectors of the

 matrix SiBAB := I XT X2B. This result can be proved along the lines of Theorem 3.2
 in Paul [14] (see also Bair et al. [1]) and is omitted.

 PROPOSITION 2. Let (isk, 4k) KQ denote the first k eigenvector-eigenvalue
 pairs of E.&B. Suppose that assumptions A1-A5 hold. Then there are functions
 Yi = Yi (X1/Co, ,m M/aO), i = 1, 2, such that, given C2 > O there exist d2, d2 > 1
 so that,

 =O(n C),~ ~ ~ ~ q og 4nlo I4 max 11 -Bk Ulokgn >d2__Y_( _+

 ofn-c),

 P max Ik- > dky2( n ?I>dn), )
 = O(n-C).

 THEOREM 1. Suppose that assumptions A1-A8 hold. If t = An satisfies
 -n o(n K2) and tInn(1/2)(l-KoVK1) - oo as n -+ oo, then there exists some c> 1

 such that, for large enough n,

 (23) P(A c A) > 1 - (n-C),

 where A = AX3,4n* If moreover, Pn is such that qnlogPn = o(1) as n h
 (23) holds with A = AAIn'

 THEOREM 2. With It = ,Un and A as in Theorem 1, there exists c > 1 such
 that,

 (24) P(A C A) > 1- O(n-C).

 Clearly, Theorems 1 and 2 together imply that the SPC/LASSO procedure as
 ymptotically selects the correct set of predictors under the stated assumptions. The
 proofs of these critically rely on the following three results.

 LEMMA 1. Given 0 E RP, let G(0) be the vectors whose components are de
 fined by

 (25) Gj(0) =--(Y-XO, Xj). n
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 "PRECONDITIONING" FOR FEATURE SELECTION 1613

 A vector 0 with Oj = 0 for all j E A' is a solution of (21) if and only if, for all
 j E A,

 G j (0) = -sign(0j) g if O =A 0,
 (26)

 JGj(0)J < if Oj =0.
 Moreover, if the solution is not unique and I G j (0)1 < , for some solution 0, then
 Oj= 0 for all solutions of (2 1).

 PROPOSITION 3. Let 0A,I be defined as in (21). Then, under the assumptions
 of Theorem 1, for any constant C3 > 1, for large enough n,

 (27) PD(sign("j'IAn) = sign(01), for all j E A) > 1 - O(n -C3).

 LEMMA 2. Define

 (28) &S1={max IGj ( ,)Il < }- n 1,B = JB1
 On & 0/,' is the unique solution of (20) and 0 "' is the unique solution
 of (21), and Q0k - 0"A,/. Also, under the assumptions of Theorem 1, there exists
 a C4 > 1 such that, for large enough n,

 (29) IP(&g ,) = O(n-C4).
 Further, if we define

 (30) C= max IGj(0 A)l < /J nrS = }
 then under the extra assumption that qnlogPn = o(1), (29) holds with , re n

 placed by &,J. On ,4, 0I' is the unique solution of (19) and 0" - 0?"' -

 4.10. Effect of projection. An important consequence of the projection is that
 the measurement noise Z is projected onto a K dimensional space (that under our
 assumptions also contains the important components of the predictors of Y). This
 results in a stable behavior of the residual of the projected response A given by

 (31) A:= Y-X0= Y-XA0A
 even as dimension Pn becomes large. This can be stated formally in the following
 proposition.

 PROPOSITION 4. Suppose that assumptions Al-A5 hold. Then there is a con
 stant y3 := Y3 (ao, A. 1, . . , AK + 1), such that for any c6 > 1 there exists a constant
 d6 > 0 so that, for large enough n,

 (32) P(IIA 1 2 < d6(y3 +vlogn + Klogn)) > 1 -n-C6
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 1614 D. PAUL, T. HASTIE AND R. TIBSHIRANI

 As a direct corollary to this we have the following result about the risk behavior
 of the OLS-estimator (under L2 loss) of the preconditioned data after we have
 selected the variables by solving the optimization problem (20).

 COROLLARY 1. Suppose that conditions of Theorem 1 hold. Then for any
 C7 > 1, there is d7 > 0 such that

 3) P( 110 S ,,OS 0112 < d75 n l (Y3 n
 > 1 -n-C7,

 where OLS (XT X T'Xy Y and 'A = Aji,n = {j E Sp :' 0).

 As a comparison we can think of the situation when A is actually known, and
 consider the L2 risk behavior of the OLS estimator restricted only to the subset
 of variables A. Then 0A,OLS = (XT X, If'XTY. Using the fact that conditional

 ,--A,OLS 2X on XA, ,OL' has N(OA, v (X AX, )-1) distribution, and the fact that the small

 est eigenvalue of E is at least te ,it follows (using Lemma A.1) that there is a
 constant d7 > 0 such that

 1pIIA, OLS-01 dt 1/2 ast > n nC

 Comparing (34) with (33), we see that if qn ?> log n and al >> v/ 7q, the esti
 mator 67S lf OLS has better risk performance than 0A,OLS*

 As a remark, we point out that the bound in (33) can be improved under spe
 cific circumstances (e.g., when Sn, the "selection bias" term defined in A5, is of a
 smaller order) by carrying out a second order analysis of the eigenvectors {Uk} I1
 (see Appendix of Bair et al. [1]). The same holds for the bounds on the partial cor

 relations n ((I-PXAP)Xi, Y), for j E Ac, given the "signal" variables {Xl :1 E A},
 that are needed in the proof of Proposition 3 and Lemma 2. However, the result is
 given here just to emphasize the point that preconditioning stabilizes the fluctua
 tion in Y - XO, and so, partly to keep the exposition brief, we do not present the
 somewhat tedious and technical work needed to carry out such an analysis.
 As a further comparison, we consider the contribution of the measurement noise

 Z in the maximal empirical partial correlation maxj1 E A ((I - XA)Xi, Y)l,
 given {Xl :1 e Al. For the preconditioned response, this contribution is [with prob
 ability at least 1 - O(n-c) for some c > 1] of the order O(' 1,1n), instead of

 O (1 log Pn) as would be the case if one uses Y instead of Y. So, if log Pn ?> log n,
 then the contribution is smaller for the preconditioned response. Formalizing this
 argument, we derive the following asymptotic result about the model selection
 property of LASSO estimator that clearly indicates that under latter circumstances
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 "PRECONDITIONING" FOR FEATURE SELECTION 1615

 SPC + LASSO procedure can outperform conventional LASSO in terms of vari
 able selection.

 PROPOSITION 5. Suppose that log p, = cna for some a E (0, 1) and some
 c > 0. Suppose that A = A + U A_, with A+ and A_ disjoint and A is nonempty
 such that I(0A_ 112 = o(n- (I -)/2). Assume that M = K, B = ? [so thatfor all j V
 B, Xj are i.i.d. N(0, qo)], and ui is fixed. Suppose further that all the assumptions
 of Theorem 1 hold, and there is a 8+ E (0, 1) such that (if A+ is nonempty)

 (35) max 11 E4 I EA+j III < +*
 Then, given C8 > 1, for all i?n > 0, for large enough n,

 (36) I(LASSo A) > 1-n
 ^nLASSO -E ,9 LASSO,/n h

 where A LASS *jc,: i =,O}0, where

 (37) LASSO, - arg min -1Y -X 112 + An II Iii. E2R n

 Proposition 5 shows that if a > 1 - 2K2, so that r1n = o(n-(l-a)/2), and the as
 sumptions of Proposition 5 are satisfied, then the SPC + LASSO approach [solving
 the optimization problem (20) or (19)] can identify A with appropriate choice of
 penalization parameter An (as indicated in Theorem 1) while LASSO cannot, with
 any choice of the penalty parameter.

 5. Classification problems and further topics. The preconditioning idea has
 potential application in any supervised learning problem in which the number of
 features greatly exceeds the number of observations. A key component is the avail
 ability of a consistent estimator for the construction of the preconditioned outcome
 variable.

 For example, preconditioning can be applied to classification problems. Con
 ceptually, we separate the problems of (a) obtaining a good classifier and (b) select
 ing a small set of good features for classification. Many classifiers, such as the sup
 port vector machine, are effective at finding a good separator for the classes. How
 ever they are much less effective in distilling these features down into a smaller set
 of uncorrelated features.

 Consider a two-class problem, and suppose we have trained a classifier, yielding
 estimates Pi, the probability of class 2 for observation i = 1, 2, ..., N. Then in
 the second stage, we apply a selection procedure such as forward stepwise or the

 LASSO, to an appropriate function of Pi; the quantity log[J i/(l - Pi)] is a logical
 choice.

 We generated data as in example of Section 3; however, we turned it into a clas
 sification problem by defining the outcome class gi as 1 if yi < 0 and 2 otherwise.
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 We applied the nearest shrunken centroid (NSC) classifier of Tibshirani et al. [ 17],
 a method for classifying microarray samples. We applied forward stepwise regres

 sion both to gi directly (labeled FS), and to the output log(3i /(I - Pj)) of the NSC
 classifier (labeled NSC/FS).

 The results of 10 simulations are shown in Figure 5. We see that NSC/FS does

 not improve the test error of FS, but as shown in the bottom left panel, it does
 increase the number of "good" predictors that are found. This is a topic of further
 study.

 11;+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.A A;- N t+ 4i?z

 %L~

 . EI e 0 *X*
 nw1*

 V

 *~~~~~~A

 t;' ~ 5 '1*fAO ' o' ' lb 0 > ! '' "
 -.- -~~- a rO p*vl tA>,>io

 40 ~ ~ ~ ~ 4

 5: 10 - M5 .

 FIG. 5. Results of applying preconditioning in a classification setting. Top left panel shows the
 number of test misclassification errors from forward stepwise regression; in the top right panel we
 have applied forward stepwise regression to the preconditioned estimates from nearest shrunken
 centroid classifier. The proportion of good predictors selected by each method is shown in the bottom
 left.

This content downloaded from 104.238.140.142 on Sun, 29 Apr 2018 09:47:32 UTC
All use subject to http://about.jstor.org/terms



 "PRECONDITIONING" FOR FEATURE SELECTION 1617

 APPENDIX

 A full version of this paper that includes the Appendix is available at http://
 www-stat.stanford.edu/-tibs/ftp/precond.pdf and also in arXiv archive.

 Acknowledgments. We thank the referees and editors for comments that led
 to improvements in this work.
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