Module 7: Discrimination And Classification

This module covers discrimination analysis that provides of the
supervised learning techniques to construct optimal ielassification.

Classify 150 renal patients measuredaby= (z, ..., x,) variables into
either "progressive” or "non-progressive”.

e Discrimination Analysis (Separation Analysis): To deberi
(graphically or algebraically) the differential featur@sg.
biomarkers, patient’'s demographics gwaf data from severatnown
populations €.g. Progressive and non-progreskivi@chnically, to
find "discriminants” whose numerical values are such that th
populations are separated as much as possible.

e Classification Analysis (Allocation Analysis): To develapule that
enables us to allocate data caseg ( patientsinto two or more
labeled classe®(g. progressive and non-progresive



e In practice, these two tasks often overlap.



SEPARATION OF TWO POPULATIONS

Two populations:
e Populationr: fi(x)
e Populationrsy: fo(x)

The sample space §3.

Classification rule:
e R;: the set ofx for subjects being classified as
e R5: the set otr for subjects being classified as

whereR; U Ry = ).



Measures of classification accuracy:

e Conditional probabilities:
p(2|1) =Probabilty of classifying a subject as when it is fromsm,
=P(x € Ra|m) = i fi(x)dx
p(1]2) =Probabilty of classif2ying a subject as when it is fromms

=P(x € Ry|m3) = . fo(x)dx

e Marginal probabilities of the accuracy:
Given the prior probabilitiep; = P(m;) andpy = P(m2):
P(misclassifying a subject ag ) = pap(1|2)
P(misclassifying a subject as) = p1p(2|1)



e Total probability of misclassification (TPM):
TPM = p(1|2)p2 + p(2[1)p

= P2 fa(x)dx + p1 fi(x)dx
Ry Rs

e EXxpected cost of misclassification (ECM)

If misclassification cost is

— Cost of misclassifying a subject as when it is actually fromrs:
c(1]2)

— Cost of misclassifying a subject as when it is actually fromr:
c(2[1)

— Implicitly ¢(1]1) = ¢(2[2) = 0.



then
ECM = ¢(1]2)p(1|2)p2 + ¢(2[1)p(2]1)p;

= ¢(1]2)p2 fa(x)dx + c(2|1)p1 fi(x)dx
Rl R2
:/ c(1\2)f2(:13)p2d51:+/ c(2|1) f1(x)p1rdx
Rl R2

_ /R c(112) fo(@)p2 — c(2[1) f1(2)p1] dz + c(2[L)p:

Question: How to find a classification rul&; (or R,) that minimizes
ECM (or TPM)?

Theorem 1 (Optimal classification rule) R; minimizes ECM if

_ hi@)  e1]2) p
() © 6(2\1)2?1}

Ry = {z: c2I1) fu(@)pr > c(1[2) fol)p2)} = {
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Some special cases:

o If Z—; = 1 (a subject from the two populations with equal
probabilities), then

o= {o: D@ 5 )

o If ggﬁg — 1 (the costs of the two types of misclassification are

equal), then

R, — {:1:: f1(z) > p2}

o If €2 — 22 _ 1 then

c(2[1) 1
R = {:13 : fi(x)




Remark 1 e The optimal classification only involves the ratios of the
cost and the prior probabillities.

e The result can be extended to more than two populations.
Proof 1 If there is another classification rule given By and R; such

that R U R5 = Q2 and they are different fronk®; and R, the associated
ECMis

ECM™ = /R (c(1]2) fo(x)p2 — c(2|1) f1(x)p1] dx + c(2]|1)p;

*
1



Compare the two ECM’s:

ECM — ECM* = /R c(112) fa(@)p2 — e(2/1) f1 (@)ps] d—

/R c(112) fo(@)ps — c(21) 1 (x)p1] dae

*
1

Llﬁ(RlﬂRT) RlﬂRT RTO(RlﬂRT) RlﬂRT

S
RiN(R1NRY) RTN(R1NRY)



DISCRIMINATION OF TWO NORMAL POPULATIONS

Given that

fl(w)NN(/'l'hEQ): fZ(m)NN(/'L27E2)

we can expres®; in a more meaningful form.

Casel:X>; =3, =X

Theorem 2 (Discriminating two normal populations with equd covariances)
The R; that minimizes ECM is

Ry = {w filz)  c(1]2) p2}

fa(x) T e(21) py

=@ (p — )T N~ %(ul — 1) E7 (1 + 1) 2 log 2(;‘? p2
(2[1) p1
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Equivalently, we can also do

1 1

pET o B () > X = s BT (i +pg) +log (c

Whenp, p,, and3 are unknown, the sample version®f is
_ L e _
Ry = {az : (51 — 52)/Spololedw — 5(&31 — wg)/Spololed(wl + wg) > log (

where
1
ny + No — 2

Spooled — [(nl — l)Sl + (n2 — 1)52]

11

c(1]2) p2
c¢(2]1) p1

N—"




Proof 2

fi(x)
fa(x)

= exp

= exp

= exp

= exp

= exp

= exp

1 1

___(:U —p)S 7 (@ — ) + 5(5'3 — p1y) 7 — “2)]

2

1
2

:__tr {(@—p)'S e —py)) + %tr {(@—py) T (z Nz)}:
:_%tr (T —p)(@— )} + %tr {(Z7 (@ — o) (z - ug)’}:
:tr (2—1 {—%(a} )@ )+ (@ )@ Hz)/})]
o (7 fatiay = ) = 500+ )~ ) )]

1
2

—(,UJ1 — 1) e — = (e — o) (g + Hz)]

Example 1 (Graphical representation of R;) We run

> zxy <- chind(x=rep((-30:30)/5, rep(61, 61)), y = rep((-30 :30)/5, 61))
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zdata <- matrix(.5*dmvnorm(zxy, mean = c(-1.5, -1.5),

sigma = rbind(c(1, 0), c(0, 1))) + .5*dmvnorm(zxy,
sigma = rbind(c(1, 0), c(0, 1)), ncol = 61, byrow
persp((-30:30)/5, (-30:30)/5, zdata, theta = 50, phi
contour((-30:30)/5, (-30:30)/5, zdata, nlevels = 30)

eyepz

mean = c(1
= T)
= 40,
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5, 1.5),

r =

10, expand = .5, Itheta = 50, Iphi = 40)
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Remark 2 e R; Is determined by a linear function of
e Leta =31 (u, — py). If ¢(1]2) = ¢(2]1) andp; = p,, then
1 c(1]2) p
— : / = / > 1
Rl {w a .r 20’(“1—'_,1’2) — 108 (C(2|1)p1>}

+ ny +
_ car>a™™ 2 | _ > a M 2
{:1: ar>a 5 } {y y>a 5

wherey = a’x. In this case, itc ~ N(u,,X), then

p(2]1) :P(y<a' 1

Similarly p(1]2) = @ (—3A).
— Both are decreasing whek increases.
— WhenA =0, p(1|2) = p(2]|1) = 0.5.
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e The sample version is
1 1|2
R, = {:c ca'x — 50,’(51 + X3) > log (C( | )p2>}
p

1 _ _
wherea = S ;.q.(T1 — T2).

Case 2:3; # 3

Theorem 3 (Discriminating two normal populations with unequal covariances)
The R; that minimizes ECM is

~1/2
Ry = {w . exp {—%(m —p)' SN — ) + %(w R NCE “2)} (%)
S c(1|2)]2}
— ¢(2]1) p1
c(1]2)

1
— {az ; —Ew’(zl_l — 22_1)a3—|— (;1,’121_1 — ;1,222_1):13 — k > log (
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where the constant

3 1 _
k= log(}EgD—i— (27 — 35 )

The sample version is

1
Ry = {:c : —5:1;’(51—1 — SN + (ST — T8, — k > log (

Remark 3 e R; is determined by a quadratic curve instead of a
straight line.

e The discrimination rule may be more sensitive to the normal
assumption.

Example 2 (Graphical representation of R; with unequal covariances)
We run

> zxy <- cbhind(x=rep((-30:30)/5, rep(61, 61)), y = rep((-30 :30)/5, 61))
> zdata <- matrix(.5*dmvnorm(zxy, mean = c(-1.5, -1.5),
sigma = rbind(c(.5, 0), c(0, .5))) + .5*dmvnorm(zxy, mean = c (1, 1),
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sigma = rbind(c(2, 0), ¢(0, 2))), ncol = 61, byrow = T)
> persp((-30:30)/5, (-30:30)/5, zdata, theta = 50, phi

= 40,
> contour((-30:30)/5, (-30:30)/5, zdata, nlevels

= 30)

r = 10, expand = .5, Itheta = 50, Iphi = 40)

erepz
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Example 3 (Example 11.8)We assume equal prior probabilities, equal
costs, and equal covariance structure.

> t11.2 <- read.table("T11-2.DAT", header = F, col.names = ¢ ("group”, "gender", "freshwater", "marine"))
> t11.2$group <- factor(t11.2$group, labels = c("Alaskan" , "Canadian™))

> t11.2$gender <- factor(tll.2$gender, labels = c("female ", "male"))

> t11.2

group gender freshwater marine
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1 Alaskan male 108 368
2 Alaskan female 131 355
3 Alaskan female 105 469
4 Alaskan male 86 506
5 Alaskan female 99 402
6 Alaskan male 87 423
7 Alaskan female 94 440
8 Alaskan male 117 489
9 Alaskan male 79 432
10 Alaskan female 99 403

> zmul <- colMeans(t11.2[t11.2$group=="Alaskan", 3:4])
> zmul

freshwater marine
98.38 429.66

> zmu2 <- colMeans(t11.2[t11.2$group=="Canadian”, 3:4])
> zmu2

freshwater marine
137.46 366.62

> zsl <- var(t11.2[t11.2$group=="Alaskan", 3:4])

> zs1

freshwater marine
freshwater 260.6078 -188.0927
marine -188.0927 1399.0861

> 7s2 <- var(t11l.2[t11.2$group=="Canadian", 3:4])
> 752

freshwater marine
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freshwater 326.0902 133.5049
marine 133.5049 893.2608

> 78 <- (49*zsl + 49*zs2)/98

> 7S

freshwater marine
freshwater 293.34898 -27.29388
marine -27.29388 1146.17347

> za <- solve(zs) %*% (zmul - zmu2)
> za

[,1]
freshwater -0.12838726
marine 0.05194311

> t(za) %*% (zmul + zmu2)/2

[,1]
[1,] 5.541204

Thus

21
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> zres <- (as.matrix(t11.2[, 3:4]) %*% za) >= (t(za) %*% (zmu 1 + zmu2)/2)[1, 1]
> table(zres, t11.2$group)

zres Alaskan Canadian
FALSE 6 49
TRUE 44 1

To class a new Salmon with the first-year freshwater growtt06in and the first-year marine growth of 400in

> (100, 400) %*% za > 5.541

[1]
[1] TRUE

R has functions da andqda and S+ has a functiodi scr i mfor this discrimination analysis

> z <- discrim(group ~ freshwater + marine, data = t11.2)
>z

Call:
discrim(group ~ freshwater + marine, data = t11.2)

Group means:

freshwater marine N Priors
Alaskan 98.38 429.66 50 0.5
Canadian 137.46 366.62 50 0.5

Covariance Structure: homoscedastic

freshwater marine
freshwater 293.3490 -27.294
marine 1146.173

Constants:
Alaskan Canadian
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-101.3765 -95.83531

Linear Coefficients:
Alaskan Canadian
freshwater 0.3710689 0.4994562
marine 0.3837010 0.3317579

The output contains the three group meahg, o, and the common covariance ma“s‘pooled It also contains the two linear discriminant

functionsd 1 (@), do (@) where

1

5 /I o—1 /I o—1

di(®e) = (75} Spooledm — 5“1 Spooled(“’1 + pno) = —101.3765 4 0.3710689x1 + 0.3837010xo
1

5 /! o—1 /! o—1

do(m®) = “’2Spooledm — ;“’2spooled(“’1 + o) = —95.83531 4 0.4994562x1 + 0.3317579x9

The set ofe that will be classified as populationr | is given by
Ry = {=: dy(=) > da(=)}

> plot(z)
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If we do not make the equal covariance assumption, we carnnotita quadratic discrimination function:

> z <- discrim(group ~ marine + freshwater, data = t11.2, fami

>z

Call:

discrim(group ~ marine + freshwater, data = t11.2, family = C

"heteroscedastic"))

Group means:

marine freshwater

N Priors
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Alaskan 429.66 98.38 50 0.5
Canadian 366.62 137.46 50 0.5

Covariance Structure: heteroscedastic
Group: Alaskan
marine freshwater
marine 1399.086 -188.0927
freshwater 260.6078
Group: Canadian
marine freshwater
marine 893.2608 133.5049
freshwater 326.0902

Constants:
Alaskan Canadian
-124.823 -93.34938
Linear Coefficients:
Alaskan Canadian
marine 0.3963058 0.3700709
freshwater 0.6635344 0.2700287

Quadratic coefficents:
group: Alaskan
marine freshwater
marine -0.0003957791 -0.000285652
freshwater -0.002124760
group: Canadian
marine freshwater
marine -0.0005962301 0.000244103
freshwater -0.001633257

> plot(z)
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R has a functio da in MASS library that can also perform above discriminatiorabysis

> z <- Ida(group ~ freshwater + marine, data = t11.2)

>z

Call:

Ida(group ~ freshwater + marine, data = t11.2)

Prior probabilities of groups:

Alaskan Canadian

0.5

0.5
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Group means:

freshwater marine
Alaskan 98.38 429.66
Canadian 137.46 366.62

Coefficients of linear discriminants:
LD1

freshwater 0.04458572

marine -0.01803856

(The coefficents frofhda can be obtained from the coefficents frdinscr i mdivided by the square root af’ Spool edato ensurea’ @ has
the variance 1. The signs are opposite.)

> t(za) %*% zs %*%za
[1]

[1,] 8.291868
> zalsqrt(8.292)

(1]
freshwater -0.04458536
marine 0.01803841
> predict(z, newdata = data.frame(freshwater = 100, marine = 400))

$class
[1] Alaskan
Levels: Alaskan Canadian

$posterior
Alaskan Canadian
1 0.9166222 0.08337776
$x
LD1
1 -0.8325277
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EVALUATING SAMPLE CLASSIFICATION FUNCTIONS

1. AER
Given a sample classification rul®y, the actual error rate (AER) Is

AN

AER = TPM(Rl) = P2 R fg(a:)da: —|—p1 _ fl(a:)da:
Rl R2

Problem: f,(x) and f5 () are unknown.

2. APER
Let

n; = number of subjects iy
niy = humber of subjects i, misclassified ag,
ny = number of subjects i,

nop = number of subjects i, misclassified as,
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Then

Nipm + Moy
ny + N2

Apparent error rate (APER>

Example 4 (APER) In the previous example:

6+1
50 +50

APER = .07

Pros: It is easy and does not require any parametric assumspti
Cons: APER may underestimate AER.

3. Modified APER (cross validation)

(a) Randomly split data into a training sample and a valwhati
sample

(b) Construct classification rule/function from the traigisample
(c) Compute APER from the validation sample
Pros:
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e |t does not depend on any parametric assumptions
e |t does not underestimate AER
Cons:
e It requires large samples
e The classification function evaluated is not the classibcat
function of interest.
4. "Holdout” procedure (jackknife procedure)

e Omit one subject (holdout subject) from and construct the
classification function based on the — 1 subjects{faining
dataset

e Classify the holdout subject using the classification fiomcin
above step

e Repeat above two steps for all subjects{inand denote the

number of holdout subjects i, that are misclassified te, as
(H)
nlM .
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e Repeat above steps for subjectsrinand obtaim

e Estimate AER by

H
nin

+n

(H)
2M

n1—|—n2

Example 5 (Holdout procedure) Following is based on an R function:

> z <- discrim(group ~ freshwater + marine, data = t11.2)
> 72 <- crossvalidate(z)
> 72

groups  Alaskan Canadian
1 Canadian 0.3948409 0.6051591
2 Canadian 0.0117575 0.9882425
3 Alaskan 0.9949318 0.0050682
4 Alaskan 0.9999539 0.0000461
5 Alaskan 0.9302454 0.0697546

Then table the memberships:
> table(t11.2%group, z2$groups)

Alaskan Canadian
Alaskan 44 6
Canadian 1 49

Incidentally it is the same as the apparent error rate.
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If we do not assume equal covariances, APER can be found from:

> z <- discrim(group ~ marine + freshwater, data = t11.2, fami ly = Classical("heteroscedastic"))
> table(crossvalidate(z)$group, t11.2$group)

Alaskan Canadian
Alaskan 45 3
Canadian 5 47

R steps are given as follows

> z <- Ida(group ~ freshwater + marine, data = t11.2, CV = T)
> table(z$class, t11.2$group)

Alaskan Canadian
Alaskan 44 1
Canadian 6 49

For a quadratic discrimination function,

> z <- qgda(group ~ freshwater + marine, data = t11.2, CV = T)
> table(z$class, t11.2$group)

Alaskan Canadian
Alaskan 45 3
Canadian 5 47
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CLASSIFICATION WITH SEVERAL POPULATIONS

Populations: 7, ma,..., 7,
Population distributions: fi(x), ..., f,(x)
Prior probabilities: pq,pa,...,p,
Classification rule: R;, Ro,..., R,
Probabilties of misclassification: p(kli) = [ fi(z)dx with 377 _, p(kli) =
Costs of misclassification: c(k|i) with ¢(i|i) =0

Expected cost of misclassifying subjects frapto 7, k # i:

ECM( 1 Zp kli)c
k#1

34



Expected cost of misclassification under current classibicaule:

ECM = ZpZEC’M sz (Zp kli)c )

=1 1=1 k#£1

2 (; . (m)dm)

Theorem 4 (Optimal classification rule for several populatons)
Ri,Rs, ..., R, minimizes ECM if

Ry ={x: l(x) < li(x),i=1,...,9,1 %k}

[vjm

where

g
c(k|7)f;(x), (average loss of misclassifying subjects int9

U () = (
j=1,j#k
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Special cases:
1. If g = 2, then
Ry ={x: li(x) < Llo(x)} = {x: p2c(1]2) f2(2) < p1c(2[1)f1(x)}

_ [, h@)  pae(l]2)
‘{ 'fz(w)>plc(2|1)}

and

_ [, h@) _ pae(l]2)
R2‘{ 'fz(w)<plc(2|1)}

2. Ifg =3 and
c(1)2) = ¢(1|3) = ¢(2|1) = ¢(2|3) = ¢(3|1) = ¢(3|2) = 1, then we
really compare among mixtures of the other two populati@ee the
diagram on the board.
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3. Ifc(kli) = 1 for all & # ¢, then

( g g

| =Lk =15
p1fi(x) < prfr(x) i—1)
=T E ik
| pofy(x) <prefi(x) i=g]
=z : ppfr(x) > pifi(x), i # k}

Note that the posterior probability(k|x) o« pi fr(x).

4. If fi(x) ~ N(p;,3;), andce(k|) = 1 for k # ¢, then
R, =A{x : prfr(z) > pifi(x),1 # k}

= {:1: : de(ZB) > d?(m),z’ + k}
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where

1 _
5(33 — ;)% Y — p;) + logpi,

(a quadratic function ofc)

1
47 (@) = —5 log [ 2] -

If 3, =--- =3, thenR; = {x : di(x) > di(x),i # k}

1 . .
di(z) = ;> e — 5#22_1% + log p;, (alinear function ofr)

The sample version replacgs with z;, 32; with S;, and X with

Spooled-
fpr = =p, WithE, = --- = %, then
1 :
d;(x) = —§D§(:c), Distance betweer andz;

and R;, implies assigninge to the closest population.
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Exam p|e 6 (Exam ple 1 l . 10)Form a data.frame object:

> ell1.10 <- data.frame(xl = c(-2, O, -1, 0, 2, 1, 1, O, -1),
x2 = c(5, 3,1, 6, 4, 2, -2, 0, -4),
group = factor(c(rep(1, 3), rep(2, 3), rep(3, 3))))
> ell.10

x1 x2 group

©O© 00 ~NO O WN P

Assuming a common covariance matrix, but unequal prior @biliiies for the groups:

> z <- discrim(group ~ x1 + x2, data = el11.10, prior = c(.25, .25 , D)

>z

Call:

discrim(structure(.Data = group ~ x1 + x2, class = "formula" ), data = el11.10,

prior = ¢(0.25, 0.25, 0.5))
Group means:
x1 x2 N Priors
1-1 33 0.25
2 1 43 0.25
3 0-23 0.50
Covariance Structure: homoscedastic
x1 X2
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x1 1.0000000 -0.333333
X2 4.000000
Constants:

1 2 3
-2.80058 -4.30058 -1.207433
Linear Coefficients:

1 2 3

x1 -0.7714286 1.371429 -0.1714286
x2 0.6857143 1.114286 -0.5142857

The output contains the three group meang, & o, &3, and the common covariance mat's‘pooled It also contains the three linear
discriminant functionsi (), dg (@), d3 (=) where

di(x) = —2.80058 — 0.7714286x1 + 0.6857143x5
do(x) = —4.30058 + 1.371429x1 + 1.114286x4
d3(®) = —1.207433 — 0.1714286x1 — 0.5142857x9

The set ote that will be classified as populationr, is given by
Ry = {x : dj, (=) > d; (=), fori # k}

To view the partition of the sample space:

> plot(z)
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To allocate a new objeety = (—2, —1), use
> predict(z, newdata = data.frame(x1 = -2, x2 = -1))

groups X1 X2 X3
1 3 0.1688845 0.0003379 0.8307776

Instead of reporting the values dfy (()), do (), d3 (), predi ct reports the posterior probabilities @&y being in the three groups.
To obtain the values ol 1 (q), do (z(), d3 (x(), do the following:

> c¢(-2, -1) %*% coef(z)$linear.coefficients + coef(z)$con stants
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1 2
[1,] -1.943437 -8.157723 -0.35029
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FISHER'S LINEAR DISCRIMINANT ANALYSIS

Fisher’s idea: Linearly transform high dimensional valesia: into a
univariatey

Linear transformation:

y=awx

Question: How to choosar and determind?; based ony?

Givena:
. . a —
e populationmi: ®11,...,Tin, — Yi1s--->Yingy — Ui
. . a —
e populationme: a1, ..., Tan, — Y21, -3 Y2n, — Yo

The separation of the two populations can be measured by

v, — Y,

2 . . /
— s, : pooled variance of; ;s

43



We first finda that maximizes the separation of the two populations.

Theorem 5 (Fisher’s linear discriminant function) The linear
coefficienta that maximizes the separation is

a = Spooled(fl o E2)
The maximum separation is

v — Yo

= (@1 — T2)'S popea(@1 — T2) = D”
Sy

pooled

~

a=—a

It is the sample generalized squared distance between thedmple
means. Assuming the variances of the two populations ar& gte
optimal classification rule is

1
R = {:13 ca'x > ia’(fl +Eg)}

. . . 21 __ = - - - - 21 __ 2
Proof 3 Maximizing "’18—”2' is equivalent to maximizingZi=Y2."

Yy Sy
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Following the matrix maximization result:

— == \2 v A \2 /d2
maX(yl Ys) :max(awl a'zs) — nax (a'd)

2 / / ’
a Sy a a Spooledaf a a Spooleda'

(subject toa’ S pooieqa = 1)
=d'S ! d=(x —x)'S_ | (T —Ts) = D?

pooled pooled

anda =S_' d=S8_"' (T, — ).

pooled pooled

Remark 4 e Fisher’s linear discriminant function is the same as the
best discriminant function under equal covariances nmavitaie
normal distributions.

e D?is equivalent Hotelling’d™ test statistic for testingly: w1, = ..

Example 7 (Using LDA) See a previous example

Question: How to generalize the idea to more than two populations?
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Suppose that there agegpopulations:

™ :l'l'1721 — L11yL12y.+-5L1p, ﬁflasl
Ty i g, g = Ty Tggseoor Ty, = T, S,
with 3 =-.- =3, = 3.

Considery = a’x:

. ! 2
T - Hiy = A My, 0y _aza’aﬁyll?yl%'“)ylnl

withy; = @'z, = 7, = a'T1,s] = a'S1a

. — 2 ./
Tyt gy = @ [y, 0) = @ 20, = Yg1,Ygg, - - 3 Ygn,
: / — I — 2 /
withy,; = a’'zy; =y, =a'®,, s, =a S,a
We want to choose so that the separation af , 72, . . ., 7, populations

IS maximized.
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The idea is similar to ANOVA: Lefz = + >°Y_ p, and

n

fi, = = > 1 jiiy. Then finda such that

n

Variation between populations af , 72, ...,
max . T :
a  Variation within populations ofry, m, . . ., 7,
_ i—1(Liy — 1) _ max i—1(a'p;, — a'p)’
a a'Xa a a’'da
a' D i (i —m)(u; —p)la a'Ba
— a'Xa I EaPT SP

a7

(subject toa’Xa = 1)



The sample version: Let

M =11 T nit-otng —g i
n; g n; g
1 2= 23:1 Lij 1 _
Lj — — § L, L = [7] ' [7] Nnid;
T 7=1 i=1 T i=1 " =1

W: nz_lszandi\:: — :Sooe
;( ) ni+---4n,—g n—g pooled

then findinga is equivalent to

7 ni(y;, —7)? a’'Ba a’'Ba

max = max e max
a s? a a'Sa aWa’

(subject toa’Sa = 1)
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Theorem 6 (Fisher’s linear discriminants for several popuations) Let
A1, A2, ..., As denote thes < min(g — 1, p) nonzero eigenvalues of

W !B ande, e, ...,e, be the corresponding eigenvectors (scaled so
thate, S, ooicae; = 1). Thena = e; maximizes the ratio

a’'Ba

aWa

We also call

e x : the sample first discriminant

e,x : the sample second discriminant

e.x : the sampleth discriminant

Matrix Result 1 (Quadratic forms for points on the unit sphere) Let
B be a postive definite matrix with eigenvalugs> --- > A\, > 0 and
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associated eigenvectoes, es, . . ., e,. Then

x' Bx .
max = )\ (attained whenc = e;)
x#0 x'x
x'x=1
x'Bx
‘ = A\ attained whene =
min e v €)
x'xr=1
Moreover,
x' Bx .
max = A\ir1 (attained whene = er.1 1), k=1,2,...,p-1
xlei,es,...,er x'x
x'x=1

Proof 4 The spectral decomposition 8 = P'AP = P'AY/2AY2Pp.
Then
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Letu = W'/2a. The problem becomes

W W 12BW—1/24
max

u ’U,/’U,

Let \; be the largest eigenvalue W ~/2 BW ~!/2 and associated
eigenvector i;. Thenu = e; maximizes the ratio above. Thus

a=W 12y = W_1/261
SinceW ~12BW 1/2¢ = )e
W—1/2W—1/2BW—1/26 _ )\W_1/2€

Therefore) is also the eigenvalue 3 ~' B and the corresponding

eigenvector iV ~1/%e = a.
Sincex; —x,...,¢, —xising < g — 1 subspace of thg dimensional
space, ife is orthogonal to any af, — &, thenW ' Be = 0 = Oe. Thus

0 is the eigenvalue d ~! B and there will bev — ¢ eigenvectors for the
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0 eigenvalue. It implies there will bgor fewer nonzero eigenvalues.
Therefores < min(p,g — 1).

It is easy to see that the sample variance of the projegjs; @intoa; Is

g n;
1

/ /| — \2 /
E g (a1xi; —a1T;)” = a1Spooieddr =1

i=1 j=1

n1++ng_g

Fora, = W~1/2¢,, the sample covariance between the projects of
ontoa; and those onta. IS

g n
/ /] — / /] — /
E g (alwij — almi)(aQwij — asT;) = a18pooied@2 = 0

1
n1_|_...—|—ng_gi:1j:1

Generally

1 ifi=k

/
a'iSpooledak: — _
0 otherwise
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However, above is not true §,,,.:q4 IS replaced withS.

Remark 5 Becauses < min(g — 1, p), there is no loss of information for
discriminantion by plotting in two dimensions if

Number of variables Number of populations Number of disicramts

Anyp g=2 r=1
Anyp g=3 r =2
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Question: How to construct classification rule baseday?

Theorem 7 (Classification rules based on Fisher’s discrimiants)

Considerr < s discriminantsa, ao, ..., a,. Classifyx to 7, if
T
> la)(x — )] <Z — %> foralli+£k
j=1
Proof 5 Let E = (ey, eq, ..., e,) Wheree; is the eigenvector of

W —2BW /2 The generalized square distance betweemdz; is
(m o EZ)/'S'}:oolecl( E7/) — (n o g)(m o E73)/VV_1(m o EZ)
=(n—g)(x—T) W VW1 2(x — &)
=(n—g)(x— ii)’W_1/2EE’W_1/2(:U — ;)

w_mz

M@

p
=(n—g)(x—=) g aja, (x — ;) =

J=1 7 1
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Therefored 7| a(x —T;)) * measures the generalized square distance

betweenx andZ;. For thosen;, = W ~1/2
corresponding to the zero eigenvalud®t /2 BW ~

e; wWheree; IS an eigenvector
1/2
€; J_ii—fandej 1 T —f:>€j lx,—x— (Ek—i) = XI; — T}
] — — ! [— — ! — ! —
— €,(T; —Ty) = 0 = a}(T; — T) = 0= a;T; = a;Ty
Therefore the lagt — s summands

p
> lal(z—z)] ? is a constant with respect o
J=s+1

Therefore we only consider

forr < s.
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Remark 6 When using the discriminant functions, subjects are di@ssi
to populations based on Euclidean distances.

Question: What is the practical meaning af?

Consider the separation of tiggoopulations in the direction of thgh
discriminanta ;, weighted by the sample sizes:

g g
> nila(@i —E)]° =) niaj(@ - T)(T - T)a,
=1 1=1
g
= Z niejW_l/Q(Ei — E) (Ez — E)/W_1/2€j = eg-W_l/QBW_l/er = )\j
1=1
Therefore\; measures the squared distances between population means
and the overall mean after they are projected anto
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Further the overall separation of thgopulations can be measured by

A2 T Z nZ /Sz:ooled (_ E)

= (n—g) Z n, (% — )W Y& — )
= (n—g) an(iz — )W PEEW YV (E, — )

—9)> ni Y la(® —

i=1 =1
P g p
—9g) g g nila;(T; — )] g A

Therefore the first few eigenvalues contribute more to tipaistion of
the populations than the last few eigenvalues.

57



Examp|e 8 (Examp|e 11.13)Compute by “hand”

Get overall mean

> zm <- colMeans(ell.10[, 1:2])

Get group means

> zmi <- by(ell.10[, 1:2], e11.10%group, colMeans)
GetB

> zb <- matrix(apply(sapply(zmi, function(x, mu)3*(x-mu)
GetwW

> zw <- matrix(apply(sapply(by(e11.10[, 1:2], el11.10$gro
Find the eigen values GV — 1 B:

> z <- eigen(solve(zw) %*% zb)

> z$values/sum(z$values)

[1] 0.7602082 0.2397918

Get the coefficient of the first discriminant:

> z$vectors[, 1)/sqgrt(z$vectors[, 1] %*% (zw/6) %*% z$vect
[1] -0.3856092 -0.4945830

Get the coefficient of the second discriminant:

> z$vectors[, 2]/sqrt(z$vectors, 2] %*% (zw/6) %*% z$vect
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ors[, 2])



[1] -0.9380176 0.1119397
Discrimination analysis bida :

> z <- Ida(group ©” x1 +x2, data = e11.10)
>z

Call:
Ida.formula(group ~ x1 + x2, data = e11.10)

Prior probabilities of groups:
1 2 3
0.3333333 0.3333333 0.3333333

Group means:
x1 x2

w N

-1 3
1 4
0 -2

Coefficients of linear discriminants:
LD1 LD2

x1 -0.3856092 0.9380176

x2 -0.4945830 -0.1119397

Proportion of trace:
LD1 LD2
0.7602 0.2398

The output contains the two linear discriminant functiofisey differ from those in the text only by signs. The propamtof trace provides
proportions of eigenvalues:
A\

T

S .
2g—1 i
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To allocate a new poing = (1, 3):

> predict(z, newdata = data.frame(x1 = 1, x2 = 3))

$class:
[1] 2
$class: Levels:
[1] "1" 2" 3"
$posterior:
1 2 3

1 0.1249667 0.8597303 0.01530298
Bx:

LD1 LD2

1 -1.045053 0.7887646

It contains the population number it is allocated and alsovdiues of two discriminant functions (which are differim those values in the text
for the same reason as above).

If only the first discriminant is used for classification:
> predict(z, newdata = data.frame(x1 = 1, x2 = 3), dimen = 1)

$class
1] 2
Levels: 1 2 3
$posterior
1 2 3
1 0.451675 0.5381006 0.01022434
$x
LD1
1 -1.045053

The performance of the LDA method can be examined easily @ithrgument ofda function.
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REGRESSIONMETHODS FORDISCRIMINATION

Multivariate linear regression method Define

1 if subjecti is in 7y
Yir =
0 Otherwise

We expandX ,, «,, Into X, (,+1) to include a column of 1's for intercept
terms. The multivariate regression model is

Y;k:wgﬁ(k)—l—ezk, z:l,,n, kzl,,g

We fit a multivariate linear regression model to describerétetionship
between the response varialMe, ., and X, .

YnXg — an(p—l—l)b(p—l—l)XQ T €Enxg
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The least square estimate®f
B=(X'X)"'X'Y
Or for populationk, the LS estimate is

//3\(14) = (X'X)7' XY 1)

Classification rule: a given subject withy, is classified into populatiok
If

(G15 925 -+ -5 Ug) = @1)(9 = £B6(X’X)_1X’Y
and
g >0, i=1,...,9,i#k
because
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Remark 7 e It can be verified tha}_7_, §; = 1 (for example, check it
with p = 1). That is, the subject will be classified into one of the
populations. Howevelj; may bot always be between 0 and 1.

e The linear regression model may not work well because ofithe r
nature of linear regression models. Some populations may be
completely missed/masked, leading to large AER.

Example 9 (Multivariate linear regression for discrimination analysis)

We run

> z <- Im(cbind(e11.10$group==1, el1.10$group==2, €11.10

> Z

Call:

Im(formula = cbind(e11.10$group == 1, e11.10$group == 2, el

" x1 + x2, data = e11.10)

Coefficients:

[1] [.2] [.3]
(Intercept)  0.25089  0.20239  0.54672
x1 -0.25412  0.24345  0.01067
X2 0.04947  0.07856 -0.12803
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>

1

>

1

predict(z, newdata = data.frame(x1 = 1, x2 = 3))
[1] [.2] [.3]

0.1451665 0.681539 0.1732945

predict(z, newdata = data.frame(x1 = 1, x2 = 5))

[.1] 2] [.3]
0.2440996 0.838668 -0.08276754

Example 10 (Example of masking)We run

© 0 ~NOoO O WN P

V V. V V V

zdata <- data.frame(x = 1.9, y1l = c(1, 1, 1, rep(0, 6)),
y2 =¢0, 0, 0, 1, 1, 1, 0, 0, 0), y3 = c(rep(0, 6), 1, 1, 1))
zdata

X yl y2 y3

11 0 0

2 1 0 O

31 0 0

4 0 1 O

5 0 1 0

6 0 1 O

7 0 0 1

8 0 0 1

9 0 0 1

plot(zdata$x, zdata$yl)
points(zdata$x, zdata$y2, pch = 2)
points(zdata$x, zdata$y3, pch = 3)
z <- Im(cbind(yl, y2, y3) ~ x, data = zdata)
coef(z)
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(Intercept)
X

> abline(a
> abline(a
> abline(a

yl

y2

1.083333 3.333333e-01 -0.4166667

-0.150000 3.124828e-18 0.1500000

coef(z)
coef(z)
coef(z)

1, 1],
1, 2],

1, 3],
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Logistic regression If g = 2, the group/population indicator is a binary
variable and a logistic model can be fit to the data:

P(Yip =1lx;) | _ P(Yio =1lx;) \ _, N o
log (P(Y;Ll — 1‘%)) = log (1 ~ Py, 1|iL‘z)> = logit| P (Y2 = 1|x;)] = ;3
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Under this model

1
P(Y = 1|z;) = 1 4 exp(x:)
P(Yig = 1]@;) = R

1 + exp(z;3)

Example 11 (Logistic regression)\We run

> z <- glm((group=="Canadian") ~ freshwater + marine, data = t11.2, family = binomial())
> 7
Call: glm(formula = (group == "Canadian") ~ freshwater + mar ine,

family = binomial(), data = t11.2)

Coefficients:
(Intercept)  freshwater marine
3.92484 0.12605 -0.04854

Degrees of Freedom: 99 Total (i.e. Null); 97 Residual
Null Deviance: 138.6
Residual Deviance: 38.79 AIC: 44.79

> predict(z, newdata = data.frame(freshwater = 100, marine = 400), type = "response")

[1] 0.05276334
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Multinomial regression The multinomial log-linear model is an
extension of the logistic model fgr > 2. The model is given as follows

(P(Yz‘k = 1]z;)
log
P(Yi = 1|z;)

>:w2,3(k), 221,,72, k':2,,g
or
P(Yip = 1]z:) = exp(@;B1,)) P(Yir = 1|z;)

It can be shown easily that

1
(Yir = 1) 1+>9_, exp(z)B;))
exp(x’
P(Yiy, = 1]a;) = uSO) k=2,....9

L+ 2 i exp(®8 ;)

Remark 8 In the classical classification function under the mulimey
normal distributiona with equal covariances, we also obsdiog-linear
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model:

P(Yi, = 1\%)) . (fk(%)]%) o fr(=e) Pk
o (P(Y:u = 1\*’1%) = o fl(fb‘i)pl = log fl(fb‘z') +log b1

pr 1 _ _
— log o 5y, + 1) S M — ) 22 (g, — )
p. 1, _ . _ L
= log 0 5(”% + wl)/Spolozed(wk — ) + w{iSpololed(mk — )
1

There are some important differences in parameter esomatithe two
approaches:

e The classical discrimination method is a full parametrigchd and
It depends on the marginal distribution®f which is a mixture
distribution

g
> pefu(®, gy, 2)
k=1

e Logistic/multinomial regression model ignores the maadjin
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distribution ofx and estimates the parameters based on the
conditional likelihood — the multinomial likelihood with
P(Y;, = 1|x).

If the multivariate normal assumption is true, the logistialtinomial
method may lose efficiency (about 30% in a worse case, or 308 mo
data to do as well). The LDA method based on multivariate @brm
assumption can also use the information about marginallulision

from a subject without a class label.

Logistic/multinomial method is more robust to outliers evdtion
from the multivariate normal assumption. It is safer to usemwthe
normality assumption is a question.

Example 12 (Multinomial regression) Fitting a multinomial log-linear
model usingnultinom in the librarynnet :

> library(nnet)
> z <- multinom(group ~ x1 + x2, data = e11.10)
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multinom(formula = group ~ x1 + x2, data = e11.10)

Coefficients:

(Intercept) x1 X2
2  -31.69858 28.368659  6.978336
3 11.97077 9.701029 -19.411615

Residual Deviance: 0.0001800467

AIC: 12.00018

> predict(z, newdata = data.frame(x1 = 1, x2 = 5))

[1] 2

Levels: 1 2 3

> predict(z, newdata = data.frame(x1 = -2, x2 = 1))

1] 1

Levels: 1 2 3

> predict(z, newdata = data.frame(x1 = -2, x2 = 1), type = "pro bs")
1 2 3

1.000000e+00 4.201730e-36 2.199249e-12

A summary Comparing to the classical LDA methods introduced
before:

e Pros:
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— easy to fit

— may easily accommodate different types of variables, sach a
gualitattive variables

— model diagnostic methods available

e Cons: may not work well in some situations.
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K-NEARESTNEIGHBOR CLASSIFICATION

This is a complete nonparametric method.
Classify a subject witlx, according to the following steps:
e Locatek training pointse, o, . .., o) closest in distance to

e Classifyx, using majority vote among thieneighbors

r1,Lo,..., k.
Some technical notes:

e % Neighbors are determined using the dista#ice;, =y). The
distance can be

— Euclidean distancei(x;, zo) = v/(x — xo)' (. — xo)
— absolute distancel(x;, xy) = | — x¢|’'1 (city-block distance)
e Ties are broken at random.

— The number majority votes are the same in at least two
populations
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— The members of k-nearest neighbors
e Variables may be standardized to have mean zero and vardance

e Fork = 1, one gets the simple nearest neighbor method with
maximal local technique

e Fork — n a global majority vote of the whole training set results:
That is, always classify a new subject into the most frequent
population.

Pros and cons:
e Simple, low bias
e Large variation

The classifier can be evaluated using the jackknife proesdur

The k-nearest neighbor classification based on Euclidean dssaran be
done in R with libraryclass
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Example 13 (Classification withk-nearest neighbors) We run

> library(class)

> knn(t11.2[, c("freshwater", "marine")], data.frame(fr eshwater = 100, marine = 400), t11.2$group, k = 1)
[1] Alaskan

Levels: Alaskan Canadian

> knn(t11.2[, c(“freshwater", "marine")], data.frame(fr eshwater = 100, marine = 400), t11.2$group, k = 3)
[1] Alaskan

Levels: Alaskan Canadian

> knn(t11.2[, c(“freshwater", "marine")], data.frame(fr eshwater = 100, marine = 400), t11.2$group, k = 9)
[1] Alaskan

Levels: Alaskan Canadian

To evaluate AER of this classifier with jackknife procedure:

> table(knn.cv(t11.2[, c("freshwater", "marine")], t11. 2$group, k = 9), t11.2%group)

Alaskan Canadian
Alaskan 46 3
Canadian 4 47

This result is quite compariable with that frdda
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FINAL WORDSABOUT DISCRIMINATION ANALYSIS

Other techigues
e CART: Classification and regression trees
e Neural networks
e Bayesian belief networks

e Projection pursuit

Variable selection
e Number of variables
e \Which variables

e Variable transformation, linear or non-linear (for examphstead of
guadratic discrimination analysis basedXnand.Xs, you‘ may do
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linear discrimination analysis based &1, X5, X1 X5, X7, X3).
Example 14 (Iris data) We run

t11.5 <- read.table("T11-5.DAT", header = F, col.names = ¢ ("sL", "sSw", "PL", "PW", "group"))
t11.58group <- factor(t11l.5%group, labels = c("setosa", "versicolor", "virginica"))
z <- lda(group ~ SL + SW + PL + PW, data = t11.5, CV = T)

table(t11.5%group, z$class)

V V. V V

setosa versicolor virginica

setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49

The errorrate i8 /150 = .02. If we use a single variable PW:

> z <- Ida(group ~ PW, data = t11.5, CV = T)
> table(t11.5%group, z$class)

setosa versicolor virginica

setosa 50 0 0
versicolor 0 48 2
virginica 0 4 46

The errorrate i /150 = .04.

> z <- princomp(t11.5[, 1:4])
>z

Call:
princomp(x = t11.5], 1:4])
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Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4

2.0494032 0.4909714 0.2787259 0.1538707

>

>

4 variables and 150 observations.

zz <- |da(group ~ Comp.l, data = data.frame(predict(z),
group = t11.5%group), CV = T)
table(t11.5%group, zz$class)

setosa versicolor virginica

setosa 50 0 0
versicolor 0 46 4
virginica 0 6 44

zz <- lda(group ~ Comp.1 + Comp.2, data = data.frame(predic
group = t11.5%group), CV = T)
table(t11.5%group, zz$class)

setosa versicolor virginica

setosa 50 0 0
versicolor 0 47 3
virginica 0 4 46

zz <- lda(group © Comp.1 + Comp.2 + Comp.3, data = data.frame
group = t11.5%group), CV = T)
table(t11.5%group, zz$class)

setosa versicolor virginica

setosa 50 0 0
versicolor 0 48 2
virginica 0 0 50

The AERis2/150 = 0.013.

78

t(2),

(predict(z),



