
Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni G. Parmigiani

For further volumes:
www.springer.com/series/6991

http://www.springer.com/series/6991

Søren Højsgaard � David Edwards �

Steffen Lauritzen

Graphical Models with R

Søren Højsgaard
Department of Mathematical Sciences
Aalborg University
Aalborg
Denmark

David Edwards
Centre for Quantitative Genetics and
Genomics
Department of Molecular Biology and
Genetics
Aarhus University
Aarhus
Denmark

Steffen Lauritzen
Department of Statistics
University of Oxford
Oxford
UK

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
Seattle, WA
USA

Giovanni G. Parmigiani
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins University
Baltimore, MD
USA

Kurt Hornik
Department of Statistik and Mathematik
Wirtschaftsuniversität Wien
Wien
Austria

ISBN 978-1-4614-2298-3 e-ISBN 978-1-4614-2299-0
DOI 10.1007/978-1-4614-2299-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012931941

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Graphical models in their modern form have been around since the late 1970s and
appear today in many areas of the sciences. Along with the ongoing developments
of graphical models, a number of different graphical modelling software programs
have been written over the years. In recent years many of these software develop-
ments have taken place within the R community, either in the form of providing an
R interface to existing software or in the form of new R packages. At the time of
writing, the taskview for graphical models in R at

http://cran.r-project.org/web/views/gR.html

lists some thirty packages related to graphical models. It is expected that this number
will grow considerably, and the packages will be extended and modified.

This book attempts to give the reader a gentle introduction to graphical modelling
using R and the main features of some of these packages, hopefully sharpening
the appetite for using and developing these packages further. In addition, we shall
give a few examples of how more advanced aspects of graphical modelling can be
represented and handled within R.

We emphasize that this book is not a manual to the collection of packages men-
tioned and the general theory of the models is only described to an extent which
allows the book to be read meaningfully on its own. For a more extensive descrip-
tion of the theory we refer to the textbooks available, such as Whittaker (1990),
Lauritzen (1996), and Edwards (2000).

The organization of the book is as follows:
Chapter 1 treats graphs without any direct reference to statistical models although

the significance of graphs for conditional independence is briefly explained and ex-
emplified. This chapter may be skipped at first reading and returned to as needed.

Chapter 2 discusses graphical models for contingency tables, i.e. graphical mod-
els for discrete data. Chapter 3 deals with Bayesian networks and the updating of
conditional probabilities. Chapter 4 deals with graphical models for the normal dis-
tribution, i.e. for continuous data. Chapter 5 discusses mixed interaction models
which refers to a combination of discrete and continuous variables and this chapter
thus unifies Chaps. 2 and 4.

v

http://cran.r-project.org/web/views/gR.html

vi Preface

Chapters 2, 4 and 5 all deal with models which are largely data-driven, mostly
analysed within a frequentist perspective; these chapters constitute the core of the
book.

Chapter 6 discusses graphical models for complex stochastic systems with focus
on methods of inference which involve Markov chain Monte Carlo sampling (Gilks
et al. 1994). Both Chaps. 3 and 6 deal with models which strongly exploit prior
substantive knowledge and are mostly treated within a Bayesian perspective.

A perspective on graphical models which has become particular important in
the last decades involves their ability to deal with problems involving data of high
dimension. This aspect is dealt with in Chap. 7.

Finally, we would to thank Sofia Massa, Clive Bowsher and Vanessa Didelez for
reading early drafts of this book and providing us with encouragement and construc-
tive comments.

Søren Højsgaard
David Edwards

Steffen Lauritzen

Aalborg, Denmark
Tjele, Denmark
Oxford, UK

Contents

1 Graphs and Conditional Independence 1
1.1 Introduction . 1
1.2 Graphs . 2

1.2.1 Undirected Graphs . 2
1.2.2 Directed Acyclic Graphs 6
1.2.3 Mixed Graphs . 8

1.3 Conditional Independence and Graphs 11
1.4 More About Graphs . 14

1.4.1 Special Properties . 14
1.4.2 Graph Layout in Rgraphviz 18
1.4.3 The igraph Package . 20
1.4.4 3-D Graphs . 24
1.4.5 Alternative Graph Representations 25
1.4.6 Operations on Graphs in Different Representations 25

2 Log-Linear Models . 27
2.1 Introduction . 27
2.2 Preliminaries . 27

2.2.1 Four Datasets . 27
2.2.2 Data Formats . 29

2.3 Log-Linear Models . 30
2.3.1 Preliminaries and Notation 30
2.3.2 Hierarchical Log-Linear Models 31
2.3.3 Graphical and Decomposable Log-Linear Models 33
2.3.4 Estimation, Likelihood, and Model Fitting 34
2.3.5 Hypothesis Testing . 35

2.4 Model Selection . 42
2.5 Further Topics . 45

2.5.1 Fitting Log-Linear Models with glm() 45
2.5.2 Working with dModel Objects 47

2.6 Various . 49

vii

viii Contents

3 Bayesian Networks . 51
3.1 Introduction . 51

3.1.1 The Chest Clinic Example 52
3.1.2 Models Based on Directed Acyclic Graphs 52
3.1.3 Inference . 53

3.2 Building and Using Bayesian Networks 54
3.2.1 Specification of Conditional Probability Tables 54
3.2.2 Building the Network . 55
3.2.3 Absorbing Evidence and Answering Queries 60

3.3 Further Topics . 63
3.3.1 Building a Network from Data 63
3.3.2 Bayesian Networks with RHugin 65
3.3.3 Simulation . 68
3.3.4 Prediction . 69
3.3.5 Working with HUGIN Files 71

3.4 Learning Bayesian Networks . 73

4 Gaussian Graphical Models . 77
4.1 Introduction . 77
4.2 Some Examples . 77

4.2.1 Carcass Data . 77
4.2.2 Body Fat Data . 80

4.3 Undirected Gaussian Graphical Models 82
4.3.1 Preliminaries and Notation 83
4.3.2 Estimation, Likelihood, and Model Fitting 85
4.3.3 Hypothesis Testing . 87
4.3.4 Concentration and Regression 89
4.3.5 Decomposition of UGGMs 90

4.4 Model Selection . 92
4.4.1 Stepwise Methods . 92
4.4.2 Convex Optimization . 95
4.4.3 Thresholding . 96
4.4.4 Simultaneous p-Values 97
4.4.5 Summary of Models . 100

4.5 Directed Gaussian Graphical Models 102
4.5.1 Markov Equivalence . 103

4.6 Model Selection for DGGMs . 105
4.6.1 The PC Algorithm . 106
4.6.2 Alternative Methods for Identifying DGGMs 111

4.7 Gaussian Chain Graph Models 115
4.7.1 Selecting a Chain Graph Model 115

4.8 Various . 116

5 Mixed Interaction Models . 117
5.1 Introduction . 117
5.2 Example Datasets . 117

Contents ix

5.3 Mixed Data and CG-densities . 119
5.4 Homogeneous Mixed Interaction Models 120
5.5 Model Formulae . 122
5.6 Graphical and Decomposable MI-models 125
5.7 Maximum Likelihood Estimation 128

5.7.1 Likelihood and Deviance 128
5.7.2 Dimension of MI-models 129
5.7.3 Inference . 129
5.7.4 Likelihood Equations . 129
5.7.5 Iterative Proportional Scaling 131

5.8 Using gRim . 135
5.8.1 Updating Models . 136
5.8.2 Inference . 136
5.8.3 Stepwise Model Selection 137

5.9 An Example of Chain Graph Modelling 138
5.10 Various . 142

6 Graphical Models for Complex Stochastic Systems 145
6.1 Introduction . 145
6.2 Bayesian Graphical Models . 145

6.2.1 Simple Repeated Sampling 145
6.2.2 Models Based on Directed Acyclic Graphs 147

6.3 Inference Based on Probability Propagation 149
6.4 Computations Using Monte Carlo Methods 152

6.4.1 Metropolis–Hastings and the Gibbs Sampler 152
6.4.2 Using WinBUGS via R2WinBUGS 154

6.5 Various . 158

7 High Dimensional Modelling . 159
7.1 Introduction . 159
7.2 Two Datasets . 159
7.3 Computational Efficiency . 160
7.4 The Extended Chow–Liu Algorithm 162
7.5 Decomposable Stepwise Search 166
7.6 Selection by Approximation . 169
7.7 Finding MAP Forests . 171

References . 175

Index . 179

Chapter 1
Graphs and Conditional Independence

1.1 Introduction

A graph as a mathematical object may be defined as a pair G = (V ,E), where V is
a set of vertices or nodes and E is a set of edges. Each edge is associated with a pair
of nodes, its endpoints. Edges may in general be directed, undirected, or bidirected.
Graphs are typically visualized by representing nodes by circles or points, and edges
by lines, arrows, or bidirected arrows. We use the notation α−β , α → β , and α ↔ β

to denote edges between α and β . Graphs are useful in a variety of applications, and
a number of packages for working with graphs are available in R.

We have found the graph package to be particularly useful, since it provides
a way of representing graphs as so-called graphNEL objects (graphs as Node and
Edge Lists) and thereby gives access to a wide range of graph-theoretic operations
(in the graph package), efficient implementations of standard graph algorithms (in
the RBGL package), and allows the graphs to be easily displayed in a variety of
layouts (using the Rgraphviz package from BioConductor). Much of this book
uses this representation. In statistical applications we are particularly interested in
two special graph types: undirected graphs and directed acyclic graphs (often called
DAGs).

We have also found the igraph package to be useful. Like the graph package,
igraph supports both undirected and directed graphs and implements various graph
algorithms. Functions in the package allow graphs to be displayed in a variety of
formats. The internal representation of graphs in the igraph package differs from
the representation in the graph package.

The gRbase package supplements graph and igraph by implementing some al-
gorithms useful in graphical modelling. gRbase also provides two wrapper func-
tions, ug() and dag(), for easily creating undirected graphs and DAGs represented
either as graphNEL objects (the default), igraph objects or adjacency matrices.

The first sections of this chapter describe some of the most useful functions avail-
able when working with graphical models. These come variously from the gRbase,
graph and RBGL packages, but it is not usually necessary to know which. To use
the functions and plot the graphs it is enough to load gRbase and Rgraphviz, since

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_1, © Springer Science+Business Media, LLC 2012

1

http://dx.doi.org/10.1007/978-1-4614-2299-0_1

2 1 Graphs and Conditional Independence

gRbase automatically loads the other packages. To find out which package a func-
tion we mention belongs to, please refer to the index to this book or to the usual help
functions.

As statistical objects, graphs are used to represent models, with nodes repre-
senting model variables (and sometimes model parameters) in such a way that the
independence structure of the model can be read directly off the graph. Accordingly,
a section of this chapter is devoted to a brief description of the key concept of condi-
tional independence and explains how this is linked to graphs. Throughout the book
we shall repeatedly return to this in more detail.

1.2 Graphs

Our graphs have a finite node set V and for the most part they are simple graphs in
the sense that they have no loops nor multiple edges. Two vertices α and β are said
to be adjacent, written α ∼ β , if there is an edge between α and β in G, i.e. if either
α − β , α → β , or α ↔ β .

In this chapter we primarily represent graphs as graphNEL objects, and except
where stated otherwise, the functions we describe operate on these objects. How-
ever, different representations can be useful for various reasons, for example igraph
objects or as adjacency matrices. It is easy to convert between graphNEL objects,
igraph objects and adjacency matrices, using the as() function. For example, if
gNg is a graphNEL object, then

> ig <- as(gNg, "igraph")
> ag <- as(gNg, "matrix")

creates versions of the same graph represented as an igraph object and as an adja-
cency matrix. Similarly, to convert back we could write

> gNg <- as(ig, "graphNEL")

1.2.1 Undirected Graphs

An undirected graph may be created using the ug() function. The graph can be
specified using a list of formulas, a single formula or a list of vectors. Thus the
following forms are equivalent:

> library(gRbase)
> ug0 <- ug(~a:b, ~b:c:d, ~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(~a*b+b*c*d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
> ug0

A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 4

1.2 Graphs 3

graphNEL graphs are displayed with plot():

> library(Rgraphviz)
> plot(ug0)

Per default the ug() function returns an graphNEL object, but the options re-

sult="igraph" or result="matrix" lead it to return an igraph or adjacency
matrix instead. For example,

> ug0i <- ug(~a:b+b:c:d+e, result="igraph")
> ug0i

Vertices: 5
Edges: 4
Directed: FALSE
Edges:

[0] 'a' -- 'b'
[1] 'b' -- 'c'
[2] 'b' -- 'd'
[3] 'c' -- 'd'

There is a plot() method for igraph objects in the igraph package. There are
also various facilities for controlling the layout. For example, we may use a layout
algorithm called layout.spring as follows:

> plot(ug0i, layout=layout.spring)

The default size of vertices and their labels is quite small. This is easily changed
by setting certain attributes on the graph, see Sect. 1.4.3 for examples. However, to
avoid changing these attributes for all the graphs shown in the following we have
defined a small plot function myiplot() as follows:

> myiplot <- function(x, ...){
+ V(x)$size <- 30
+ V(x)$label.cex <- 3
+ plot(x,...)
+ }

The graph ug0i is then displayed with:

> myiplot(ug0i, layout=layout.spring)

4 1 Graphs and Conditional Independence

Edges can be added and deleted using the addEdge() and removeEdge() func-
tions:

> ug0a <- addEdge("a","c", ug0)
> ug0a <- removeEdge("c","d", ug0)

The nodes and edges of a graph can be retrieved with nodes() and edges() func-
tions.

> nodes(ug0)

[1] "a" "b" "c" "d" "e"

> edges(ug0)

$a
[1] "b"

$b
[1] "c" "d" "a"

$c
[1] "d" "b"

$d
[1] "b" "c"

$e
character(0)

Thus edges() gives, for each node, the adjacent nodes. The edgeList() function,
that returns a list of (unordered) pairs, may be used (to compact the output, we prefix
the command with function str()).

> str(edgeList(ug0))

List of 4
$: chr [1:2] "b" "a"
$: chr [1:2] "c" "b"
$: chr [1:2] "d" "b"
$: chr [1:2] "d" "c"

A subset A ⊆ V is complete if all vertex pairs in A are connected by an edge.
A graph G = (V ,E) is complete if the vertex set V is complete. A clique is a maxi-
mal complete subset, that is to say, a complete subset that is not contained in a larger
complete subset. The set of cliques of a graph G is denoted by C(G). Note that in
the literature the term clique is often used to denote a complete subset and may not
necessarily be maximal. The function maxClique() returns the (maximal) cliques
of a graph:

1.2 Graphs 5

> is.complete(ug0)

[1] FALSE

> is.complete(ug0, c("b","c","d"))

[1] TRUE

> maxClique(ug0)

$maxCliques
$maxCliques[[1]]
[1] "b" "c" "d"

$maxCliques[[2]]
[1] "b" "a"

$maxCliques[[3]]
[1] "e"

A path (of length n) between α and β in an undirected graph is a set of vertices α =
α0, α1, . . . , αn = β where αi−1 −αi for i = 1, . . . , n. If a path α = α0, α1, . . . , αn =
β has α = β then the path is said to be a cycle of length n.

A subset D ⊂ V in an undirected graph is said to separate A ⊂ V from B ⊂ V if
every path between a vertex in A and a vertex in B contains a vertex from D.

> separates("a", "d", c("b", "c"), ug0)

[1] TRUE

This shows that {b, c} separates {a} and {d}.
The graph G0 = (V0,E0) is said to be a subgraph of G = (V ,E) if V0 ⊆ V and

E0 ⊆ E. For A ⊆ V , let EA denote the set of edges in E between vertices in A.
Then GA = (A,EA) is the subgraph induced by A. For example

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

The boundary bd(α) = adj(α) is the set of vertices adjacent to α and for undirected
graphs the boundary is equal to the set of neighbours ne(α). The closure cl(α) is
bd(α) ∪ {α}.

6 1 Graphs and Conditional Independence

> adj(ug0, "c")

$c
[1] "d" "b"
> closure("c", ug0)

c1 c2
"c" "d" "b"

1.2.2 Directed Acyclic Graphs

A directed graph as a mathematical object is a pair G = (V ,E) where V is a set
of vertices and E is a set of directed edges, normally drawn as arrows. A directed
graph is acyclic if it has no directed cycles, that is, cycles with the arrows pointing
in the same direction all the way around. A DAG is a directed graph that is acyclic.

A DAG may be created using the dag() function. The graph can be specified by
a list of formulas or by a list of vectors. The following statements are equivalent:

> dag0 <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)
> dag0 <- dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)
> dag0 <- dag(~a + b|a + c|a*b + d|c*e + e|a + g|f)
> dag0 <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),
+ c("e","a"),c("g","f"))
> dag0

A graphNEL graph with directed edges
Number of Nodes = 7
Number of Edges = 7

Note that ~a means that "a" has no parents while ~d*b*c means that "d" has par-
ents "b" and "c". Instead of “*”, a “:” can be used in the specification. If the
specified graph contains cycles then dag() returns NULL.

Per default the dag() function returns a graphNEL object, but the options re-
sult="igraph" or result="matrix" lead it to return an igraph or adjacency
matrix instead.

DAGs are displayed with plot():

> plot(dag0)

The nodes and edges of a DAG can be retrieved with the nodes() and edges()

functions.

1.2 Graphs 7

> nodes(dag0)

[1] "a" "b" "c" "d" "e" "g" "f"

> str(edges(dag0))

List of 7
$ a: chr [1:3] "b" "c" "e"
$ b: chr "c"
$ c: chr "d"
$ d: chr(0)
$ e: chr "d"
$ g: chr(0)
$ f: chr "g"

Thus edges() gives the children of each node. Alternatively a list of (ordered) pairs
can be optained with edgeList()

> str(edgeList(dag0))

List of 7
$: chr [1:2] "a" "b"
$: chr [1:2] "a" "c"
$: chr [1:2] "b" "c"
$: chr [1:2] "c" "d"
$: chr [1:2] "e" "d"
$: chr [1:2] "a" "e"
$: chr [1:2] "f" "g"

The vpar() function returns a list, with an element for each node together with its
parents:

> vpardag0 <- vpar(dag0)
> vpardag0$c

[1] "c" "a" "b"

A path (of length n) from α to β is a sequence of vertices α = α0, . . . , αn = β such
that αi−1 → αi is an edge in the graph. If there is a path from α to β we write
α �→ β . The parents pa(β) of a node β are those nodes α for which α → β . The
children ch(α) of a node α are those nodes β for which α → β . The ancestors an(β)

of a node β are the nodes α such that α �→ β . The ancestral set an(A) of a set A

is the union of A with its ancestors. The ancestral graph of a set A is the subgraph
induced by the ancestral set of A.

> parents("d",dag0)

[1] "c" "e"
> children("c",dag0)

[1] "d"
> ancestralSet(c("b","e"),dag0)

[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)

A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2

8 1 Graphs and Conditional Independence

> plot(ancestralGraph(c("b","e"),dag0))

An important operation on DAGs is to (i) add edges between the parents of each
node, and then (ii) replace all directed edges with undirected ones, thus returning an
undirected graph. This operation is used in connection with independence interpre-
tations of the DAG, see Sect. 1.3, and is known as moralization. This is implemented
by the moralize() function:

> dag0m <- moralize(dag0)

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8

> plot(dag0m)

[1] "A graph with 7 nodes."

1.2.3 Mixed Graphs

Although the primary focus of this book is on undirected graphs and DAGs, it is
also useful to consider mixed graphs. These are graphs with at least two types of
edges, for example directed and undirected, or directed and bidirected.

A sequence of vertices v1, v2, . . . , vk, vk+1 is called a path if for each i =
1, . . . , k, either vi − vi+1, vi ↔ vi+1 or vi → vi+1. If vi − vi+1 for each i the path
is called undirected, if vi → vi+1 for each i it is called directed, and if vi → vi+1
for at least one i it is called semi-directed. If vi = vk+1 it is called a cycle.

Mixed graphs are represented in both the graph and igraph packages as directed
graphs with multiple edges. In this sense they are not simple. A convenient way
of defining them (in lieu of model formulae) is to use adjacency matrices. We can
construct such a matrix as follows:

1.2 Graphs 9

> adjm <- matrix(c(0,1,1,0,1,0,0,1,1,0,0,0,1,1,1,0), nrow=4)
> rownames(adjm) <- colnames(adjm) <- letters[1:4]
> adjm

a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 1
d 0 1 0 0

We can use this matrix to create a graphNEL object

> gG <- as(adjm, "graphNEL")
> plot(gG, "neato")

Note that Rgraphviz interprets symmetric entries as double-headed arrows and thus
does not distinguish between bidirected and undirected edges. The same is true if
we display the graph as a igraph object:

> gG1 <- as(adjm, "igraph")
> myiplot(gG1, layout=layout.spring)

However we can persuade igraph to display undirected instead of bidirected edges,
as follows:

> E(gG1)$arrow.mode <- c(2,0)[1+is.mutual(gG1)]
> myiplot(gG1, layout=layout.spring)

10 1 Graphs and Conditional Independence

To do this using Rgraphviz is rather more complex: we give an example later in
Sect. 1.4.2.

A chain graph is a mixed graph with no bidirected edges and no semi-directed
cycles. Such graphs form a natural generalisation of undirected graphs and DAGs,
as we shall see later. The following example is from Frydenberg (1990a):

> d1 <- matrix(0,11,11)
> d1[1,2] <- d1[2,1] <- d1[1,3] <- d1[3,1] <- d1[2,4] <- d1[4,2] <-
+ d1[5,6] <- d1[6,5] <- 1
> d1[9,10] <- d1[10,9] <- d1[7,8] <- d1[8,7] <- d1[3,5] <-
+ d1[5,10] <- d1[4,6] <- d1[4,7] <- 1
> d1[6,11] <- d1[7,11] <- 1
> rownames(d1) <- colnames(d1) <- letters[1:11]
> cG1 <- as(d1, "igraph")
> E(cG1)$arrow.mode <- c(2,0)[1+is.mutual(cG1)]
> myiplot(cG1, layout=layout.spring)

The components of a chain graph G are the connected components of the graph
formed after removing all directed edges from G. All edges within a component
are undirected, and all edges between components are directed. Also, all arrows
between any two components have the same direction. The graph constructed by
identifying its nodes with the components of G, and joining two nodes with an arrow
whenever there is an arrow between the corresponding components in G, is a DAG,
the so-called component DAG of G, written GC .

The is.chaingraph() function in the lcd package determines whether a mixed
graph is a chain graph. It takes an adjacency matrix as input. For example, the above
graph is indeed a chain graph:

> library(lcd)
> is.chaingraph(as(cG1, "matrix"))

1.3 Conditional Independence and Graphs 11

$result
[1] TRUE

$vert.order
[1] 1 2 3 4 5 6 7 8 9 10 11

$chain.size
[1] 4 2 2 2 1

Here vert.order gives an ordering of the vertices, from which the connected com-
ponents may be identified using chain.size.

The anterior set of a vertex set S ⊆ V is defined in terms of the component DAG.
Write the set of components of G containing S as Sc. Then the anterior set of S in
G is defined as the union of the components in the ancestral set of Sc in GC . The
anterior graph of S ⊆ V is the subgraph of G induced by the anterior set of S.

The moralization operation is also important for chain graphs. Similar to DAGs,
unmarried parents of the same chain components are joined and directions are then
removed. The operation is implemented in the moralize() function in the lcd
package, which uses the adjacency matrix representation. For example,

> cGm <- as(moralize(as(cG1, "matrix")), "graphNEL")
> plot(cGm)

1.3 Conditional Independence and Graphs

The concept of statistical independence is presumably familiar to all readers but that
of conditional independence may be less so. Suppose that we have a collection of
random variables (Xv)v∈V with a joint density. Let A, B and C be subsets of V

and let XA = (Xv)v∈A and similarly for XB and XC . Then the statement that XA

and XB are conditionally independent given XC , written A ⊥⊥ B |C, means that for
each possible value of xC of XC , XA and XB are independent in the conditional
distribution given XC = xc. So if we write f () for a generic density or probability
mass function, then one characterization of A ⊥⊥ B |C is that

f (xA, xB |xC) = f (xA |xC)f (xB |xC).

An equivalent characterization (Dawid 1998) is that the joint density of (XA,XB,

XC) factorizes as

f (xA, xB, xC) = g(xA, xC)h(xB, xC), (1.1)

12 1 Graphs and Conditional Independence

that is, as a product of two functions g() and h(), where g() does not depend on xB

and h() does not depend on xA. This is known as the factorization criterion.
Parametric models for (Xv)v∈V may be thought of as specifying a set of joint

densities (one for each admissible set of parameters). These may admit factorisa-
tions of the form just described, giving rise to conditional independence relations be-
tween the variables. Some models give rise to patterns of conditional independences
that can be represented as an undirected graph. More specifically, let G = (V ,E) be
an undirected graph with cliques C1, . . . ,Ck . Consider a joint density f () of the
variables in V . If this admits a factorization of the form

f (xV) =
k∏

i=1

gi(xCi
)

for some functions g1() . . . gk() where gj () depends on x only through xCj
then we

say that f () factorizes according to G.
If all the densities under a model factorize according to G, then G encodes the

conditional independence structure of the model, through the following result (the
global Markov property): whenever sets A and B are separated by a set C in the
graph, then A ⊥⊥ B |C under the model. Thus for example

> plot(ug0)

> separates("a", "d", "b", ug0)

[1] TRUE

shows that under a model with this dependence graph, a ⊥⊥ d |b.
If we want to find out whether two variable sets are marginally independent, we

ask whether they are separated by the empty set, which we specify using a character
vector of length zero:

> separates("a", "d", character(0), ug0)

[1] FALSE

Model families that admit suitable factorizations are described in later chapters in
this book. These include: log-linear models for multivariate discrete data, graphical
Gaussian models for multivariate Gaussian data, and mixed interaction models for
mixed discrete and continuous data.

1.3 Conditional Independence and Graphs 13

Other models give rise to patterns of conditional independences that can be rep-
resented by DAGs. These are models for which the variable set V may be ordered
in such way that the joint density factorizes as follows

f (xV) =
∏

v∈V

f (xv |xpa(v)) (1.2)

for some variable sets {pa(v)}v∈V such that the variables in pa(v) precede v in the
ordering. Again the vertices of the graph represent the random variables, and we can
identify the sets pa(v) with the parents of v in the DAG.

With DAGs, conditional independence is represented by a property called d-
separation. That is, whenever sets A and B are d-separated by a set C in the graph,
then A ⊥⊥ B |C under the model. The notion of d-separation can be defined in var-
ious ways, but one characterisation is as follows: A and B are d-separated by a set
C if and only if they are separated in the graph formed by moralizing the anterior
graph of A ∪ B ∪ C.

So we can easily define a function to test this:

> d.separates <- function(a,b,c,dag) {
+ separates(a,b,c,
+ gRbase::moralize(ancestralGraph(union(union(a,b),c),

dag)))}
> d.separates("c", "e", "a", dag0)

[1] TRUE

So under dag0 it holds that c ⊥⊥ e |a.
Alternatively, we can use the function dSep() in the ggm package:

> library(ggm)
> dSep(as(dag0, "matrix"), "c", "e", "a")

[1] TRUE

Still other models correspond to patterns of conditional independences that can be
represented by a chain graph G. There are several ways to relate Markov properties
to chain graphs. Here we describe the so-called LWF Markov properties, associated
with Lauritzen, Wermuth and Frydenberg.

For these there are two levels to the factorization requirements. Firstly, the joint
density needs to factorize in a way similar to a DAG, i.e.

f (xV) =
∏

C∈C
f (xC |xpa(C))

where C is the set of components of G. In addition, each conditional density
f (xC |xpa(C)) must factorize according to an undirected graph constructed in the
following way. First form the subgraph of G induced by C ∪ pa(C), drop directions,
and then complete pa(C) (that is, add edges between all vertices in pa(C)).

For densities which factorize as above, conditional independence is related to
a property called c-separation: that is, A ⊥⊥ B |C whenever sets A and B are c-
separated by C in the graph. The notion of c-separation in chain graphs is similar to
that of d-separation in DAGs. A and B are c-separated by a set C if and only if they

14 1 Graphs and Conditional Independence

are separated in the graph formed by moralizing the anterior graph of A ∪ B ∪ C.
The is.separated() function in the lcd package can be used to query a given
chain graph for c-separation. For example,

> library(lcd)
> is.separated("e", "g", c("k"), as(cG1,"matrix"))

[1] FALSE

implies that e �⊥⊥ g |k for the chain graph cG1 we considered previously.

1.4 More About Graphs

1.4.1 Special Properties

A node in an undirected graph is simplicial if its boundary is complete.

> is.simplicial("b", ug0)

[1] FALSE

> simplicialNodes(ug0)

[1] "a" "c" "d" "e"

To obtain the connected components of a graph:

> connComp(ug0)

[[1]]
[1] "a" "b" "c" "d"

[[2]]
[1] "e"

If a cycle α = α0, α1, . . . , αn = α has adjacent elements αi ∼ αj with j �∈ {i −1, i +
1} then it is said to have a chord. If it has no chords it is said to be chordless. A graph
with no chordless cycles of length ≥ 4 is called triangulated or chordal:

> is.triangulated(ug0)

[1] TRUE

Triangulated graphs are of special interest for graphical models as they admit closed-
form maximum likelihood estimates and allow considerable computational simpli-
fication by decomposition.

A triple (A,B,D) of non-empty disjoint subsets of V is said to decompose G into
GA∪D and GB∪D if V = A ∪ B ∪ D where D is complete and separates A and B .

> is.decomposition("a", "d", c("b","c"), ug0)

[1] FALSE

Note that although {d} is complete and separates {a} and {b, c} in ug0, the condition
fails because V �= {a, b, c, d}.

1.4 More About Graphs 15

A graph is decomposable if it is complete or if it can be decomposed into decom-
posable subgraphs. A graph is decomposable if and only if it is triangulated.

An ordering of the nodes in a graph is called a perfect ordering if bd(i) ∩
{1, . . . , i − 1} is complete for all i. Such an ordering exists if and only if the graph
is triangulated. If the graph is triangulated, then a perfect ordering can be obtained
with the maximum cardinality search (or mcs) algorithm. The mcs() function will
produce such an ordering if the graph is triangulated; otherwise it will return NULL.

> mcs(ug0)

[1] "a" "b" "c" "d" "e"

Sometimes it is convenient to have some control over the ordering given to the
variables:

> mcs(ug0, root=c("d","c","a"))

[1] "d" "c" "b" "a" "e"

Here mcs() tries to follow the ordering given and succeeds for the first two variables
but then fails afterwards.

The cliques of a triangulated undirected graph can be ordered as (C1, . . . ,CQ)

to have the running intersection property (also called a RIP ordering). The running
intersection property is that Cj ∩ (C1 ∪ · · · ∪ Cj−1) ⊂ Ci for some i < j for j =
2, . . . ,Q. We define the sets Sj = Cj ∩ (C1 ∪ · · · ∪ Cj−1) and Rj = Cj \ Sj with
S1 = ∅. The sets Sj are called separators as they separate Rj from (C1 ∪ · · · ∪
Cj−1) \ Sj . Any clique Ci where Sj ⊂ Ci with i < j is a possible parent of Ci . The
rip() function returns such an ordering if the graph is triangulated (otherwise, it
returns list()):

> rip(ug0)

cliques
1 : b a
2 : d b c
3 : e

separators
1 :
2 : b
3 :

parents
1 : 0
2 : 1
3 : 0

If a graph is not triangulated it can be made so by adding extra edges, so called
fill-ins, using triangulate():

> ug2 <- ug(~a:b:c+c:d+d:e+a:e)
> is.triangulated(ug2)

[1] FALSE

> plot(ug2)

16 1 Graphs and Conditional Independence

> ug3 <- triangulate(ug2)
> is.triangulated(ug3)

[1] TRUE

> plot(ug3)

Recall that an undirected graph G is triangulated (or chordal) if it has no cycles of
length >= 4 without a chord. A graph is triangulated if and only if there exists a per-
fect ordering of its vertices. Any undirected graph G can be triangulated by adding
edges to the graph, so called fill-ins, resulting in a graph G∗, say. Some of the fill-ins
on G∗ may be superfluous in the sense that they could be removed and still give a
triangulated graph. A triangulation with no superfluous fill-ins is called a minimal
triangulation. In general this is not unique. This should be distinguished from a min-
imum triangulation which is a graph with the smallest number of fill-ins. Finding a
minimum triangulation is known to be NP-hard. The function minimalTriang()

finds a minimal triangulation. Consider the following:

> G1 <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e)
> mt1.G1 <- minimalTriang(G1)
> G2 <- ug(~a:b:e:f+b:c:d:e)
> mt2.G1<-minimalTriang(G1, TuG=G2)
> par(mfrow=c(2,2))
> plot(G1, sub="G1")
> plot(mt1.G1, sub="mt1.G1")
> plot(G2, sub="G2")
> plot(mt2.G1, sub="mt2.G1")

1.4 More About Graphs 17

The graph G1 is not triangulated; mt1.G1 is a minimal triangulation of G1. Fur-
thermore, G2 is a triangulation of G1, but it is not a minimal triangulation. Finally,
mt2.G1 is a minimal triangulation of G1 formed on the basis of G2.

The maximal prime subgraph decomposition of an undirected graph is the small-
est subgraphs into which the graph can be decomposed. Consider the following code
fragment:

> G1 <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e)
> G1.rip <- mpd(G1)
> G1.rip

cliques
1 : f a b e
2 : d b e c

separators
1 :
2 : b e

parents
1 : 0
2 : 1

> par(mfrow=c(1,3))
> plot(G1, main="G1")
> plot(subGraph(G1.rip$cliques[[1]], G1), main="subgraph 1")
> plot(subGraph(G1.rip$cliques[[2]], G1), main="subgraph 2")

cliques
1 : f a b e
2 : d b e c

separators
1 :
2 : b e

parents
1 : 0
2 : 1

18 1 Graphs and Conditional Independence

Here G1 is not decomposable but the graph can be decomposed. The function mpd()
returns a junction RIP-order representation of the maximal prime subgraph decom-
position. The subgraphs of G1 defined by the cliques listed in G1.rip are the small-
est subgraphs into which G1 can be decomposed.

The Markov blanket of a vertex v in a DAG G may be defined as the minimal
set that d-separates v from the remaining variables. It is easily derived as the set of
neighbours to v in the moral graph of G. For example, the Markov blanket of vertex
e in dag0 is

> adj(moralize(dag0), "e")

$e
[1] "a" "c" "d"

It is easily seen that the Markov blanket of v is the union of v’s parents, v’s children,
and the parents of v’s children.

1.4.2 Graph Layout in Rgraphviz

Although the way graphs are displayed on the page or screen has no bearing on their
mathematical or statistical properties, in practice it is helpful to display them in a
way that clearly reveals their structure. The Rgraphviz package implements several
methods for automatically setting graph layouts. We sketch these very briefly here:
for more detailed information see the online help files, for example, type ?dot.

• The dot method, which is default, is intended for drawing DAGs or hierarchies
such as organograms or phylogenies.

• The twopi method is suitable for connected graphs: it produces a circular layout
with one node placed at the centre and others placed on a series of concentric
circles about the centre.

• The circo method also produces a circular layout.
• The neato method is suitable for undirected graphs: an iterative algorithm deter-

mines the coordinates of the nodes so that the geometric distance between node-
pairs approximates their path distance in the graph.

• Similarly, the fdp method is based on an iterative algorithm due to Fruchterman
and Reingold (1991), in which adjacent nodes are attracted and non-adjacent
nodes are repulsed.

1.4 More About Graphs 19

The graphs displayed using Rgraphviz can also be embellished in various ways:
the following example displays the text in red and fills the nodes with light grey.

> plot(dag0, attrs=list(node = list(fillcolor="lightgrey",
fontcolor="red")))

Graph layouts can be reused: this can be useful, for example to would-be authors of
books on graphical modelling who would like to compare alternative models for the
same dataset. We illustrate how to plot a graph and the graph obtained by removing
an edge using the same layout. To do this, we use the agopen() function to generate
an Ragraph object, which is a representation of the layout of a graph (rather than of
the graph as a mathematical object). From this we remove the required edge.

> edgeNames(ug3)

[1] "a~b" "a~c" "a~e" "b~c" "c~d" "c~e" "d~e"
> ng3 <- agopen(ug3, name="ug3", layoutType="neato")
> ng4 <- ng3
> AgEdge(ng4) <- AgEdge(ng4)[-3]
> plot(ng3)

> plot(ng4)

20 1 Graphs and Conditional Independence

The following example illustrates how individual edge and node attributes may be
set. We use the chain graph cG1 described above.

> cG1a <- as(cG1, "graphNEL")
> nodes(cG1a) <- c("alpha","theta","tau","beta","pi","upsilon","gamma",
+ "iota","phi","delta","kappa")
> edges <- buildEdgeList(cG1a)
> for (i in 1:length(edges)) {
+ if (edges[[i]]@attrs$dir=="both") edges[[i]]@attrs$dir <- "none"
+ edges[[i]]@attrs$color <- "blue"
+ }
> nodes <- buildNodeList(cG1a)
> for (i in 1:length(nodes)) {
+ nodes[[i]]@attrs$fontcolor <- "red"
+ nodes[[i]]@attrs$shape <- "ellipse"
+ nodes[[i]]@attrs$fillcolor <- "lightgrey"
+ if (i <= 4) {
+ nodes[[i]]@attrs$fillcolor <- "lightblue"
+ nodes[[i]]@attrs$shape <- "box"
+ }
+ }
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a",

layoutType="neato")
> plot(cG1al)

1.4.3 The igraph Package

The igraph package is a supplement or alternative to the graph package with
many neat features. As we have seen, it is easy to convert between graphNEL ob-

1.4 More About Graphs 21

jects, igraph objects and adjacency matrices using the as() function. Alternatively
igraph objects can be created using the graph.formula() function:

> ug4 <- graph.formula(a -- b:c, c--b:d, e -- a:d)
> ug4

Vertices: 5
Edges: 6
Directed: FALSE
Edges:

[0] 'a' -- 'b'
[1] 'a' -- 'c'
[2] 'b' -- 'c'
[3] 'c' -- 'd'
[4] 'a' -- 'e'
[5] 'd' -- 'e'
> plot(ug4, layout=layout.graphopt)

The same graph may be created from scratch as follows:

> ug4.2 <- graph.empty(n=5, directed=FALSE)
> V(ug4.2)$name <- V(ug4.2)$label <- letters[1:5]
> ug4.2 <- add.edges(ug4.2, c(0,1, 0,2, 0,4, 1,2, 2,3, 3,4))
> ug4.2

Vertices: 5
Edges: 6
Directed: FALSE
Edges:

[0] 'a' -- 'b'
[1] 'a' -- 'c'
[2] 'a' -- 'e'
[3] 'b' -- 'c'
[4] 'c' -- 'd'
[5] 'd' -- 'e'

The graph is displayed using the plot() function, with a layout determined using
the graphopt method. A variety of layout algorithms are available: type ?layout

for an overview. Note that per default the nodes are labelled 0,1, . . . and so forth.
We show how to modify this shortly.

As mentioned previously we have created a custom function myiplot() which
creates somewhat more readable plots:

> myiplot(ug4, layout=layout.graphopt)

22 1 Graphs and Conditional Independence

As with graphNEL objects, in igraph graphs are defined in terms of node and edge
lists. In addition, they have attributes: these belong to the vertices, the edges or
to the graph itself. The following example sets a graph attribute, layout, and two
vertex attributes, label and color. These are used when the graph is plotted. The
name attribute contains the node labels.

> ug4$layout <- layout.graphopt(ug4)
> V(ug4)$label <- V(ug4)$name
> V(ug4)$color <- "red"
> V(ug4)[1]$color <- "green"
> V(ug4)$size <- 40
> V(ug4)$label.cex <- 3
> plot(ug4)

Note the use of array indices to access the attributes of the individual vertices. Cur-
rently, the indices are zero-based, so that V(ug4)[1] refers to the second node (B).
(This may change.) Edges attributes are accessed similarly, using a container struc-
ture E(ug4): also here the indices are zero-based (currently).

It is easy to extend igraph objects by defining new attributes. In the follow-
ing example we define a new vertex attribute, discrete, and use this to color the
vertices.

> ug5 <- set.vertex.attribute(ug4, "discrete", value=c(T,T,F,F,T))
> V(ug5)[discrete]$color <- "green"
> V(ug5)[!discrete]$color <- "red"
> plot(ug5)

A useful interactive drawing facility is provided with the tkplot() function. This
causes a pop-up window to appear in which the graph can be manually edited. One
use of this is to edit the layout of the graph: the new coordinates can be extracted
and re-used by the plot() function. For example

> tkplot(ug4)
2

1.4 More About Graphs 23

The tkplot() function returns a window id (here 2). While the popup window
is open, the current layout can be obtained by passing the window id to the tk-

plot.getcoords() function, as for example

> xy <- tkplot.getcoords(2)
> plot(g, layout=xy)

It is straightforward to reuse layout information with igraph objects. The layout
functions when applied to graphs return a matrix of (x, y) coordinates:

> layout.spring(ug4)

x y
1 7.568e-01 0.2459
2 -7.568e-01 0.2459
3 4.677e-01 -0.6438
4 -4.677e-01 -0.6438
5 4.337e-19 0.7958

Most layout algorithms use a random generator to choose an initial configuration.
Hence if we set the layout attribute to be a layout function, repeated calls to plot
will use different layouts. For example, after

> ug4$layout <- layout.spring

repeated invocations of plot(ug4) will use different layouts. In contrast, after

> ug4$layout <- layout.spring(ug4)

the layout will be fixed. The following code fragment illustrates how two graphs
with the same vertex set may be plotted using the same layout.

> ug5 <- ug(~A*B*C + B*C*D + D*E, result='igraph')
> ug6 <- ug(~A*B+B*C+C*D+D*E, result='igraph')
> ug6$layout <- ug5$layout <- layout.spring(ug5)

24 1 Graphs and Conditional Independence

> V(ug5)$size <- V(ug6)$size <- 50
> V(ug5)$label.cex <- V(ug6)$label.cex <- 3
> par(mfrow=c(1,2))
> plot(ug5); plot(ug6)

An overview of attributes used in plotting can be obtained by typing
?igraph.plotting. A final example illustrates how more complex graphs can
be displayed:

> em1 <- c(0,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0)
> dim(em1) <- c(4,4)
> iG <- graph.adjacency(em1)
> V(iG)$shape <- c("circle","square","circle","square")
> V(iG)$color <- c("red","green")
> V(iG)$label <- c("A", "B", "C", "D")
> E(iG)$arrow.mode <- c(2,0)[1+is.mutual(iG)]
> E(iG)$color <- c("blue", "black")
> E(iG)$curved <- c(T,F,F,F,F,F)
> iG$layout <- layout.graphopt(iG)
> myiplot(iG)

1.4.4 3-D Graphs

The gplot3d() function in the sna package displays a graph in three dimensions.
Using a mouse, the graph can be rotated and zoomed. Opinions differ as to how
useful this is. The following code fragment can be used to try the facility. First
we derive the adjacency matrix of a built-in graph in the igraph package, then we
display it as a (pseudo)-three-dimensional graph.

> library(sna)
> aG <- as(graph.famous("Meredith"),"matrix")
> gplot3d(aG)

1.4 More About Graphs 25

1.4.5 Alternative Graph Representations

As mentioned above, graphNEL objects are so-called because they use a node and
edge list representation. So these can also be created directly, by specifying a vector
of nodes and a list containing the edges corresponding to each node. For example,

> V <- c("a","b","c","d")
> edL <- vector("list", length=4)
> names(edL) <- V
> for (i in 1:4) {
+ edL[[i]] <- list(edges=5-i)
+ }
> gR <- new("graphNEL", nodes=V, edgeL=edL)
> plot(gR)

1.4.6 Operations on Graphs in Different Representations

The functions for operations on graphs illustrated in the previous sections are all
available for graphs in the graphNEL representation (some operations are in fact
available for graphs in the other representations as well). Notice that the functions
differ in whether they take the graph as the first or as the last argument (that is
mainly related to different styles in different packages).

The gRbase package has a function querygraph() which provides a com-
mon interface to the graph operations for undirected graphs and DAGs illustrated
above. Moreover, querygraph() works on graphs represented as graphNEL ob-
jects, igraph objects and adjacency matrices. The general syntax is

> args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)
NULL

For example, we obtain:

> ug_NEL <- ug(~a:b+b:c:d+e)
> ug_igraph <- as(ug_NEL, "igraph")
> separates("a","d",c("b","c"), ug_NEL)

[1] TRUE

> querygraph(ug_igraph, 'separates', "a","d",c("b","c"))

[1] TRUE

Chapter 2
Log-Linear Models

2.1 Introduction

This chapter gives an account of graphical models for multivariate discrete data.
Such data are usually summarized as contingency tables, and Sect. 2.2 describes
some general utilities useful when working with such tables. Section 2.3 introduces
the theory of log-linear models, illustrating this using dModel objects from the
gRim package. Section 2.5.1 shows how log-linear models can be fit using the glm
function, and Sect. 2.5.2 describes some aspects of working with dModel objects.
Some more advanced topics are dealt with in Sect. 2.5.

2.2 Preliminaries

2.2.1 Four Datasets

To introduce contingency table data we consider four examples. All datasets used
here are in gRbase. The first is shown in Table 2.1. These data originate from
Schoener (1968) and are discussed in numerous places, e.g. Edwards (2000) and
Whittaker (1990). In a study of lizard behaviour, characteristics of 409 lizards were
recorded, namely species (S), perch diameter (D) and perch height (H). The focus of
interest is in how the propensities of the lizards to choose perch height and diameter
are related, and whether and how these depend on species.

The second dataset we consider is a 26 contingency table concerning risk factors
for coronary heart disease. The data originated in a prospective study of coronary
heart disease carried out in Czechoslovakia (Reiniš et al. 1981). For a sample of
1841 car-workers, the following information was recorded: whether they smoked,
whether their work was strenuous mentally, whether their work was strenuous phys-
ically, whether their systolic blood pressure was less than 140 mm), whether the
ratio of beta to alpha lipoproteins was less than 3, and whether there was a family
history of coronary heart disease.

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_2, © Springer Science+Business Media, LLC 2012

27

http://dx.doi.org/10.1007/978-1-4614-2299-0_2

28 2 Log-Linear Models

Table 2.1 Perching
behaviour of two species of
lizards

Species Perch diameter
(inches)

Perch Height (feet)

> 4.75 ≤ 4.75

Anoli ≤ 4 32 86

> 4 11 35

Distichus ≤ 4 61 73

> 4 41 70

> data(reinis)
> str(reinis)

table [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 44 40 112 67 129 145 12 23 35 12 ...
- attr(*, "dimnames")=List of 6
..$ smoke : chr [1:2] "y" "n"
..$ mental : chr [1:2] "y" "n"
..$ phys : chr [1:2] "y" "n"
..$ systol : chr [1:2] "y" "n"
..$ protein: chr [1:2] "y" "n"
..$ family : chr [1:2] "y" "n"

The third dataset is a 26 contingency table taken from genetics, and analyzed in
Edwards (2000). Two isolates of the barley powdery mildew fungus were crossed,
and for 70 progeny 6 binary characteristics (genetic markers) were recorded.

> data(mildew)
> str(mildew)

table [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 0 0 0 0 3 0 1 0 0 1 ...
- attr(*, "dimnames")=List of 6
..$ la10: chr [1:2] "1" "2"
..$ locc: chr [1:2] "1" "2"
..$ mp58: chr [1:2] "1" "2"
..$ c365: chr [1:2] "1" "2"
..$ p53a: chr [1:2] "1" "2"
..$ a367: chr [1:2] "1" "2"

The fourth dataset is a three-way table containing the results of a study comparing
four different surgical operations on patients with duodenal ulcer, carried out in four
centres, and described in Grizzle et al. (1969). The four operations were: vagotomy
and drainage, vagotomy and antrectomy (removal of 25% of gastric tissue), vago-
tomy and hemigastrectomy (removal of 50% of gastric tissue), and gastric restriction
(removal of 75% of gastric tissue). The response variable is the severity of gastric
dumping, an undesirable syndrome associated with gastric surgery.

> data(dumping)
> str(dumping)

table [1:3, 1:4, 1:4] 23 7 2 23 10 5 20 13 5 24 ...
- attr(*, "dimnames")=List of 3
..$ Symptom : chr [1:3] "none" "slight" "moderate"
..$ Operation: chr [1:4] "Vd" "Va" "Vh" "Gr"
..$ Centre : chr [1:4] "1" "2" "3" "4"

The first and second variables are ordinal.

2.2 Preliminaries 29

2.2.2 Data Formats

Multivariate discrete data are usually stored in one of three forms, here illustrated
with the lizard data.

As a Raw Case-List For example, the lizard data could be represented as 409 ob-
servations of three discrete variables: species, perch diameter and perch height. This
is typically represented in R as a dataframe, with the discrete variables represented
as factors. For example,

> data(lizardRAW)
> head(lizardRAW)

diam height species
1 >4 >4.75 dist
2 >4 >4.75 dist
3 <=4 <=4.75 anoli
4 >4 <=4.75 anoli
5 >4 <=4.75 dist
6 <=4 <=4.75 anoli

As an Aggregated Case-List Sometimes discrete data are represented in aggre-
gated case-list form (again typically represented as a data.frame in R), where one
variable (usually called Freq) stores the counts for each configuration of variables:

> data(lizardAGG)
> lizardAGG

diam height species Freq
1 <=4 >4.75 anoli 32
2 >4 >4.75 anoli 11
3 <=4 <=4.75 anoli 86
4 >4 <=4.75 anoli 35
5 <=4 >4.75 dist 61
6 >4 >4.75 dist 41
7 <=4 <=4.75 dist 73
8 >4 <=4.75 dist 70

As a Contingency Table Another aggregated representation of data is as a con-
tingency table (which in R is represented as a table or as an array):

> data(lizard)
> lizard

, , species = anoli

height
diam >4.75 <=4.75
<=4 32 86
>4 11 35

, , species = dist

height

30 2 Log-Linear Models

diam >4.75 <=4.75
<=4 61 73
>4 41 70

Note that the contingency table form is a compact representation of data when these
are dense, in the sense that the number of observations is larger than the number of
combinations of variable levels. With sparse data, for which the number of combi-
nations of variable levels exceeds the number of observations, the case list format is
more compact.

Note that coercion between the different representations can be obtained as fol-
lows:

> ##
> ## Raw case-list to aggregated case-list:
> as.table(ftable(lizardRAW))
> ##
> ## Raw case-list to table
> xtabs(~., data=lizardRAW)
> ##
> ## Aggregated case-list to table
> xtabs(Freq~., data=lizardAGG)
> ##
> ## Table to aggregated case--list
> as.data.frame(lizard)

Note also that the lizard data can be specified as a contingency table using

> counts <- c(32, 11, 86, 35, 61, 41, 73, 70)
> dimn <- list(diam=c("<=4", ">4"),
+ height=c(">4.75", "<=4.75"),
+ species=c("anoli", "dist"))
> lizard <- as.table(array(counts, dim=c(2,2,2), dimnames=dimn))

2.3 Log-Linear Models

In this section we give a brief account of the theory of log-linear models.

2.3.1 Preliminaries and Notation

Suppose that we have a dataset with N observations of d discrete random vari-
ables. For example, the lizard data had N = 409 and d = 3. We write the collection
of discrete variables as X = (Xv)v∈�, and we call the possible values a discrete
variable may take its levels. Write the number of levels of Xv as |Xv|. For nota-
tional convenience we label the levels 1, . . . , |Xv| though in practice they should be
given more meaningful labels. We can then write a generic observation (or cell) as
i = (i1, . . . , id), and the set of possible cells as I .

2.3 Log-Linear Models 31

We assume that the observations are independent and are interested in modelling
the probabilities p(i) = Pr(X = i) for i ∈ I . The joint probability of the observa-
tions represented as a case list (iν, ν = 1, . . . ,N) is then

p(iν, ν = 1, . . . ,N) =
N∏

ν=1

p(iν) =
∏

i∈I
p(i)n(i) (2.1)

where we have formed an aggregated case list or, equivalently, the contingency table
{n(i)}i∈I , where n(i) is the number of cases iν with iν = i. The joint probability of
the observed contingency table is

p({n(i)}i∈I) = N !∏
i∈I n(i)!

∏

i∈I
p(i)n(i) (2.2)

which differs from (2.1) by a multinomial coefficient which does not affect the like-
lihood as the latter is only determined up to a constant factor.

L(p) ∝
∏

i∈I
p(i)n(i). (2.3)

If we do not restrict the probabilities in any way (except requiring that they are
non-negative and sum to unity), then it is easily shown that the maximum likelihood
estimates are given by p̂(i) = n(i)/N for i ∈ I . The unrestricted model is known as
the saturated model. In most substantive contexts it is of interest to restrict the prob-
abilities further to obtain parsimony and to identify or exploit structural information,
see further in Sect. 2.3.2 below.

We need a little more notation. The expected cell counts are written m(i) =
Np(i) for i ∈ I , and the fitted values as m̂(i) = Np̂(i). We need to work with
marginal tables and to do this must first define marginal cells. Recall that � con-
tains d variables and so a generic cell i is a d-tuple, that is i = (i1, . . . , id). For a
subset A ⊆ �, the corresponding marginal cell is written iA, and contains the in-
dices (iv, v ∈ A). The corresponding marginal counts and probabilities are written
n(iA) and p(iA). So, for example, we have that n(iA) = ∑

j∈I:jA=iA
n(j).

2.3.2 Hierarchical Log-Linear Models

Log-linear models are defined by constraining the logarithms of the probabilities
to follow ANOVA-like factorial expansions. For example, for a three-dimensional
table (such as Table 2.1) we write a generic cell as i = (j, k, l), the variables as
� = {a, b, c}, and the saturated model as

logp(i) = u + ua
j + ub

k + uc
l + uab

jk + uac
jl + ubc

kl + uabc
jkl . (2.4)

Here the u’s are unknown parameters—usually called interaction terms. To esti-
mate these uniquely we would need to constrain them further in some way, but we
do not need to bother about this now.

32 2 Log-Linear Models

The expansion (2.4) is only valid when p(i) > 0. We obtain higher generality by
letting ũ = expu and writing the expansion in product form

p(i) = ũ · ũa
j · ũb

k · ũc
l · ũab

jk · ũac
j l · ũbc

kl · ũabc
jkl (2.5)

as this enables us to deal with cells i with p(i) = 0. In general we have to includes
limits of distributions satisfying (2.4) or (2.5), see further discussion in Sects. 2.3.4
and 2.5.1 below.

In log-linear models, certain interaction terms are set to zero. For example, we
could set all two- and three-factor interaction terms equal to zero, by positing that

logp(i) = u + ua
j + ub

k + uc
l .

This is called the main effect model.
Usually only hierarchical log-linear models are of interest. The term hierarchical

means that if a term is set to zero, all its higher-order relatives are also set to zero.
Alternatively expressed, if a term is allowed in the expansion, so are other terms of
lower order involving the relevant variables. For example, if we set uab

jk = 0 for all

j, k, then we must also set uabc
jkl = 0 for all j, k, l and if uab

jk �= 0 is allowed, we must

allow ua
j �= 0 and ub

k �= 0.
Hierarchical models can be specified in terms of the maximal interaction terms

permitted: these are called the generators of the model. For example, the generators
of the model

logp(i) = u + ua
j + ub

k + uc
l + uab

jk + uac
jl (2.6)

are {a, b} and {a, c}.
The gRim package has a function dmod() to define and fit hierarchical log-linear

models. The models can be specified using a model formula or list of character
vectors representing the generators. For example,

> m1 <- dmod(~species*height+species*diam, data=lizard)
> m2 <- dmod(list(c("species","height"),c("species", "diam")),

data=lizard)

specify the same model. The first form is most useful when specifying small models
by hand.

Under (2.6) specified as m1 or m2 above the probabilities can be factored into

p(i) = (ũ · ũa
j · ũb

k · ũab
jk)(ũ

c
l · ũac

j l),

i.e. into two factors, the first not involving c and the second not involving b. It then
follows from the factorization criterion (1.1) that b ⊥⊥ c | a. More generally this
reasoning implies that under any hierarchical model, two factors are conditionally
independent given the rest if and only if the corresponding two-factor interaction
term is set to zero or, equivalently, if no generator contains both factors.

Thus, this model implies that perching diameter and height are independent given
species. In other words, for each species considered separately, perching diameter
and height are independent.

The dependence graph of a hierarchical model is an undirected graph with edges
present whenever the corresponding two-factor interaction is allowed. We can dis-
play the graph of a dModel object using plot (see Fig. 2.1).

2.3 Log-Linear Models 33

Fig. 2.1 Conditional
independence of diam and
height given species

From the global Markov property (Sect. 1.3) we can find out which conditional
independences hold under a model:

> separates("height","diam","species", as(m1,"graphNEL"))

[1] TRUE

In the present case the property is evident from the graph, but the facility is useful
for higher-dimensional models.

2.3.3 Graphical and Decomposable Log-Linear Models

Suppose that we are given an undirected graph G = (�,E), and consider the hier-
archical log-linear model M for � whose generators are identical to the cliques of
the graph. A model that can be specified in this way is called a graphical model.
Since the two-factor interaction terms that are set to zero in the model correspond
to edges that are not present in G, we see that G is the dependence graph of M. By
the hierarchical principle, any higher-order interaction term containing such a ‘zero’
two-factor term is also set to zero. And any higher-order term that does not contain
a ‘zero’ two-factor term is contained in a generator and so is not set to zero. So one
characterization of a graphical log-linear model is that the two-factor interaction
terms present in the model completely determine which higher-order interactions
are also present. Log-linear models that are not graphical set higher order interac-
tions to zero even though all the corresponding two-factor interactions are not set to
zero. The simplest non-graphical model is the no three-factor interaction model for
a three-way table:

> no3f <- dmod(~species:height + species:diam + height:diam,
data=lizard)

Note that this model has the same dependence graph as the saturated model:

> par(mfcol=c(1,2))
> sat <- dmod(~species:height:diam, data=lizard)
> plot(no3f, main='no 3-factor interaction')
> plot(sat, main='saturated model')

34 2 Log-Linear Models

The attractive feature of graphical models is that they can be interpreted solely in
terms of patterns of conditional independences, which can be displayed in terms of
a graph.

We can also obtain the graphical model corresponding to a given undirected
graph, as in

> g <- ug(~la10:locc:mp58 + locc:mp58:c365 + mp58:c365:p53a +
+ c365:p53a:a367)
> mg <- dmod(g, data=mildew)

In general, to obtain maximum likelihood estimates for log-linear models, itera-
tive methods must be used. But for an important subclass of log-linear models, the
decomposable models, closed-form expressions are available; see Sect. 2.3.4 for
details.

To get information about properties of a model, the summary() method may be
used:

> summary(no3f)

is graphical=FALSE; is decomposable=FALSE
generators (glist):
:"species" "height"
:"species" "diam"
:"height" "diam"

2.3.4 Estimation, Likelihood, and Model Fitting

Decomposable models are characterized as graphical models whose graphs are tri-
angulated. For decomposable models, closed-form expressions exist for the maxi-
mum likelihood estimate. The closed-form expressions are closely related to RIP-
orderings of the cliques; see Sect. 1.4.1 for further details.

2.3 Log-Linear Models 35

Let C = (C1, . . . ,Ck) be such an ordering and S = (S1, . . . , Sk) the correspond-
ing separators. Then the ML estimator is given by

m̂(i) =
∏

j=1...k n(iCj
)

∏
j=1...k n(iSj

)
.

For non-decomposable models we need another way to find the maximum likeli-
hood estimates. Most commonly the IPS (iterative proportional scaling) algorithm
is used. This is a simple and robust algorithm, which works by storing and iteratively
updating a table of fitted values {m(i)}i∈I .

Let C = {a1, . . . , aQ} be the generators of a hierarchical log-linear model. The
corresponding marginal tables n(iak

), k = 1, . . . ,Q, are a set of sufficient statistics.
The maximum likelihood estimate is obtained by equating the sufficient statistics
with their expectations m(iak

).
Initially the m(i) are set to some constant, say m(i) = 1 for all i ∈ I . One itera-

tion consists of updating for each k = 1, . . . ,Q

m(i) ← m(i)
n(iak

)

m(iak
)

∀i ∈ I. (2.7)

Iteration continues until convergence which happens when m(iak
) = n(iak

). The
algorithm is always theoretically convergent with the limiting value being the max-
imum likelihood estimate under the model {m̂(i)}i∈I , although these may not all
have m̂(i) > 0 for all cells i and thus may not admit a logarithmic expansion.

In R, the IPS algorithm is implemented in the loglin() function: the function
dmod() in the gRim package provides an interface to this.

Notice that if the cliques of a decomposable model are given such that they follow
a RIP-ordering then the IPS algorithm will converge after one iteration. If the cliques
do not follow a RIP-ordering then IPS will converge after two iterations.

A disadvantage of IPS is that for high-dimensional problems it can be computa-
tionally expensive to store and update the whole table, as the iteration (2.7) passes
through all possible values of i. It is possible to avoid this using message passing
techniques based on the factorization (2.5), similar to those implemented in gRain
and described in Chap. 3.

Another algorithm is that of iteratively reweighted least squares which is used
for generalized linear models. This alternative is attractive when there is interest
in the log-linear parameters (u-terms) themselves, since as a byproduct it provides
estimates and standard errors of these. However, this approach can be problematic
for other reasons; see Sect. 2.5.1 for an example and further discussion.

2.3.5 Hypothesis Testing

The maximized log-likelihood of a model m is given, up to an arbitrary additive
constant, by

� =
∑

i∈I
n(i) log p̂(i)

where p̂(i) are the maximum likelihood estimates.

36 2 Log-Linear Models

The deviance of a model M is twice the log-likelihood ratio of M versus the
saturated model, i.e.,

D = dev= 2(�̂s − �̂m),

where �̂s and �̂m are the maximized log-likelihoods under the saturated model and
M, respectively. In this case we obtain

D = dev= G2 = 2
∑

i∈I
n(i) log

n(i)

m̂(i)
.

Under M, D is asymptotically χ2(k) where the degrees of freedom k is the dif-
ference in dimension (number of free parameters) between the saturated model and
m. So the deviance provides a goodness-of-fit test for the model. For example the
following model fits rather well:

> m1 <- dmod(~species:height+species:diam, data=lizard)
> m1

Model: A dModel with 3 variables
graphical : TRUE decomposable : TRUE
-2logL : 1604.43 mdim : 5 aic : 1614.43
ideviance : 23.01 idf : 2 bic : 1634.49
deviance : 2.03 df : 2

An alternative to the deviance is Pearson’s goodness-of-fit test, defined by

X2 =
∑

i∈I

{n(i) − m̂(i)}2

m̂(i)

which has the same asymptotic distribution under the null hypothesis. This can be
obtained using

> m1$fitinfo$pearson

[1] 2.017

Notice that it follows from the general definition of deviance given above that to
calculate the deviance, it must be possible to fit the saturated model. This can always
be done for log-linear models, but may not be possible in general, for example for
Gaussian models; see Chap. 4. When working with sparse graphical models it is
therefore often simpler to consider the ideviance (or independence deviance) which
we define as twice the log-likelihood ratio between the model in question and the
model of complete independence, corresponding to a graph with no edges, i.e. in
this case

iD = idev= 2
∑

i∈I
n(i) log

m̂(i)∏
v∈V n(iv)

.

The deviance or ideviance difference between two nested models makes always
sense, provided both can be fitted, and it is in both cases equal to twice the log-
likelihood ratio.

2.3 Log-Linear Models 37

A related issue is that the dimension of a model depends, strictly speaking, on
the sampling scheme employed, whereas the difference in dimension between two
nested models (i.e. the degrees of freedom) does not. As we have described it, data
have been assumed to be collected as a fixed number of independent units, referred
to as the multinomial sampling scheme. If we instead assume that the total num-
ber of observations follows a Poisson distribution with unknown parameter λ > 0,
the counts N(i) become independent with parameters e{N(i)} = m(i). This is the
Poisson sampling scheme.

It can be shown that the maximum likelihood estimate of λ is then equal to λ̂ =
n and the likelihood function for λ = λ̂ is proportional to the likelihood function
in the multinomial sampling scheme, thus not affecting deviances nor maximum
likelihood estimates. This is known as the Poisson trick.

In general, it is simplest to calculate dimensions of models for the Poisson sam-
pling scheme and therefore all dimensions refer to this scheme.

The calculation of the model dimension by dmod() assumes that m̂(i) > 0 for all
cells i, which will be the case when the data are dense, for example when all the cell
counts are positive. When the data are sparse, as is usually the case for moderate
to high-dimensional problems, some cells may have m̂(i) = 0 and so the degrees of
freedom shown need adjustment. Calculation of the appropriate degrees of freedom
when the data are sparse is a hard problem, and we are aware of no software that
does this correctly in all cases. In any case the asymptotic χ2 approximation may
be poor if m̂(i) is small.

A viable approach to analysis is to focus on comparisons of nested decompos-
able models, for which the correct adjustment to the degrees of freedom can be
calculated, and for which it is straightforward to calculate exact conditional tests.
A key result is that if M0 ⊂ M1 are decomposable log-linear models differing by
one edge e = {u,v} only, then e is contained in one clique C of M1 only, and the
likelihood ratio test for M0 versus M1 can be performed in the marginal C-table as
a test of u ⊥⊥ v |C \ {u,v}. The point being partly that the marginal table on C may
not be sparse, but more importantly, that it is straightforward to adjust the degrees of
freedom for a pure test of conditional independence like this, as we describe shortly.

For example, suppose that we specify a decomposable model m3 for the mildew
data, and delete the edge {locc, a367} from m3 using the update() function, ob-
taining a model m4. This function is described below in Sect. 2.5.2. The edge deleted
is contained in one clique only of m3, so m4 is also decomposable.

> m3 <- dmod(~la10*locc*mp58*c365*p53a+locc*mp58*c365*p53a*a367,
data=mildew)

> m4 <- update(m3, list(dedge=~locc*a367))
> oldpar<-par(mfrow=c(1,2))
> plot(m3, "neato")
> plot(m4, "neato")
> par(oldpar)

38 2 Log-Linear Models

A direct comparison of m3 and m4 using the following function gives an incorrect
value for the degrees of freedom

> comparemodels <- function(m1,m2) {
+ lrt <- m2$fitinfo$dev - m1$fitinfo$dev
+ dfdiff <- m1$fitinfo$dimension[1] - m2$fitinfo$dimension[1]
+ c('lrt'=lrt, 'df'=dfdiff)
+ }
> m3

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 366.16 mdim : 47 aic : 460.16
ideviance : 209.32 idf : 41 bic : 565.83
deviance : 0.40 df : 16
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 21

> m4

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 370.73 mdim : 39 aic : 448.73
ideviance : 204.74 idf : 33 bic : 536.42
deviance : 4.98 df : 24
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 22

> comparemodels(m3,m4)

lrt df.mod.dim
4.573 8.000

The correct test may be obtained using the testdelete() function:

> testdelete(m3, edge=c("locc","a367"))

2.3 Log-Linear Models 39

dev: 4.573 df: 3 p.value: 0.20585 AIC(k=2.0): -1.4 edge: locc:a367
host: locc mp58 c365 p53a a367
Notice: Test performed in saturated marginal model

This function identifies that m3 is decomposable and that the edge {locc,a367} is
in one clique C only. The test is then performed as a test of u ⊥⊥ v |C \ {u,v}. Note
that the test statistic matches with that of comparemodels() and the degrees of
freedom have been correctly adjusted.

Tests of general conditional independence hypotheses of the form u ⊥⊥ v |W can
be performed using the ciTest_table() function.

> cit <- ciTest_table(mildew, set=c("locc","a367","mp58","c365",
"p53a"))

Testing locc _|_ a367 | mp58 c365 p53a
Statistic (DEV): 4.573 df: 3 p-value: 0.2059 method: CHISQ

The general syntax of the set argument is of the form (u, v,W) where u and v

are variables and W is a set of variables. The set argument can also be given as a
right-hand sided formula.

Notice that in this case the results are identical to those given by the test-

delete() function, since we have specified the correct conditioning set. If we had
conditioned on more variables

> cit2 <- ciTest_table(mildew, set=c("locc","a367","mp58","c365",
+ "p53a","la10"))

Testing locc _|_ a367 | mp58 c365 p53a la10
Statistic (DEV): 4.553 df: 3 p-value: 0.2076 method: CHISQ

different results would be obtained.
In model terms, the test performed by ciTest_table() corresponds to the test

for removing the edge {u,v} from the saturated model with variables {u,v} ∪ W . If
we (conceptually) form a factor S by crossing the factors in W , we see that the test
can be formulated as a test of the conditional independence u ⊥⊥ v |S in a three way
table. The deviance decomposes into independent contributions from each stratum:

D = 2
∑

ijs

nijs log
nijs

m̂ijs

=
∑

s

2
∑

ij

nijs log
nijs

m̂ijs

=
∑

s

Ds

where the contribution Ds from the sth slice is the deviance for the independence
model of u and v in that slice. For example,

> cit$slice

statistic p.value df mp58 c365 p53a
1 0.0000 1.00000 0 1 1 1
2 0.5053 0.47716 1 2 1 1
3 1.2953 0.25508 1 1 2 1
4 2.7726 0.09589 1 2 2 1
5 0.0000 1.00000 0 1 1 2
6 0.0000 1.00000 0 2 1 2

40 2 Log-Linear Models

7 0.0000 1.00000 0 1 2 2
8 0.0000 1.00000 0 2 2 2

The sth slice is a |u| × |v| table {nijs}i=1...|u|,j=1...|v|. The output shows the degrees
of freedom corresponding to the test for independence in each slice, given by

dfs = (#{i : ni·s > 0} − 1)(#{j : n·js > 0} − 1)

where ni·s and n·js are the marginal totals. So the correct number of degrees of
freedom for the test in the present example is not 8 but 3, as calculated by the
ciTest_table() and testdelete() functions.

An alternative to the asymptotic χ2 test is to determine the reference distribution
using Monte Carlo methods. The marginal totals are sufficient statistics under the
null hypothesis, and in a conditional test the test statistic is evaluated in the condi-
tional distribution given the sufficient statistics. Hence one can generate all possible
tables with those given margins, calculate the desired test statistic for each of these
tables and then see how extreme the observed test statistic is relative to those of the
calculated tables. A Monte Carlo approximation to this procedure is to randomly
generate a large number of tables with the given margins, evaluate the statistic for
each simulated table and then see how extreme the observed test statistic is in this
distribution. This is called a Monte Carlo exact test and it provides a Monte Carlo p-
value. In the present example we get a Monte Carlo p-value which is considerably
larger than the asymptotic one:

> ciTest_table(mildew, set=c("locc","a367","mp58","c365","p53a"),
+ method='MC')

Testing locc _|_ a367 | mp58 c365 p53a
Statistic (DEV): 4.573 df: NA p-value: 0.5550 method: MC

An advantage of the Monte Carlo method is that any test statistic can be used, so
statistics that are sensitive to specific forms of deviation from independence can be
used. In particular, when one or both of u and v are ordinal, more powerful tests of
u ⊥⊥ v |S can be applied. The ciTest_ordinal() function supports this approach
for three rank tests: the Wilcoxon, Kruskal-Wallis and Jonckheere-Terpstra tests.
The Wilcoxon test is applicable when u is binary and v ordinal; the Kruskal-Wallis
test when u is nominal and v is ordinal; and the Jonckheere-Terpstra test when both
u and v are ordinal. We illustrate use of the function using the dumping syndrome
data described above in Sect. 2.2.1. Recall that the three variables are Symptom,
Operation and Centre. The first two are ordinal and the third is nominal.

> ciTest_ordinal(dumping,c(2,1,3),"jt", N=1000)

$JT
[1] 9566

$EJT
[1] 8705

2.3 Log-Linear Models 41

$P
[1] 0.009804

$montecarlo.P
[1] 0.005

$set
[1] "Operation" "Symptom" "Centre"

> ciTest_ordinal(dumping,c(2,1,3),"deviance", N=1000)

$deviance
[1] 23.54

$df
[1] 24

$P
[1] 0.4883

$montecarlo.P
[1] 0.585

$set
[1] "Operation" "Symptom" "Centre"

The second argument is a vector of column numbers (if a dataframe is supplied) or
dimension numbers (if a table is supplied, as here) of {u,v,S}. The corresponding
names may also be given. The function calculates the Monte Carlo p-value based
on N random samples, together with the asymptotic p-value. If N = 0, only the
latter is calculated. We see that the ordinal test strongly rejects the hypothesis that
Symptom is independent of Operation given Centre, whereas the non-ordinal test
finds no evidence against this. In this example, the Monte Carlo p-values are similar
to the asymptotic ones. To examine whether the conditional distribution of Symptom
given Operation is homogeneous over the centres, the Kruskal-Wallis test may be
used:

> ciTest_ordinal(dumping, c(3,1,2),"kruskal", N=1000)

$KW
[1] 10.02

$df
[1] 12

$P
[1] 0.6143

$montecarlo.P
[1] 0.615

$set
[1] "Centre" "Symptom" "Operation"

The distributions appear to be homogeneous.

42 2 Log-Linear Models

2.4 Model Selection

Using graphs to represent models has the effect of shifting the emphasis from esti-
mation of parameters for a given model towards estimation of the model structure,
that is, selecting an appropriate model. Model selection is challenging, not least be-
cause the number of possible models is huge. For example, the number of undirected
graphs with 30 nodes is 230×29/2 = 2435 > 1080, the estimated number of atoms in
the observable universe.

Many different methods to select graphical models have been proposed, but gen-
erally they fall into three categories:

• Use of low-order conditional independence tests to infer the structure of the joint
model. An example is the PC algorithm (Sect. 4.6.1).

• Heuristic search to optimize some criterion. Often local search around a cur-
rent model is used to find a local optimum, possibly with combined with a
stochastic search method. An example is the hill-climbing algorithm described
in Sect. 4.6.2.1.

• Bayesian methods, often involving Markov chain Monte Carlo methods. We do
not discuss Bayesian approaches to model selection further, but in Chap. 6 we
describe aspects of graphical models from a Bayesian perspective.

Sometimes the first type of methods are used in a preliminary phase and then com-
bined with others for refinement.

The gRim package implements a popular variant of the second type using well-
known model selection criteria of penalized likelihood type. Consider a set of
models M(j) for j = 0,1, . . . ,R. We select the model M(j) which minimizes
−2 logL(j) + kp(j), where p(j) is the number of free parameters in model M(j)

and k is a penalty parameter.
Akaike’s Information Criterion or AIC (Akaike 1974) uses k = 2. A popular al-

ternative is the Bayesian Information Criterion or BIC (Schwarz 1978), which sets k

to the logarithm of the number of observations. Use of a larger k penalizes complex
models more heavily, and so tends to select simpler models. Other values of k can
be chosen. It is standard usage in R to call the criterion AIC, even though strictly
speaking only the value k = 2 gives the “genuine AIC”.

The stepwise() function searches by default incrementally from an initial
model, adding or deleting the edge that gives the largest decrease in the AIC. If
there is none the process stops. The search is directional: either forward (adding
edges) or backward (deleting edges). Alternatively, significance tests can be used to
judge the relative adequacy of the models compared.

The following code selects a model for the reinis dataset. The initial model
is set to be the saturated model, using a model specification shortcut described in
Sect. 2.5.2.

> m.init <- dmod(~.^., data=reinis)
> m.reinis <- stepwise(m.init)
> plot(m.reinis)

2.4 Model Selection 43

The penalty term k is by default 2, but this can be changed using the argument of
the same name. For example, the BIC criterion uses the logarithm of the number of
observations as the penalty term:

> m.reinis.2 <- stepwise(m.init,k=log(sum(reinis)))
> plot(m.reinis.2)

The choice of k is usually argued on the basis of asymptotic considerations. The
motivation for AIC is that, under suitable assumptions, it is an approximate mea-
sure of the expected Kullback–Leibler distance between the true distribution and the
estimated. The BIC difference between two models is the logarithm of a Laplace ap-
proximation to the associated Bayes factor for large number of observations n, but
a term of lower order of magnitude than logn is ignored. Under reasonable assump-
tions the BIC is consistent in the sense that for n large it will choose the simplest
model consistent with the data. This will typically only be true for the AIC if that

44 2 Log-Linear Models

is the saturated model. For a more general discussion of the issues involved, see
Ripley (1996, Sect. 2.6).

The default direction is backward but may be changed to forward; notice that we
set details=1 to obtain some output from the model selection process:

> mildew.init <- dmod(~.^1, data=mildew)
> m.mildew <- stepwise(mildew.init, k=log(sum(mildew)),
+ direction="forward", details=1)

STEPWISE:
criterion: aic (k = 4.25)
direction: forward
type : decomposable
search : all
steps : 1000
. FORWARD: type=decomposable search=all, criterion=aic(4.25),

alpha=0.00
. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -59.0762 Edge added: a367 p53a
change.AIC -55.3386 Edge added: c365 la10
change.AIC -48.3388 Edge added: a367 mp58
change.AIC -6.3085 Edge added: c365 locc
change.AIC -2.1590 Edge added: locc p53a

> plot(m.mildew, "twopi")

The expression ~.^1 is a shortcut for the main effects model (see Sect. 2.5.2). The
selected model shows the order of the markers on the chromosome: see Edwards
(2000).

Other variants are possible. Setting headlong=TRUE results in headlong search:
instead of adding or deleting the edge that gives the greatest decrease in the AIC, the
edges at random are examined in random order and the first one found that decreases
the AIC is added or deleted. This is generally faster for high-dimensional models.

Output can be suppressed using details=0 whereas setting details=2 will
print test statistics for all edges, providings an indication of the strength of evidence
for the edges present and the weakness of evidence for the absent edges. When
searching among decomposable models (obtained by setting type="decomposable"

2.5 Further Topics 45

as opposed to type="unrestricted"), the degrees of freedom are adjusted for
sparsity.

> mildew.init.2 <- dmod(~.^., data=mildew)
> m.mildew.2 <- stepwise(mildew.init.2, crit="test", alpha=0.05,
+ details=0)
> m.mildew.2

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 383.01 mdim : 11 aic : 405.01
ideviance : 192.46 idf : 5 bic : 429.74
deviance : 17.26 df : 52
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 10

giving the same model as before.

2.5 Further Topics

2.5.1 Fitting Log-Linear Models with glm()

As we described in Sect. 2.3.5, we could just as well have assumed that cell
counts {n(i)}i∈I are independent realisations of Poisson distributions with means
{λ(i)}i∈I . It follows that we can fit log-linear models as generalized linear models
by means of the glm() function, using the Poisson distribution and (default) log-
link. The estimation method is then Fisher Scoring (which requires inversion of a
potentially large matrix).

It is worth mentioning that there may be computational problems with this ap-
proach: if the data are sparse and there are only few observations relative to the
complexity of the model then the glm() estimation algorithm may fail, as it im-
plicitly assumes that m̂(i) > 0 for all i ∈ I . The IPS algorithm, on the other hand,
always works.

The data need to be in aggregrated case list form, as described in Sect. 2.2.2. In
the present case we use

> lizardAGG

diam height species Freq
1 <=4 >4.75 anoli 32
2 >4 >4.75 anoli 11
3 <=4 <=4.75 anoli 86
4 >4 <=4.75 anoli 35
5 <=4 >4.75 dist 61
6 >4 >4.75 dist 41
7 <=4 <=4.75 dist 73
8 >4 <=4.75 dist 70

We use the Freq variable as response variable. Note that it is important that all cells,
also any empty ones, are present in the data. To fit the model shown in (2.1) we can
use the code:

46 2 Log-Linear Models

> m1glm <- glm(Freq~-1+diam:species+height:species,family=poisson,
+ data=lizardAGG)
> summary(m1glm)

Call:
glm(formula = Freq ~ -1 + diam:species + height:species,

family = poisson, data = lizardAGG)

Deviance Residuals:
1 2 3 4 5 6 7 8

0.190 -0.310 -0.114 0.181 0.687 -0.782 -0.596 0.639

Coefficients:
Estimate Std. Error z value Pr(>|z|)

diam<=4:speciesanoli 4.467 0.103 43.30 < 2e-16 ***
diam>4:speciesanoli 3.525 0.155 22.80 < 2e-16 ***
diam<=4:speciesdist 4.359 0.102 42.80 < 2e-16 ***
diam>4:speciesdist 4.171 0.109 38.20 < 2e-16 ***
speciesanoli:height>4.75 -1.035 0.178 -5.83 5.6e-09 ***
speciesdist:height>4.75 -0.338 0.130 -2.61 0.0091 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2514.8188 on 8 degrees of freedom
Residual deviance: 2.0256 on 2 degrees of freedom
AIC: 59

Number of Fisher Scoring iterations: 4

By using glm() we automatically get the asymptotic standard errors of the param-
eter estimates and also these are not affected by the sampling scheme and hence are
valid under both the Poission and multinomial sampling schemes.

By including -1 in the right-hand side of the model formula we set the intercept
to zero. This only affects the parametrisation of the model. The residual deviance
gives the likelihood ratio test against the saturated model.

> msat <- glm(Freq ~ -1 + diam*height*species, family=poisson,
+ data=lizardAGG)
> mno3f <- glm(Freq ~ -1 + diam*height + diam*species + species*height,
+ family=poisson, data=lizardAGG)
> anova(msat, mno3f, m1glm, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ -1 + diam * height * species
Model 2: Freq ~ -1 + diam * height + diam * species + species * height
Model 3: Freq ~ -1 + diam:species + height:species
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 0.000
2 1 0.149 -1 -0.149 0.70
3 2 2.026 -1 -1.876 0.17

Omission of empty cells from the input data corresponds to treating them as
structural zeroes. This allows exotic hypotheses such as quasi-independence to be

2.5 Further Topics 47

examined (Bishop et al. 1975). But for sparse tables, the glm() approach runs into
problems, and IPS is to be preferred. For example,

> glm(Freq ~.^3, ,family=poisson, data=as.data.frame(mildew))

fails to converge but

> dmod(~.^3, data=mildew)

is unproblematic.

2.5.2 Working with dModel Objects

The dmod() function supports some useful shortcut expressions for model formulae.
For example, ~.^. is the saturated model, ~.^1 is the main effect model and ~.^p

is the model with all p-factor interactions. Furthermore, to specify marginal models
(that is, not including all the variables in the table), the marginal argument can be
used. Lastly, it is possible to abbreviate variable names. For example,

> m <- dmod(~.^2, marginal=c("smo", "prot", "sys","fam"),
+ data=reinis)

Model: A dModel with 4 variables
graphical : FALSE decomposable : FALSE
-2logL : 9021.61 mdim : 10 aic : 9041.61
ideviance : 48.67 idf : 6 bic : 9096.79
deviance : 9.24 df : 5

The generating class of the model as a list and as a right-hand sided formula can be
retrieved using terms() and formula():

> str(terms(m))

List of 6
$: chr [1:2] "smoke" "protein"
$: chr [1:2] "smoke" "systol"
$: chr [1:2] "smoke" "family"
$: chr [1:2] "protein" "systol"
$: chr [1:2] "protein" "family"
$: chr [1:2] "systol" "family"

> formula(m)

~smoke * protein + smoke * systol + smoke * family + protein *
systol + protein * family + systol * family

The dependence graph and adjacency matrix of a model object can be obtained using
the as() function:

> as(m, "graphNEL")

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 6

> as(m, "matrix")

48 2 Log-Linear Models

smoke protein systol family
smoke 0 1 1 1
protein 1 0 1 1
systol 1 1 0 1
family 1 1 1 0

The update() function enables dModel objects to be modified by the addition or
deletion of interaction terms or edges, using the arguments aterm, dterm, aedge
or dedge. No prize to work out which does which. Some examples follow:

• Set a marginal saturated model:

> ms <- dmod(~.^., marginal=c("phys","mental","systol","family"),
+ data=reinis)
> formula(ms)

~phys * mental * systol * family

• Delete one edge:

> ms1 <- update(ms, list(dedge=~phys:mental))
> formula(ms1)

~phys * systol * family + mental * systol * family

• Delete two edges:

> ms2<- update(ms, list(dedge=~phys:mental+systol:family))
> formula(ms2)

~phys * systol + phys * family + mental * systol + mental * family

• Delete all edges in a set:

> ms3 <- update(ms, list(dedge=~phys:mental:systol))
> formula(ms3)

~phys * family + mental * family + systol * family

• Delete an interaction term

> ms4 <- update(ms, list(dterm=~phys:mental:systol))
> formula(ms4)

~phys * mental * family + phys * systol * family + mental * systol *
family

2.6 Various 49

• Add three interaction terms:

> ms5 <- update(ms, list(aterm=~phys:mental+phys:systol
+mental:systol))

> formula(ms5)

~phys * mental * systol * family

• Add two edges:

> ms6 <- update(ms, list(aedge=~phys:mental+systol:family))
> formula(ms6)

~phys * mental * systol * family

A brief explanation of these operations may be helpful. To obtain a hierarchical
model when we delete a term from a model, we must delete any higher-order rela-
tives to the term. Similarly, when we add an interaction term we must also add all
lower-order relatives that were not already present. Deletion of an edge is equivalent
to deleting the corresponding two-factor term. Let m − e be the result of deleting
edge e from a model m. Then the result of adding e is defined as the maximal model
m∗ for which m∗ − e = m.

2.6 Various

Other R packages which support discrete graphical models include CoCo (Badsberg
1991) and gRapHD, see Chap. 7. The packages SIN, pcalg and bnlearn support
algorithms to select discrete graphical models: Sects. 4.4.4, 4.6.1, 4.6.2 and the fol-
lowing sections, illustrate their use in a Gaussian context. Chapter 3 describes the
use of discrete, directed graphical models and Sect. 3.4 illustrates the selection of
such a model.

Chapter 3
Bayesian Networks

3.1 Introduction

A Bayesian network is traditionally understood to be a graphical model based on
a directed acyclic graph (a DAG). The term refers to its use for Bayesian infer-
ence in expert systems, where appropriate use of conditional independencies enable
rapid and efficient computation of updated probabilities for states of unobserved
variables, a calculation which in principle is forbiddingly complex. The term is also
used in contrast to the once fashionable neural networks which used quite a differ-
ent inference mechanism. In principle there is nothing Bayesian about a Bayesian
network.

It should be pointed out that the DAG is only used to give a simple and transpar-
ent way of specifying a probability model, whereas the simplification in the compu-
tations are based on exploiting conditional independencies in an undirected graph.
Thus, as we shall illustrate, methods for building undirected graphical models can
just as easily be used for building probabilistic inference machines.

The gRain package (gRaphical independence network) is an R implementa-
tion of such networks. The package implements the propagation algorithm de-
scribed in Lauritzen and Spiegelhalter (1988). Most of the exposition here is based
on the package gRain, but RHugin is also used, see below. The networks in
gRain are restricted to discrete variables, each with a finite state space. The pack-
age has a similar functionality to that of the GRAPPA suite of functions (Green
2005).

The package RHugin provides an R-interface to the (commercial) HUGIN soft-
ware, enabling access to the full functionality of HUGIN through R. RHugin is not
on CRAN but is available from http://rhugin.r-forge.r-project.org/. RHugin requires
a version of HUGIN to be pre-installed. The examples in this chapter which use
RHugin work with the free version HUGIN Lite, which has full functionality but
has size limitations on the networks.

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_3, © Springer Science+Business Media, LLC 2012

51

http://rhugin.r-forge.r-project.org/
http://dx.doi.org/10.1007/978-1-4614-2299-0_3

52 3 Bayesian Networks

Fig. 3.1 The directed acyclic
graph corresponding to the
chest clinic example from
Lauritzen and Spiegelhalter
(1988). The arrows indicate a
formalization of the
relationships expressed in the
narrative

3.1.1 The Chest Clinic Example

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988)
(illustrated in Fig. 3.1) and shows one way of specifying a network in gRain. Details
of the steps will be given in later sections. Other ways of specifying a network are
described in Sect. 3.3.1. Lauritzen and Spiegelhalter (1988) motivate the example
with the following narrative:

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or
none of them, or more than one of them. A recent visit to Asia increases the chances of tu-
berculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.
The results of a single chest X-ray do not discriminate between lung cancer and tuberculo-
sis, as neither does the presence or absence of dyspnoea.

This narrative is represented by the directed acyclic graph in Fig. 3.1 which forms
the basis for the Bayesian network constructed in this example.

3.1.2 Models Based on Directed Acyclic Graphs

We focus on Bayesian networks for discrete variables and we shall, in accordance
with Chap. 2, use the following notation: Let X = XV = (Xv;v ∈ V) be a discrete
random vector. The labels of Xv are generically denoted by iv so the levels of X are
denoted i = iV = (iv, v ∈ V) and the set of possible values of X is denoted I .

The multivariate distribution associated with a Bayesian network is constructed
by combining univariate (conditional) distributions using the structure of the di-
rected acyclic graph (DAG) with vertices V . To be precise, probability distributions
p(iV) factorizes w.r.t. a directed acyclic graph if it can be expressed as

p(iV) =
∏

v∈V

p(iv | ipa(v)) (3.1)

i.e. if the joint density or probability mass function is a product of conditional den-
sities of individual variables given their parents in the DAG, see also Sect. 1.3.

3.1 Introduction 53

For the chest clinic example, write the variables as A = Asia, S = smoker,
T = tuberculosis, L = lung cancer, B = bronchitis, D = dyspnoea, X = X-ray and
E = either tuberculosis or lung cancer. Each variable can take the values “yes” and
“no”. Note that E is a logical variable which is true (“yes”) if either T or L are true
(“yes”) and false (“no”) otherwise. The DAG in Fig. 3.1 now corresponds to a factor-
ization of the joint probability function p(iV), where V = {A,S,T ,L,B,E,D,X}
(apologies for using X with two different meanings here) as

p(iA)p(iS)p(iT |iA)p(iL|iS)p(iB |iS)p(iE |iT , iL)p(iD|iE, iB)p(iX|iE). (3.2)

In gRain, each conditional distribution in (3.2) is specified as a table called a
conditional probability table or a CPT for short.

Distributions given as in (3.1) automatically satisfy the global directed Markov
property so that whenever two sets of nodes A and B are d-separated by a set of
nodes S, see Sect. 1.3 for this notion, then A ⊥⊥ B |S.

The directed acyclic graph in Fig. 3.1 can be specified as:

> g<-list(~asia, ~tub | asia, ~smoke, ~lung | smoke, ~bronc | smoke,
+ ~either | lung : tub, ~xray | either, ~dysp | bronc : either)
> chestdag<-dagList(g)

We can query conditional independences using the function d.separates() con-
structed in Sect. 1.3:

> d.separates("tub", "smoke", c("dysp","xray"), chestdag)

[1] FALSE

whereas

> d.separates("tub", "lung", "smoke", chestdag)

[1] TRUE

3.1.3 Inference

Suppose we are given evidence that a set of variables E ⊂ V have a specific value
i∗E . For the chest clinic example, evidence could be that a person has recently visited
Asia and suffers from dyspnoea, i.e. iA = yes and iD = yes.

With this evidence, we may be interested in the conditional distribution
p(iv |XE = i∗E) (or p(iv | i∗E) is short) for some of the variables v ∈ V \ E or in
p(iU | i∗E) for a set U ⊂ V \ E. In the chest clinic example, interest might be in
p(iL | i∗E), p(iT | i∗E) and p(iB | i∗E), or possibly in the joint (conditional) distribution
p(iL, iT , iB | i∗E). Interest might also be in calculating the probability of a specific
event, e.g. p(i∗E) = p(XE = i∗E).

As noticed above, each conditional distribution in (3.2) is in gRain specified
as a conditional probability table. A brute force approach to calculating p(iU | i∗E)

is to calculate the joint distribution given by (3.2) by multiplying the conditional
probability tables. Finding p(iU | i∗E) then reduces to first finding the slice defined

54 3 Bayesian Networks

by iE = i∗E of the joint table and then marginalizing over the variables not in U that
slice.

As all variables in the chest clinic example are binary, the joint distribution will
have 28 = 256 states but for larger networks/more levels of the variables the joint
state space becomes prohibitively large. In most practical cases the set U will be
much smaller than V (U might consist of only one or two variables while V can
be very large). Combined with the observation that the factorization in (3.2) im-
plies conditional independence restrictions, this implies that p(iU | i∗E) can be found
without ever actually calculating the joint distribution. See Sect. 3.2.3 for details.

3.2 Building and Using Bayesian Networks

3.2.1 Specification of Conditional Probability Tables

One simple way of specifying a model for the chest clinic example is as follows.
First we specify conditional probability tables with values as given in Lauritzen and
Spiegelhalter (1988). This can be done with array() or as here with the cptable()
function, which offers some additional features:

> library(gRain)
> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99), levels=yn)
> t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
> s <- cptable(~smoke, values=c(5,5), levels=yn)
> l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
> b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),

levels=yn)
> x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9),

levels=yn)

Notice that the “+” operator used above is slightly misleading in the sense, for ex-
ample, that the operator does not commute (the order of the variables is important).
We use the “+” operator merely as a separator of the variables. The following forms
are also valid specifications:

> cptable(~tub|asia, values=c(5,95,1,99), levels=yn)
> cptable(c("tub","asia"), values=c(5,95,1,99), levels=yn)

Notice that since E is a logical variable which is true if either T or L are true and
false otherwise, the corresponding CPT can be created with the special function
ortable() (there is also an corresponding andtable() function):

> e.lt <- ortable(~either+lung+tub, levels=yn)

3.2 Building and Using Bayesian Networks 55

3.2.2 Building the Network

A network is created with the function grain() which returns an object of class
grain:

> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> grn1 <- grain(plist)
> summary(grn1)

Independence network: Compiled: FALSE Propagated: FALSE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

> plot(grn1)

The compileCPT() function does some checking of the specified CPT’s. (For ex-
ample, it is checked that the graph defined by the CPT’s is acyclic. Furthermore, the
specification of t.a gives a table with four entries and the variable tub is specified
to be binary. Hence it is checked that the variable asia is also binary.) The object
plist is a list of arrays and it is from this list that the grain object is created.

3.2.2.1 Compilation—Finding the Clique Potentials

A grain object must be compiled and propagated before queries can be made.
These steps are performed by the querygrain() function if necessary, but for some
purposes it is advantageous to perform them explicitly. Compilation of a network is
done with the compile() method for grain objects:

> grn1c <- compile(grn1)
> summary(grn1c)

Independence network: Compiled: TRUE Propagated: FALSE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...
Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8

56 3 Bayesian Networks

Compilation of a grain object based on CPTs involves the following steps: First it
is checked whether the list of CPTs defines a directed acyclic graph (a DAG). If so,
then the DAG is created; it is moralized and triangulated to form a chordal (triangu-
lated) graph. The CPTs are transformed into clique potentials defined on the cliques
of this chordal graph. The chordal graph together with the corresponding clique po-
tentials are the most essential components of a grain object, and one may indeed
construct a grain object directly from a specification of these two components, see
Sect. 3.3.1.

We again consider the Bayesian network of Sect. 3.2.1: The factorization (3.2)
into a clique potential representation follows by simply noticing that in (3.2) each
of the conditional probability tables can be considered a function of the variables it
involves. These potentials are simply non-negative functions.

The dependence graph of the Bayesian network is derived from the potentials.
For example, the presence of the term p(xD |xE,xB) implies that there must be
edges between all pairs in {D,E,B}. Algorithmically, the dependence graph can
be formed from the DAG by moralization: The moral graph of a DAG is obtained
by first joining all parents of each node by a line and then dropping the directions
on the arrows. For the chest clinic example, the edges between tub and lung, and
between either and bronc are added.

The next step is to triangulate the dependence graph if it is not already so by
adding additional edges, so-called fill-ins. This is done to enable simple compu-
tation of marginals from the clique potentials, cf. Sect. 3.2.2.2 below. Finding an
optimal triangulation (in terms of a minimal number of fill-ins) of a given graph
is NP-complete, but various good heuristics exist. The gRbase package imple-
ments a Minimum Clique Weight Heuristic method inspired by Kjærulff (1990).
Two possible fill-ins are the edge between lung and bronc, and the edge between
either and smoke. The triangulated graph is also a dependence graph for (3.2);
the graph just conceals some conditional independence restrictions implied by the
model.

The steps described above can alternatively be carried out separately, and Fig. 3.2
illustrates the process:

> g <- grn1$dag
> mg <- moralize(g)
> tmg <- triangulate(mg)

Recall from Sect. 1.2.1 that an ordering C1, . . . ,CT of the cliques of a graph is a RIP
ordering if Sj = (C1 ∪ · · · ∪ Cj−1) ∩ Cj is contained in one (but possibly several)
of the cliques C1, . . . ,Cj−1, obtained with:

> rip(tmg)

cliques
1 : tub asia
2 : either tub lung
3 : bronc lung either
4 : smoke lung bronc
5 : dysp bronc either
6 : xray either

3.2 Building and Using Bayesian Networks 57

Fig. 3.2 Left: moralized DAG; Right: triangulated moralized DAG. The chect clinic example of
Lauritzen and Spiegelhalter (1988)

separators
1 :
2 : tub
3 : lung either
4 : lung bronc
5 : bronc either
6 : either

parents
1 : 0
2 : 1
3 : 2
4 : 3
5 : 3
6 : 5

Picking a particular clique, say Ck , with Sj ⊆ Ck and naming this as the parent
clique of Cj , with Cj being the child of Ck , organizes the cliques of the triangulated
graph in a rooted tree with the cliques as nodes and arrows from parent to child. We
call Sj the separator and Rj = Cj \Sj the residual, where S1 = ∅. The junction tree
is formed by ignoring the root and the directions on the edges. It is a tree with the
property that for any pair (A,B) of cliques and any clique C on the unique path
between A and B it holds that A ∩ B ⊆ C. It can be shown that the cliques of a
graph can be organized in a junction tree if and only if the graph is triangulated.

The junction tree can be displayed by plot(),

> plot(grn1c,type="jt")

58 3 Bayesian Networks

where the numbers on the nodes refer to the clique numbers in the RIP-ordering.
Other RIP-orderings of the cliques can be found by choosing an arbitrary clique
as the first and then numbering the cliques in any way which is increasing as one
moves outward from the first clique in this tree. For example C3,C2,C5,C1,C6,C4
would be another RIP-ordering.

The functions p(iv | ipa(v)) are hence defined on complete sets of the triangulated
graph. For each clique C we collect the conditional probability tables p(iv | ipa(v))

into a single term ψC(iC) by multiplying them. Triangulation may have created
cliques to which no CPT corresponds. For each such clique the corresponding po-
tential is identically equal to 1. Thus we have obtained the clique potential repre-
sentation of p(iV) as

p(iV) =
T∏

j=1

ψCj
(iCj

). (3.3)

The representation (3.3) is the fundamental representation for the subsequent
computations. As such, a DAG and a corresponding factorization as in (3.2) is just
one way of getting to the representation in (3.3) and one may alternatively specify
this directly as shall be illustrated in Sect. 3.3.1.

3.2.2.2 Propagation—from Clique Potentials to Clique Marginals

To be able to answer queries, the grain object must be propagated, which means
that the clique potentials must be calibrated (adjusted) to each other. Propagation is
done with the propagate() method for grain objects:

> grn1c <- propagate(grn1c)
> summary(grn1c)

Independence network: Compiled: TRUE Propagated: TRUE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...
Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8

3.2 Building and Using Bayesian Networks 59

The propagation algorithm works by turning the clique potential representation (3.3)
into a representation in which each potential ψCj

is replaced by the marginal distri-
bution p(iCj

). This representation is called a clique marginal representation. This
is done by working twice through the set of cliques and passing ‘messages’ between
neighbouring cliques: first from the last clique in the RIP-ordering towards the first,
i.e. inwards in the junction tree, and subsequently passing messages in the other
direction.

In detail, the process is as follows. We start with the last clique CT in the RIP
ordering where CT = ST ∪ RT , ST ∩ RT = ∅. The factorization (3.3) together with
the factorization criterion (1.1) implies that RT ⊥⊥ (C1 ∪ · · · ∪ CT −1) \ ST |ST .
Marginalizing over iRT

gives

p(iC1∪...∪CT −1) =
(

T −1∏

j=1

ψCj
(iCj

)

)
∑

iRT

ψCT
(iST

, iRT
).

Let ψST
(iST

) = ∑
iRT

ψCT
(iST

, iRT
). Then from the expression above we have

p(iRT
| iST

) = ψCT
(iST

, iRT
)/ψST

(iST
)

and hence

p(iV) = p(iC1∪···∪CT −1)p(iRT
| iST

) =
{(

T −1∏

j=1

ψCj
(iCj

)

)
ψST

(iST
)

}
ψCT

(iCT
)

ψST
(iST

)
.

The RIP ordering ensures that ST is contained in the neighbour of CT in the junc-
tion tree (one of the cliques C1, . . . ,CT −1), say Ck . We can therefore absorb ψST

into ψCk
by setting ψCk

(iCk
) ← ψCk

(iCk
)ψST

(iST
). We can think of the clique CT

passing the message ψST
to its neighbour Ck , making a note of this by changing its

own potential to ψCT
← ψCT

/ψST
, and Ck absorbing the message.

After this we now have p(iC1∪···∪CT −1) = ∏T −1
j=1 ψCj

(iCj
). We can then apply

the same scheme to the part of the junction tree which has not yet been traversed.
Continuing in this way until we reach the root of the junction tree yields

p(iV) = p(iC1)p(iR2 | iS2)p(iR3 | iS3) . . . p(iRT
| iST

) (3.4)

where p(iC1) = ψC1(iC1)/
∑

iC1
ψC1(iC1). The resulting expression (3.4) is called a

set chain representation. Note that the root potential now yields the joint marginal
distribution of its nodes.

For some purposes we do not need to proceed further and the set chain repre-
sentation is fully satisfactory. However, if we wish to calculate marginals to other
cliques than the root clique, we need a second passing of messages. This time we
work from the root towards the leaves in the junction tree and send messages with a
slight twist, in the sense that this time we do not change the potential in the sending
clique. Rather we do as follows:

Suppose C1 is the parent of C2 in the rooted junction tree. Then we have that
p(iS2) = ∑

iC1\S2
p(iC1) and so

p(iV) = p(iC1)
p(iC2)

p(iS2)
p(iR3 | iS3) . . . p(iRT

| iST
).

60 3 Bayesian Networks

Thus when the clique C2 has absorbed its message by the operation

ψC2(iC2) ← ψC2(iC2)p(iS2)

its potential is equal to the marginal distribution of its nodes. Proceeding in this way
until we reach the leaves of the junction tree yields the clique marginal representa-
tion

p(iV) =
T∏

j=1

p(iCj
)/

T∏

j=2

p(iSj
). (3.5)

3.2.3 Absorbing Evidence and Answering Queries

Consider absorbing the evidence i∗E = (i∗v , v ∈ E), i.e. that nodes in E are known to
have a specific value. We note that

p(iV \E | i∗E) ∝ p(iV \E, i∗E)

and hence evidence can be absorbed into the model by modifying the terms ψCj

in the clique potential representation (3.3) as follows: for every v ∈ E, we take an
arbitrary clique Cj with v ∈ Cj . Entries in ψCj

which are locally inconsistent with
the evidence, i.e. entries iCj

for which iv �= i∗v , are set to zero and all other entries are
unchanged. Evidence can be entered before or after propagation without changing
final results.

To answer queries, we carry out the propagation steps above leading to a clique
marginal representation where the potentials become ψCj

(iCj
) = p(iCj

|i∗E). In this
process we note that processing of the root potential to find p(iC1 | i∗E) involves
computation of

∑
iC1

ψ1(iC1) which is equal to p(i∗E). Hence the probability of the
evidence comes at no extra computational cost.

Evidence is entered with setFinding() which creates a new grain object:

> grn1c.ev <-
+ setFinding(grn1c,nodes=c("asia","dysp"), states=c("yes","yes"))

To obtain p(iv | i∗E) for some v ∈ V \ E, we locate a clique Cj containing v and
marginalize as

∑
iCj \{v} p(iCj

). Based on (3.5) the grain objects with and without

evidence can now be queried to give marginal probabilities using querygrain():

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="marginal")

$lung
lung

yes no
0.09953 0.90047

$bronc
bronc

yes no
0.8114 0.1886

3.2 Building and Using Bayesian Networks 61

> querygrain(grn1c,nodes=c("lung","bronc"), type="marginal")

$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

The evidence in a grain object can be retrieved with the getFinding() function
while the probability of observing the evidence is obtained using the pFinding()

function:

> getFinding(grn1c.ev)

Finding:
variable state

[1,] asia yes
[2,] dysp yes
Pr(Finding)= 0.004501

> pFinding(grn1c.ev)

[1] 0.004501

Suppose we want the distribution p(iU | i∗E) for a set U ⊂ V \ E. If there is a clique
Cj such that U ⊂ Cj then the distribution is simple to find by summing p(iCj

)

over the variables in Cj \ U . If no such clique exists we can obtain p(iU | i∗E) by
calculating p(i∗U , i∗E) for all possible configurations i∗U of U and then normalizing
the result: this can be computationally demanding if U has a large state space.

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="joint")

bronc
lung yes no
yes 0.06298 0.03654
no 0.74842 0.15205

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="conditional")

bronc
lung yes no
yes 0.07762 0.1938
no 0.92238 0.8062

Note that the latter result is the conditional distribution of lung given bronc—but
also conditional on the evidence.

However, if it is known beforehand that interest will be in the joint distribution
of a specific set U of variables, one can ensure that the set U is contained in a single
clique in the triangulated graph. This can for example be done by first moralizing,
then adding edges between all nodes in U , and finally triangulating the resulting
graph. The price to be paid is that the cliques may become larger and since compu-
tational complexity is exponential in the largest clique, this can be prohibitive.

62 3 Bayesian Networks

To do this in practice we first need to compile the grain again

> grn1c2 <- compile(grn1, root=c("lung", "bronc", "tub"),
propagate=TRUE)

> grn1c2.ev <- setFinding(grn1c2,nodes=c("asia","dysp"),
+ states=c("yes","yes"))

Now compare the computing times: the second method is much faster:

> system.time({for (i in 1:50)
+ querygrain(grn1c.ev,nodes=c("lung","bronc","tub"),
+ type="joint")
+ })

user system elapsed
1.5 0.0 1.5

> system.time({for (i in 1:50)
+ querygrain(grn1c2.ev,nodes=c("lung","bronc","tub"),
+ type="joint")
+ })

user system elapsed
0.02 0.00 0.01

Evidence can be entered incrementally by calling setFinding() repeatedly. It is

most efficient to set propagate=FALSE in setFinding() and then only call the

propagate() method for grain objects at the end:

> grn1c.ev <- setFinding(grn1c,nodes="asia", states="yes",
+ propagate=FALSE)
> grn1c.ev <- setFinding(grn1c.ev,nodes="dysp", states="yes",
+ propagate=FALSE)
> grn1c.ev <- propagate(grn1c.ev)

Evidence can be retracted (removed) using the retractFinding() function:

> grn1c.ev <- retractFinding(grn1c.ev, nodes="asia")
> getFinding(grn1c.ev)

Finding:
variable state

[1,] dysp yes
Pr(Finding)= 0.004501

Omitting nodes implies that all evidence is retracted, i.e. that the grain object is

reset to its original status.

3.3 Further Topics 63

3.3 Further Topics

3.3.1 Building a Network from Data

A grain object can also be built from a dataframe of cases in various ways, as
illustrated below.

One way is to build it is to use data in combination with a graph such as, for
example, the directed acyclic graph chestdag specified in Sect. 3.1.2.

The data chestSim500 from the gRbase package is generated from our fictitious
example using the command simulate() method described in Sect. 3.3.3 below.

When building a grain object this way, the CPTs are estimated from data
in chestSim500 as the relative frequencies. To avoid zeros in the CPTs one
can choose to add a small number, e.g. smooth=0.1 to all values, correspond-
ing to a Bayesian estimate based on prior Dirichlet distributions for the CPT en-
tries:

> library(gRbase)
> data(chestSim500, package='gRbase')
> simdagchest <- grain(chestdag, data=chestSim500)
> simdagchest <- compile(simdagchest, propagate=TRUE, smooth=.1)
> querygrain(simdagchest, nodes =c("lung","bronc"),type="marginal")

$lung
lung
yes no

0.046 0.954

$bronc
bronc
yes no

0.454 0.546

Alternatively, a grain object can be built from an undirected (but triangulated)
graph rather than a Bayesian network, making some steps of the process of com-
pilation redundant. The undirected triangulated graph for the compiled chest clinic
example can be specified as:

> g<-list(~asia : tub, ~either : lung : tub, ~either : lung : smoke,
+ ~bronc : either : smoke, ~bronc : dysp : either, ~either :
+ xray)
> myug <- ugList(g)

A grain object can now be built from the graph and the data. In this pro-
cess, the clique potentials are directly estimated by the appropriate frequen-
cies:

> simugchest <- grain(myug, data=chestSim500)
> simugchest <- compile(simugchest, propagate=TRUE)
> plot(simugchest)

64 3 Bayesian Networks

This is natural when directions are not known beforehand. For example, using the
reinis data with a model selection procedure yields

> data(reinis, package='gRbase')
> m0 <- dmod(~.^., data=reinis)
> m1 <- stepwise(m0)
> reinisgrain <- grain(as(m1,"graphNEL"), data=reinis)
> plot(reinisgrain)
> reinisgrain <- compile(reinisgrain, propagate=TRUE)
> querygrain(reinisgrain,nodes=c("phys","protein"), type="marginal")

$protein
protein

y n
0.5763 0.4237

$phys
phys

y n
0.5035 0.4965

Now evidence can be entered and revised probabilities found as usual:

3.3 Further Topics 65

> reinisgrain.ev <-
+ setFinding(reinisgrain,
+ nodes=c("systol","smoke","mental"), states=c("y","y","y"))
> querygrain(reinisgrain.ev,nodes=c("phys","protein"), type="marginal")

$protein
protein

y n
0.6744 0.3256

$phys
phys

y n
0.2776 0.7224

3.3.2 Bayesian Networks with RHugin

The package RHugin (see http://rhugin.r-forge.r-project.org) provides an Applica-
tion Programmer’s Interface (API) to HUGIN in the R language. It consists of a basic
library of functions which mirrors the C API

http://www.hugin.com/developer/documentation/API_Manuals/
provided with HUGIN. More precisely, every command in the C API of HUGIN

of the form h_something has an R-variant called RHugin_something, e.g.
RHugin_domain_propagate uses .Call to invoke the HUGIN function
h_domain_propagate etc. In this way, the full functionality of HUGIN becomes
available within R.

In addition, RHugin provides a few higher level functions based on this API
which enables simple operations for Bayesian networks to be carried out, for exam-
ple such as those described in the previous sections. For the first simple illustrations
we repeat the basic steps above using RHugin instead of gRain.

We first create the domain

> library(RHugin)
> RHchestClinic <- hugin.domain()

and subsequently create nodes and give them states

> chestNames <- c("asia", "smoke", "tub", "lung", "bronc",
+ "either", "xray", "dysp")
> for(node in chestNames)
+ add.node(RHchestClinic, node, states = c("yes", "no"))

Then nodes are connected with edges to form the DAG

> add.edge(RHchestClinic, "tub", "asia")
> add.edge(RHchestClinic, "lung", "smoke")
> add.edge(RHchestClinic, "bronc", "smoke")
> add.edge(RHchestClinic, "either", c("tub", "lung"))
> add.edge(RHchestClinic, "xray", "either")
> add.edge(RHchestClinic, "dysp", c("either", "bronc"))

http://rhugin.r-forge.r-project.org
http://www.hugin.com/developer/documentation/API_Manuals/

66 3 Bayesian Networks

The network now exists and can be displayed using Rgraphviz

> library(Rgraphviz)
> plot(RHchestClinic)

At this point the network has default (uniform) probability tables:

> get.table(RHchestClinic, "dysp")

dysp either bronc Freq
1 yes yes yes 1
2 no yes yes 1
3 yes no yes 1
4 no no yes 1
5 yes yes no 1
6 no yes no 1
7 yes no no 1
8 no no no 1

These can now be changed manually:

> cpt <- get.table(RHchestClinic, "asia")
> cpt$Freq <- c(0.01, 0.99)
> set.table(RHchestClinic, "asia", cpt)
> cpt <- get.table(RHchestClinic, "tub")
> cpt$Freq <- c(5, 95, 1, 99)
> set.table(RHchestClinic, "tub", cpt)
> cpt <- get.table(RHchestClinic, "either")
> cpt

either tub lung Freq
1 yes yes yes 1
2 no yes yes 1
3 yes no yes 1
4 no no yes 1
5 yes yes no 1
6 no yes no 1

3.3 Further Topics 67

7 yes no no 1
8 no no no 1
> cpt$Freq <- c(1,0,1,0,1,0,0,1)
> set.table(RHchestClinic, "either", cpt)
>

or using available data to populate one of the tables:

> set.table(RHchestClinic,"dysp",chestSim500)

leading to

> get.table(RHchestClinic, "dysp")
dysp either bronc Freq

1 yes yes yes 10
2 no yes yes 2
3 yes no yes 176
4 no no yes 39
5 yes yes no 12
6 no yes no 5
7 yes no no 29
8 no no no 227

Note that the CPTs are not yet normalized. In HUGIN this happens at the stage of
compilation. We can also let most (or all) tables be based on frequencies in the
dataframe:

> set.table(RHchestClinic, "smoke", chestSim500)
> set.table(RHchestClinic, "bronc", chestSim500)
> set.table(RHchestClinic, "lung", chestSim500)
> set.table(RHchestClinic, "xray", chestSim500)
> get.table(RHchestClinic, "smoke")

smoke Freq
1 yes 238
2 no 262

If we compile the network we find that tables have become normalized:

> compile(RHchestClinic)
> get.table(RHchestClinic, "dysp")

dysp either bronc Freq
1 yes yes yes 0.8333
2 no yes yes 0.1667
3 yes no yes 0.8186
4 no no yes 0.1814
5 yes yes no 0.7059
6 no yes no 0.2941
7 yes no no 0.1133
8 no no no 0.8867

The network is now ready for absorbing evidence and calculating revised probabil-
ities:

> set.finding(RHchestClinic, "asia","yes")
> set.finding(RHchestClinic, "dysp","yes")
> propagate(RHchestClinic)
> get.belief(RHchestClinic, "lung")

68 3 Bayesian Networks

yes no
0.07729 0.92271

> get.belief(RHchestClinic, "bronc")

yes no
0.806 0.194

Note the values are somewhat different from those previously obtained. This is due
to the fact that probabilities are estimated from the (simulated) data rather than
specified exactly.

3.3.3 Simulation

It is possible to simulate data from a Bayesian network model. The methods use
the current clique potentials to do this and thus generates values conditional on all
evidence entered in the grain object. It uses the method of random propagation as
described in Dawid (1992); see also Cowell et al. (1999, p. 99). If a domain is not
propagated when simulate() is applied, simulate() will force this to happen
automatically.

> simulate(grn1c.ev, nsim=5)

asia tub smoke lung bronc either xray dysp
1 yes no yes no yes no no yes
2 yes yes yes no yes yes yes yes
3 yes no yes no no no no yes
4 yes no no no yes no no yes
5 yes no no no yes no no yes

One application of such a simulation is to obtain the joint distribution of lung and
bronc conditional on the finding:

> xtabs(~lung+bronc, data=simulate(grn1c.ev, nsim=1000))/1000

bronc
lung yes no
yes 0.070 0.033
no 0.757 0.140

The result of the simulation is close to the exact result given in Sect. 3.2.3. A simu-
late() method is also available with RHugin, but this only works if the domain has
been propagated.

> simulate(RHchestClinic, nsim=5)

asia smoke tub lung bronc either xray dysp
1 yes yes no no yes no no yes
2 yes no no no yes no yes yes
3 yes no no no yes no no yes
4 yes no no no yes no no yes
5 yes no no no yes no no yes

3.3 Further Topics 69

3.3.4 Prediction

A predictmethod is available for grain objects for predicting a set of “responses”
from a set of “explanatory variables”. Two types of predictions can be made. The
default is type="class" which assigns the value to the class with the highest prob-
ability:

> mydata

bronc dysp either lung tub asia xray smoke
1 yes yes yes yes no no yes yes
2 yes yes yes yes no no yes no
3 yes yes yes no yes no yes yes
4 yes yes no no no yes yes no

> predict(grn1c, response=c("lung","bronc"), newdata=mydata,
+ predictors=c("smoke", "asia", "tub", "dysp", "xray"), type="class")

$pred
$pred$lung
[1] "yes" "no" "no" "no"

$pred$bronc
[1] "yes" "yes" "yes" "yes"

$pFinding
[1] 0.0508476 0.0111697 0.0039778 0.0001083

The output should be read carefully: Conditional on the first observation in my-

data, the most probable value of lung is "yes" and the same is the case for bronc.
This is not in general the same as saying that the most likely configuration of the
two variables lung and bronc is "yes".

The entire conditional distribution can be obtained in gRain by setting
type=‘dist’:

> predict(grn1c, response=c("lung","bronc"), newdata=mydata,
+ predictors=c("smoke", "asia", "tub", "dysp", "xray"), type="dist")

$pred
$pred$lung

yes no
[1,] 0.7745 0.2255
[2,] 0.3268 0.6732
[3,] 0.1000 0.9000
[4,] 0.3268 0.6732

$pred$bronc
yes no

[1,] 0.7182 0.2818
[2,] 0.6373 0.3627
[3,] 0.6585 0.3415
[4,] 0.6373 0.3627

$pFinding
[1] 0.0508476 0.0111697 0.0039778 0.0001083

70 3 Bayesian Networks

The jointly most probably configuration can be found by using the option equilib-
rium ="max" with RHugin. HUGIN uses the max-propagation algorithm described
in Dawid (1992); see also Cowell et al. (1999, p. 97 ff.). For the third datapoint we
get

> initialize(RHchestClinic)

A Hugin domain
Nodes: asia smoke tub lung bronc either xray dysp
Edges:
asia -> tub
smoke -> bronc
smoke -> lung
tub -> either
lung -> either
bronc -> dysp
either -> dysp
either -> xray

> set.finding(RHchestClinic,"smoke","yes")
> set.finding(RHchestClinic,"asia","no")
> set.finding(RHchestClinic,"tub","yes")
> set.finding(RHchestClinic,"dysp","yes")
> set.finding(RHchestClinic,"xray","yes")

The joint probability of the evidence is

> propagate(RHchestClinic)
> pev<-get.normalization.constant(RHchestClinic)
> pev

[1] 0.003687

and the most likely configuration is

> propagate(RHchestClinic,equilibrium ="max")
> get.belief(RHchestClinic,"either")
yes no
1 0

> get.belief(RHchestClinic,"lung")

yes no
0.08676 1.00000

> get.belief(RHchestClinic,"bronc")

yes no
1.0000 0.5627

The most probable configuration of the unobserved nodes either, lung, bronc

is found by combining states where get.belief() returns 1.00, in this case yes,
no, yes. The second number indicates how much the joint probability decreases if
the state at that particular node is changed, i.e. the joint probability of yes,yes,yes,

3.3 Further Topics 71

is .08676 times the maximal probability. The probability of the most probable con-
figuration and evidence jointly is obtained via the normalization constant again

> pmax<-get.normalization.constant(RHchestClinic)
> pmax

[1] 0.002171

So the conditional probability of the most probable configuration given the evidence
is

> predprob<-pmax/pev
> predprob

[1] 0.5888

To simulatewith RHugin, we now need to propagate again with the default "sum"
option.

3.3.5 Working with HUGIN Files

With HUGIN, the specifications of a BN are read or saved in a textfile in a format
known as a .net. HUGIN can also save and read domains in its own binary format
.hkb which can contain further information in the form of compilation, evidence,
and propagation results.

A grain object saved in this format can be loaded into R using the loadHugin-
Net() function in gRain:

> chest <- loadHuginNet("ChestClinic.net")

> chest

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "PositiveXray" "Bronchitis" "Dyspnoea" ...

HUGIN distinguishes between node names and node labels. Node names have to be
unique; node labels need not be so. When creating a BN in HUGIN node names
are generated automatically as C1, C2 etc. The user can choose to give more in-
formative labels or to give informative names. Typically one would do the former.
Therefore loadHuginNet uses node labels (if given) from the netfile and otherwise
node names.

This causes two types of problems. First, HUGIN allows spaces and special char-
acters (e.g. “?”) in variable labels, but these are not allowed in gRain. If such a
name is found by loadHuginNet, it is converted as follows: special characters are
removed, the first letter after a space is capitalized and then spaces are removed.
Hence the label “visit to Asia?” in a net file will be converted to “visitToAsia”. The
same convention applies to states of variables. Secondly, because node labels in the

72 3 Bayesian Networks

net file are used as node names in gRain we may end up with two nodes having the
same name, which is obviously not permitted. To resolve this gRain will in such
cases force the node names in gRain to be the node names rather than the node
labels from the net file. For example, if nodes A and B in a net file both have label
foo, then the nodes in gRain will be denoted A and B. Note that this approach is
not entirely foolproof: If there is a node C with label A, then we have just moved
the problem. So the scheme above is applied recursively until all ambiguities are
resolved.

A grain can be saved in the .net format with the saveHuginNet() function.

> saveHuginNet(reinisgrain,file="reinisgrain.net")

Note that reinisgrain does not have a DAG by default, so the save function con-
structs a DAG which has the same conditional independence structure as the trian-
gulated graph defining the grain object.

RHugin interacts continuously with HUGIN but has also read and write func-
tions write.rhd() and read.rhd(). For example we can now create a domain in
RHugin as

> RHreinis<-read.rhd("reinisgrain.net")
> RHreinis

A Hugin domain
Nodes: family mental phys systol smoke protein
Edges:
mental -> family
phys -> mental
systol -> protein
smoke -> mental
smoke -> phys
smoke -> protein
smoke -> systol
protein -> phys

We can now operate fully in RHreinis with RHugin, for example

> get.table(RHreinis,"mental")
> set.finding(RHreinis,"mental","y")
> set.finding(RHreinis,"protein","n")
> compile(RHreinis)
> propagate(RHreinis)
> get.normalization.constant(RHreinis)
> get.belief(RHreinis,"smoke")
> write.rhd(RHreinis,"RHreinis.hkb",type="hkb")
> write.rhd(RHreinis,"RHreinis.net",type="net")

The file RHreinis.hkb will now be in a binary format readable by HUGIN (or
RHugin) and contain a compiled and propagated domain with its evidence and the
associated .net file, whereas RHreinis.net will be a textfile identical to rein-

isgrain.net. Similarly, RHugin can also read domains which are saved in .hkb

format.

3.4 Learning Bayesian Networks 73

It is important to emphasize the relationship between RHugin and gRain on the
one side and HUGIN on the other: gRain works entirely within R, creates R objects,
and only relates to HUGIN through its facilities for reading and writing .net files.
In contrast, domains, nodes, edges etc. of an RHugin-domain are not R objects as
such. They are external pointers to objects which otherwise exist within HUGIN. So,
for example, a statement of the form

> newRHreinis<-RHreinis

does not create a new R object, but just an extra pointer to the same HUGIN domain.
This means that if anything is changed in RHreinis, it will automatically change in
the same way in newRHreinis and vice versa.

3.4 Learning Bayesian Networks

Hitherto in this chapter it has been assumed that the Bayesian network was known
in advance. In practice it is often necessary to construct the network based on an ob-
served dataset—a topic known in the machine learning community as structural
learning (in contrast to parameter learning) and in the statistical community as
model selection.

Model selection algorithms for Gaussian graphical models based on DAGs are
described in Chap. 4. Available algorithms include the PC-algorithm (Spirtes and
Glymour 1991) and various algorithms in the bnlearn package: these can also be
used to select discrete Bayesian networks.

As illustration we consider a dataframe cad1 supplied along with the gRbase
package. This contains data on coronary artery disease from a Danish heart clinic.
In all 14 discrete variables were recorded for 236 patients at the clinic including
five background variables (sex, hypercholesterolemia, smoking, heridary disposition
and workload), one recording whether or not the patient has coronary artery disease,
four variables representing disease manifestation (hypertrophy, previous myocardial
infarct, angina pectoris, other heartfailures), and four clinical measurements (Q-
wave, T-wave, Q-wave informative and T-wave informative). These data were used
as an example of chain graph modelling in Højsgaard and Thiesson (1995).

As a first attempt we can apply the hill-climbing algorithm implemented in the
hc function in the bnlearn package. This is a greedy algorithm to find a model
optimizing a score: various scores may be used, and here we choose to minimize
the Bayesian Information Criterion (BIC).

> library(gRbase)
> data(cad1, package='gRbase')
> library(bnlearn)
> cad.bn <- hc(cad1)
> plot(as(amat(cad.bn), "graphNEL"))

74 3 Bayesian Networks

As described in more detail in Sect. 4.5.1, DAGs can only be selected up to Markov
equivalence, so it is useful to see which DAGs are Markov equivalent to the selected
one. These may be represented as an essential graph, using the essentialGraph

function in the ggm package.

> library(ggm)
> plot(as(essentialGraph(amat(cad.bn)), "graphNEL"))

3.4 Learning Bayesian Networks 75

This model is implausible, since it suggests amongst other things that whether or not
a patient has coronary artery disease (CAD) determines their sex and whether they
smoke. A better approach is to incorporate our prior knowledge of the system under
study into the model selection process. We do this by dividing the variables into the
four blocks described above, namely background variables, disease, disease mani-
festations and clinical measurements. Note that we treat hypertrophy as a disease
variable, following Højsgaard and Thiesson (1995). We restrict the model selection
process by blacklisting (i.e., disallowing) arrows that point from a later to an earlier
block. The following code shows how this may be done. First we construct an adja-
cency matrix containing the disallowed edges, then we convert this into a dataframe
using the get.edgelist function in the igraph package. This is then passed to the
hc function.

> block <- c(1,3,3,4,4,4,4,1,2,1,1,1,3,2)
> blM <- matrix(0, nrow=14, ncol=14)
> rownames(blM) <- colnames(blM) <- names(cad1)
> for (b in 2:4) blM[block==b, block<b] <- 1
> library(igraph)
> blackL <- data.frame(get.edgelist(as(blM, "igraph")))
> names(blackL) <- c("from", "to")
> cad.bn1 <- hc(cad1, blacklist=blackL)
> plot(as(amat(cad.bn1), "graphNEL"))

Finally, we again examine the essential graph of the selected DAG:

76 3 Bayesian Networks

> library(ggm)
> plot(as(essentialGraph(amat(cad.bn1)), "graphNEL"))

This is more plausible. To create the corresponding grain object, we can use

> cad.gr <- as(amat(cad.bn1), "graphNEL")
> cad.grain <- grain(cad.gr, data=cad1)

and proceed as before.

Chapter 4
Gaussian Graphical Models

4.1 Introduction

This chapter describes graphical models for multivariate Gaussian data. This is an
area which has been under extensive development in recent years, as witnessed by
the intensive development of R-packages with facilities for the analysis of such data,
for example ggm, deal, SIN, glasso, qp, gRc, pcalg, bnlearn, and others. We re-
frain from giving a description of all these packages and focus rather on introducing
some fundamental ideas and facilities, illustrated by use of the relevant packages
when appropriate.

Section 4.2 introduces the topic via an illustrative dataset. Section 4.3 gives a
brief theoretical exposition of undirected graphical models for Gaussian data, and
the following section describes some model selection algorithms for these mod-
els. The next two sections describe corresponding models based on directed graphs
(DAGs) and some model selection algorithms for these. The final section gives a
brief description of models based on chain graphs, and a selection algorithm for
these.

4.2 Some Examples

4.2.1 Carcass Data

The carcass data from gRbase contains measurements of the thickness of meat and
fat layers at different locations on the back of a slaughter pig together with the lean
meat percentage on each of 344 carcasses. These data have been used for estimating
the parameters in a prediction formula for prediction of lean meat percentage on the
basis of the thickness measurements on the carcass. Data are described in detail in
Busk et al. (1999). The first lines of data are

> library(gRbase)
> data(carcass)
> head(carcass)

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_4, © Springer Science+Business Media, LLC 2012

77

http://dx.doi.org/10.1007/978-1-4614-2299-0_4

78 4 Gaussian Graphical Models

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
1 17 51 12 51 12 61 56.52
2 17 49 15 48 15 54 57.58
3 14 38 11 34 11 40 55.89
4 17 58 12 58 11 58 61.82
5 14 51 12 48 13 54 62.96
6 20 40 14 40 14 45 54.58

Here Fat12 is the thickness of the fat layer between rib number 12 and 13 measured
from the cranial part of the carcass, etc. LeanMeat is the percentage of meat in the
carcass calculated as the weight of meat divided by the total weight of the carcass,
consisting of meat, fat, and other tissues.

Gaussian graphical models provide a framework for modelling how these vari-
ables are mutually related. Consider a random vector y = (y1, . . . , yd) following a
multivariate normal Nd(μ,Σ) distribution. The key quantity in Gaussian graphical
models is the inverse of the covariance matrix K = Σ−1 known as the concentration
matrix:

K =

⎛

⎜⎜⎜⎝

k11 k12 . . . k1d

k21 k22 . . . k2d

...
...

. . .
...

kd1 kd2 . . . kdd

⎞

⎟⎟⎟⎠ . (4.1)

The partial correlation between yu and yv given all other variables can be simply
derived from K as

ρuv|V \{u,v} = −kuv/
√

kuukvv. (4.2)

Thus kuv = 0 if and only if yu and yv are conditionally independent given all other
variables. In contrast to the concentrations, the partial correlations are invariant un-
der a change of scale and origin in the sense that if Y ∗

v = avYv + bv, v = 1, . . . , d

then auavk
∗
uv = kuv and

ρ∗
uv|V \{u,v} = ρuv|V \{u,v}

where k∗, ρ∗ are concentrations and partial correlations for Y ∗.
Returning to the carcass data, the concentration matrix can be estimated as

> S.carc <- cov.wt (carcass, method="ML")$cov
> K.carc <-solve(S.carc)
> round(100*K.carc)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 44 3 -20 -7 -16 4 10
Meat11 3 16 -3 -6 -6 -6 -3
Fat12 -20 -3 54 6 -21 -5 9
Meat12 -7 -6 6 14 -1 -9 0
Fat13 -16 -6 -21 -1 56 3 7
Meat13 4 -6 -5 -9 3 16 -1
LeanMeat 10 -3 9 0 7 -1 26

Concentrations depend on the scale on which the variables are measured. Since lean
meat percentage is measured on a different scale than the meat and fat measure-

4.2 Some Examples 79

Fig. 4.1 Model for the
carcass data found by
stepwise selection using the
AIC criterion

ments, the partial correlation matrix in (4.2)) seems more appropriate for measuring
dependence. The cov2pcor() function provides such a measure:

> PC.carc <- cov2pcor(S.carc)
> round(100*PC.carc)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 100 -11 41 30 32 -16 -29
Meat11 -11 100 9 41 19 35 16
Fat12 41 9 100 -24 38 18 -24
Meat12 30 41 -24 100 2 61 2
Fat13 32 19 38 2 100 -9 -18
Meat13 -16 35 18 61 -9 100 7
LeanMeat -29 16 -24 2 -18 7 100

Two of the partial correlations relating to LeanMeat are very small which suggests
that Fat13 is conditionally independent of Meat12 given the remaining variables
and this also holds for LeanMeat and Meat12. In particular this implies that Meat12
can be left out without loss of accuracy in the linear prediction of LeanMeat from
the meat and fat measurements.

A stepwise backward model selection procedure using AIC from the saturated
model yields the model shown in Fig. 4.1. This has two edges removed, correspond-
ing to the conditional independences observed above.

> sat.carc <- cmod(~.^., data=carcass)
> aic.carc<- stepwise(sat.carc)
> library(Rgraphviz)
> plot(as(aic.carc,"graphNEL"),"fdp")

Using BIC, yielding a higher penalty for complexity, we get a simpler graph, where
also edges between Fat13 and Meat13 as well as LeanMeat and Meat13 are re-
moved:

> bic.carc<-stepwise(sat.carc,k=log(nrow(carcass)))
> bic.carc

Model: A cModel with 7 variables
graphical : TRUE decomposable : TRUE

80 4 Gaussian Graphical Models

Fig. 4.2 Model for the
carcass data found by
stepwise selection using the
BIC criterion

-2logL : 11376.07 mdim : 24 aic : 11424.07
ideviance : 2465.16 idf : 17 bic : 11516.25
deviance : 8.62 df : 4

> plot(as(bic.carc,"graphNEL"),"fdp")

This model is displayed in Fig. 4.2. It specifies a model with only two cliques. The
conditional independence relations can be summarised as

(LeanMeat,Fat13) ⊥⊥ (Meat12,Meat13)|(Fat11,Fat12,Meat11).

In this model neither Meat12 nor Meat13 contribute directly to the prediction of
LeanMeat.

4.2.2 Body Fat Data

These data were collected by Dr. A. Garth Fisher and used by Johnson (1996) to il-
lustrate issues in making multiple regression models for prediction of percentage of
body fat for an individual based on simple measurements of weight, circumferences
of body parts, etc. The data are available from StatLib and included in gRbase.

> data(BodyFat)
> head(BodyFat)

Density BodyFat Age Weight Height Neck Chest Abdomen Hip Thigh
1 1.071 12.3 23 154.2 67.75 36.2 93.1 85.2 94.5 59.0
2 1.085 6.1 22 173.2 72.25 38.5 93.6 83.0 98.7 58.7
3 1.041 25.3 22 154.0 66.25 34.0 95.8 87.9 99.2 59.6
4 1.075 10.4 26 184.8 72.25 37.4 101.8 86.4 101.2 60.1
5 1.034 28.7 24 184.2 71.25 34.4 97.3 100.0 101.9 63.2
6 1.050 20.9 24 210.2 74.75 39.0 104.5 94.4 107.8 66.0
Knee Ankle Biceps Forearm Wrist

1 37.3 21.9 32.0 27.4 17.1
2 37.3 23.4 30.5 28.9 18.2

4.2 Some Examples 81

Fig. 4.3 Estimated
percentage of body fat
vs. reciprocal body density

3 38.9 24.0 28.8 25.2 16.6
4 37.3 22.8 32.4 29.4 18.2
5 42.2 24.0 32.2 27.7 17.7
6 42.0 25.6 35.7 30.6 18.8

The measurement of body density is made by an elaborate underwater weighing
procedure and the estimated percentage of body fat is then calculated from the body
density by a linear expression in the reciprocal of the latter. However, as Fig. 4.3
shows, there are obvious errors in the data, as also indicated in Johnson (1996).

These obvious errors, and a few other similar oddities in the scatterplots, prompt
us to reduce the data set by removing 11 strange observations. We also remove
Density from the analysis as it is functionally related to BodyFat. In addition, we
transform Age and Weight by the square root so we can better expect roughly linear
relationships among the variables.

> BodyFat <- BodyFat[-c(31,42,48,76,86,96,159,169,175,182,206),]
> BodyFat$Age <- sqrt(BodyFat$Age)
> BodyFat$Weight <- sqrt(BodyFat$Weight)
> gRbodyfat <- BodyFat[,2:15]

After these changes, we get the following partial correlation matrix

> S.body<-cov.wt(gRbodyfat, method ="ML")$cov
> PC.body<-cov2pcor(S.body)
> round(100*PC.body)

BodyFat Age Weight Height Neck Chest Abdomen Hip Thigh Knee
BodyFat 100 11 2 -8 -17 -8 54 -16 8 0
Age 11 100 -16 -1 10 7 27 -9 -29 26
Weight 2 -16 100 73 29 54 33 46 18 10
Height -8 -1 73 100 -17 -44 -27 -24 -27 17
Neck -17 10 29 -17 100 -4 6 -16 9 -9
Chest -8 7 54 -44 -4 100 25 -20 -24 -5
Abdomen 54 27 33 -27 6 25 100 22 -2 2

82 4 Gaussian Graphical Models

Hip -16 -9 46 -24 -16 -20 22 100 32 5
Thigh 8 -29 18 -27 9 -24 -2 32 100 25
Knee 0 26 10 17 -9 -5 2 5 25 100
Ankle -4 -18 25 -14 -15 -5 -13 -9 8 27
Biceps 2 7 16 -11 3 2 -11 -1 20 -3
Forearm 14 -17 19 -9 12 9 -23 -20 4 7
Wrist -19 37 8 -1 23 -10 5 3 -13 -1

Ankle Biceps Forearm Wrist
BodyFat -4 2 14 -19
Age -18 7 -17 37
Weight 25 16 19 8
Height -14 -11 -9 -1
Neck -15 3 12 23
Chest -5 2 9 -10
Abdomen -13 -11 -23 5
Hip -9 -1 -20 3
Thigh 8 20 4 -13
Knee 27 -3 7 -1
Ankle 100 -13 -8 39
Biceps -13 100 38 1
Forearm -8 38 100 31
Wrist 39 1 31 100

where we in particular note the high partial correlation between BodyFat and Ab-

domen. If we again fit a model by stepwise selection using BIC we get

> sat.body <- cmod(~.^., data=gRbodyfat)
> bic.body<-stepwise(sat.body,k=log(nrow(gRbodyfat)))
> bic.body

Model: A cModel with 14 variables
graphical : TRUE decomposable : TRUE
-2logL : 12362.11 mdim : 75 aic : 12512.11
ideviance : 4356.77 idf : 61 bic : 12773.47
deviance : 35.67 df : 30

> plot(bic.body,"neato")

and this model is displayed in Fig. 4.4. It has all variables except Chest, Knee,
and Biceps as direct predictors for BodyFat. Note that the model is rather dense.
Indeed 61 out of 91 possible edges are present in the model:

> graph::degree(as(bic.body,"graphNEL"))

Weight Thigh Height Abdomen Forearm BodyFat Neck Hip
12 12 11 9 11 10 10 8
Age Chest Knee Ankle Biceps Wrist
10 5 5 10 4 5

Note that we need to use graph::degree to avoid conflicts between the graph and
igraph packages which both feature the degree function.

4.3 Undirected Gaussian Graphical Models

In this section we consider models for Gaussian data that can be represented as
undirected graphs, as illustrated in the previous section.

4.3 Undirected Gaussian Graphical Models 83

Fig. 4.4 Model for the gRbodyfat data found by stepwise selection using the BIC criterion

4.3.1 Preliminaries and Notation

An undirected Gaussian graphical model (hereafter abbreviated UGGM) is repre-
sented by an undirected graph G = (Γ,E) where the vertices Γ = {1, . . . , d} repre-
sent the set of variables and E is a set of undirected edges.

When a random vector y follows a Gaussian distribution Nd(μ,Σ), the graph
G represents the model where K = Σ−1 is a positive definite matrix with kuv = 0
whenever there is no edge between vertices u and v in G. This graph is called the
dependence graph of the model because it holds for all u,v that if u and v are not
adjacent, it holds that u ⊥⊥ v|Γ \ {u,v}.

It is often convenient to represent the model by the cliques C = {C1, . . . ,CQ} of
the dependence graph. Recall that a probability distribution factorizes according to
an undirected graph G = (V ,E) if it admits a factorisation of the form

f (xV) =
∏

i=1...k

gi(xCi
)

where C1 . . .Ck are the cliques of G, and g1() . . . gk() are arbitrary functions. In
analogy with the terminology for log-linear models in Chap. 2 we also say that C is
the generating class for the model.

As for log-linear models, the generating class can be specified by a model for-
mula or by a list. For example the model gen.carc below for the carcass data

specifies the UGGM with edges missing for all partial correlations less than or equal
to .12.

84 4 Gaussian Graphical Models

Fig. 4.5 Model for the
carcass data found by
thresholding partial
correlations

> gen.carc<-cmod(~Fat11 * Fat12 * Meat12 * Meat13 +
+ Fat11 * Fat12 * Fat13 * LeanMeat +
+ Meat11 * Meat12 * Meat13 +
+ Meat11 * Fat13 * LeanMeat,data=carcass)
> gen.carc

Model: A cModel with 7 variables
graphical : TRUE decomposable : FALSE
-2logL : 11387.24 mdim : 22 aic : 11431.24
ideviance : 2453.99 idf : 15 bic : 11515.73
deviance : 19.79 df : 6

> plot(gen.carc,"neato")

This model is shown in Fig. 4.5.
Recall that K = Σ−1 and define h = Kμ. The multivariate normal density is

then

f (y) = (2π)−d/2 det(K)
1
2 exp

{
−1

2
(y − μ)�K(y − μ)

}

= (2π)−d/2 det(K)
1
2 exp

(
−1

2
μ�Kμ + h�y − 1

2
y�Ky

)
.

Letting a = − d
2 log(2π) + 1

2 log det(K) − 1
2μ�Kμ we get

f (y) = exp

(
a + h�y − 1

2
y�Ky

)

= exp

(
a +

∑

u

huyu − 1

2

∑

u

∑

v

kuvyuyv

)
. (4.3)

If the sets of vertices A and B are separated by a set C in the dependence
graph we have kuv = 0 for u ∈ A and v ∈ B . By appropriately collecting terms we

4.3 Undirected Gaussian Graphical Models 85

can write f (y) = g(yA, yC)h(yB, yC). The factorization criterion applied to (4.3)
now yields that for Gaussian graphical models the global Markov property holds:
A ⊥⊥ B|C.

Moreover, note that there are at most pairwise interactions between variables.
That is, in contrast to log-linear models, there is no such thing as third and higher
order interactions for Gaussian graphical models. Hence the model is completely
determined by the edges of the dependence graph. For example we could alterna-
tively specify gen.carc above as

> edge.carc<-cmod(edgeList(as(gen.carc,"graphNEL")),data=carcass)
> edge.carc

Model: A cModel with 7 variables
graphical : TRUE decomposable : FALSE
-2logL : 11387.24 mdim : 22 aic : 11431.24
ideviance : 2453.99 idf : 15 bic : 11515.73
deviance : 19.79 df : 6

where we have only specified pairwise interactions.

4.3.2 Estimation, Likelihood, and Model Fitting

Consider a sample y1, . . . , yn of n observations of y ∼ Nd(μ,Σ). Let W denote
the matrix of sums of squares and products, W = ∑n

ν=1(y
ν − ȳ)(yν − ȳ)�, and

let S = W/n denote the empirical covariance matrix. The log-likelihood function
based on the sample is

logL(K,μ) = n

2
log det(K) − n

2
tr(KS) − n

2
(ȳ − μ)�K(ȳ − μ). (4.4)

For fixed K this is clearly maximized for μ̂ = x̄ which renders the last term equal
to zero. The profile likelihood for K thus becomes

logL(K, μ̂) = n

2
log det(K) − n

2
tr(KS). (4.5)

Since tr(KS) = ∑
u

∑
v suvkuv it follows that only elements suv of S for which the

corresponding elements kuv of K are non-zero will contribute to the likelihood.
For a matrix M with entries muv for u ∈ Γ and v ∈ Γ and two subsets A ⊂ Γ

and B ⊂ Γ we let MAB denote the corresponding |A| × |B| submatrix of M with
entries muv for u ∈ A and v ∈ B .

If the UGGM has generating class C = {C1, . . . ,CQ} it can be seen that the sub-
matrices SClCl

, for l = 1, . . . ,Q together with the sample mean ȳ jointly form a set
of minimal sufficient statistics. The maximum likelihood estimate is determined as
the unique solution to the system of equations

μ̂ = x̄, Σ̂ClCl
= SClCl

, l = 1, . . . ,Q (4.6)

86 4 Gaussian Graphical Models

which satisfies the restrictions on the concentration matrix. Thus the MLE of the
covariance between any pair of variables which are neighbours in the graph is equal
to the corresponding empirical quantity. It follows that the MLE for Σ under the
saturated model with no conditional independence restrictions satisfies Σ̂ = S so in
that case we have K̂ = S−1, provided S is not singular.

In general (4.6) must be solved iteratively, for example using the IPS (iterative
proportional scaling) algorithm (Dempster 1972; Speed and Kiiveri 1986). However,
Sect. 4.3.5 describes models for which estimation can be made in closed form.

The starting point for K for the IPS algorithm can be any positive definite matrix
satisfying the constraints of the model; for example the identity matrix. Let C ∈ C
be one of the generators and let B = Γ \ C. The submatrix KCC of K is modified
by an increment E so as to satisfy the constraints by the likelihood equations, that
is Σ̂CC = SCC . The increment can be found as follows: The requirement from the
likelihood equations is that

(
SCC SCB

SBC SBB

)
=

(
KCC + E KCB

KBC KBB

)−1

.

Standard results on the inverse of partitioned matrices gives

SCC = (KCC + E − KCBK−1
BBKBC)−1.

Here and elsewhere expressions such as M−1
CC should be read as the inverse of the

submatrix MCC , i.e. M−1
CC = (MCC)−1. Hence we have

E = S−1
CC − (KCC − KCBK−1

BBKBC) = S−1
CC − Σ−1

CC

so KCC is to be replaced with KCC + S−1
CC − Σ−1

CC , that is

KCC ← S−1
CC + KCBK−1

BBKBC. (4.7)

Each step of (4.7) will lead to an non-decreasing likelihood and iterative propor-
tional scaling consists in repeatedly cycling through the generators C1, . . . ,CQ and
updating K as above until convergence. The IPS algorithm is implemented in the
function ggmfit():

> carcfit1 <-
+ ggmfit(S.carc,n=nrow(carcass),edgeList(as(gen.carc,"graphNEL")))
> carcfit1[c("dev","df","iter")]

$dev
[1] 19.79

$df
[1] 6

$iter
[1] 774

4.3 Undirected Gaussian Graphical Models 87

The deviance, degrees of freedom and number of iterations required are shown. The
object carcfit1 contains much additional information, including the parameter
estimates. Note that specifying the generators as edges via an edgeList is relatively
inefficient: it is much more efficient to specify the cliques of the graph. Each step of
the algorithm is computationally simpler, and since the parameters move in blocks,
the algorithm converges faster.

> cgens <- maxClique(as(gen.carc,"graphNEL"))$maxCliques
> carcfit2 <- ggmfit(S.carc, n=nrow(carcass), cgens)
> carcfit2[c("dev","df","iter")]

$dev
[1] 19.79

$df
[1] 6

$iter
[1] 61

4.3.3 Hypothesis Testing

The maximized value of the likelihood can be found as follows from (4.5):
Because Σ̂ and S differ exactly on those entries for which kuv = 0 it holds
tr(K̂S) = tr(K̂Σ̂) = d . Hence the maximized value of the log likelihood is l̂ =
n log det(K̂)/2 − nd/2. Thus the deviance of a model M is

D = dev= 2(l̂sat − l̂) = n log{det(S−1)/det(K̂)} = −n log det(SK̂) (4.8)

and similarly the ideviance representing the log-likelihood ratio relative to the inde-
pendence model is

iD = idev= 2(l̂ − l̂ind) = n

{
log det(K̂) +

d∑

i=1

log sii

}
(4.9)

which makes sense even if the saturated model cannot be fitted. The likelihood ra-
tio test statistic for testing M1 under M0 where M1 ⊆ M0 is the difference in
deviance (or ideviance) between the two models:

lrt= 2(l̂0 − l̂1) = n log(det(K̂0)/det(K̂1))

The likelihood ratio test statistic can be used for testing M1 under M0: large
values of lrt suggest that the null hypothesis M1 is false. Under the hypothesis
that M1 holds, lrt has an approximate χ2

f distribution where f is the difference in
the number of parameters of the two models, which is the same as the difference in
the number of edges.

88 4 Gaussian Graphical Models

> comparemodels <- function(m1,m2) {
+ lrt <- m2$fitinfo$dev - m1$fitinfo$dev
+ dfdiff <- m2$fitinfo$dimension[4] - m1$fitinfo$dimension[4]
+ names(dfdiff) <- NULL
+ list('lrt'=lrt, 'df'=dfdiff)
+ }
> comparemodels(aic.carc,bic.carc)

$lrt
[1] 8.373

$df
[1] 2

indicating that the simpler model does not quite fit.
The ciTest_mvn() function can be used for testing a single conditional inde-

pendence hypothesis, or when put in the terminology of graphs, for testing whether
a single edge can be deleted from the saturated model (the model for which the
dependence graph is complete). Default is to use the likelihood ratio test for test-
ing against the saturated model which is the deviance (4.8). For example to test for
LeanMeat⊥⊥ Meat13|rest we can use:

> ciTest_mvn(list(cov=S.carc, n.obs=nrow(carcass)),
+ set = ~LeanMeat+Meat13+Meat11+Meat12+Fat11+Fat12+Fat13)

Testing LeanMeat _|_ Meat13 | Meat11 Meat12 Fat11 Fat12 Fat13
Statistic (DEV): 1.687 df: 1 p-value: 0.1940 method: CHISQ

so ciTest_mvn() interprets set by testing conditional independence of the two
first variables given the remaining.

Alternative test statistics exist which are more accurate for small samples. An
option for ciTest_mvn() is the F statistic

F = (n − d)(edev/n − 1) (4.10)

which has an F1,n−d distribution under the hypothesis, i.e.
√

F is distributed as the
absolute value of a Student’s t .

> ciTest_mvn(list(cov=S.carc, n.obs=nrow(carcass)),
+ set=~LeanMeat+Meat11+Meat12+Meat13+Fat11+Fat12+Fat13,
+ statistic="F")

Testing LeanMeat _|_ Meat11 | Meat12 Meat13 Fat11 Fat12 Fat13
Statistic (F): 8.864 df: 1 p-value: 0.0031 method: F

Another possibility is to base the test on asymptotic normality of Fisher’s z trans-
form of the partial correlation; this is done using the gaussCItest() in the pcalg
package:

> library(pcalg)
> C.carc<-cov2cor(S.carc)
> gaussCItest(7,2,c(1,3,4,5,6),list(C=C.carc,n=nrow(carcass)))

[1] 0.003077

Note that in this case, with n − d = 339 we find almost exactly the same p-value as
the F -test. In fact, the p-value for the F statistic is 0.003118 with four significant
digits.

4.3 Undirected Gaussian Graphical Models 89

4.3.4 Concentration and Regression

There is a close connection between the concentration matrix K in (4.1) and mul-
tiple linear regression. Let A ⊂ Γ and B = Γ \ A. This defines a partitioning of y,
μ, Σ and K according to A and B as

y =
(

yA

yB

)
, μ =

(
μA

μB

)
,

Σ =
(

ΣAA ΣAB

ΣBA ΣBB

)
, K =

(
KAA KAB

KBA KBB

)
.

Then

yA|yB ∼ N (μA|B,ΣA|B)

where

μA|B = μA + ΣABΣ−1
BB(yB − μB), (4.11)

ΣA|B = ΣAA − ΣABΣ−1
BBΣAB. (4.12)

Standard results on the inverse of partitioned matrices gives that the quantities in
(4.11) can be expressed in terms of K as

ΣABΣ−1
BB = −K−1

AAKAB and ΣAA − ΣABΣ−1
BBΣAB = K−1

AA.

To illustrate this, consider a multiple regression of y1 on y2, . . . , yd as explanatory
variables,

y1 = a1 + β13y2 + · · · + β1dyd + ε1 where ε1 ∼ N (0, σ 2
1). (4.13)

Then σ 2
1 = 1/k11 while the regression coefficients β12, . . . , β1d can be derived from

K as

(β12, . . . , β1d) = −(k12, . . . , k1d)/k11.

Returning to K for the carcass data we find that the regression coefficients for
predicting LeanMeat are

> -K.carc[7,-7]/K.carc[7,7]

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13
-0.37715 0.12422 -0.33552 0.01518 -0.26893 0.05414

while the residual variance of the lean meat percentage is

> 1/K.carc[7,7]

[1] 3.794

90 4 Gaussian Graphical Models

Fig. 4.6 Plot of the residuals
of LeanMeat and Meat12 in
the carcass data, after
adjusting for the remaining
variables

Notice that the regression coefficients to Meat12 and Meat13 are very small, cor-
responding to the conditional independence structure found in model bic.carc,
implying these are redundant for prediction of LeanMeat. The matrix

(
k11 k12
k21 k22

)−1

= 1

k11k22 − k2
12

(
k22 −k12

−k21 k11

)
(4.14)

is the conditional covariance matrix for (y1, y2) given y3, . . . yd . That is, the covari-
ance between the residuals of y1 and y2 after adjusting for the effect of all other
variables. This observation provides a diagnostic tool for investigating conditional
independence: The residuals after regression should be uncorrelated. It is apparent
from Fig. 4.6 that this is entirely reasonable.

> r.LeanMeat <- residuals(lm(LeanMeat~Meat11+Meat13+Fat11+Fat12+Fat13,
+ data=carcass))
> r.Meat12 <- residuals(lm(Meat12~Meat11+Meat13+Fat11+Fat12+Fat13,
+ data=carcass))
> plot(r.Meat12,r.LeanMeat)
> abline(lm(r.LeanMeat~r.Meat12),lwd=2)

4.3.5 Decomposition of UGGMs

As mentioned in Sect. 4.3.2, some models have the property that estimation can be
made in closed form, i.e. without iteration.

To describe these we introduce the following notation: for a given |A| × |B|
matrix MAB we let [MAB]Γ denote the |Γ | × |Γ | matrix obtained from MAB by
filling up with zeros to obtain the full dimension.

4.3 Undirected Gaussian Graphical Models 91

Let M be a UGGM with variables Γ and let G be the dependence graph for M.
For a A ⊂ Γ , the A-marginal model MA is the UGGM induced by the subgraph
GA of G.

Suppose that (A,B,C) is a decomposition of a dependence graph of M such
that (i) A, B and C are disjoint, (ii) A∪B ∪C = Γ , (iii) all paths from a variable in
A to a variable in B goes through C and (iv) C is complete in G, i.e. C is a complete
separator of G. Then the MLE of K can be found as

K̂ = [K̂A∪C]Γ + [K̂B∪C]Γ − [S−1
C]Γ (4.15)

where K̂A∪C is the MLE for KA∪C under the marginal model MA∪C and likewise
for K̂B∪C . The determinant of K̂ appears in the expression for the deviance in (4.8)
and this determinant can be factorized in a way similar to (4.15),

det(K̂) = det(K̂A∪C)det(K̂B∪C)/det(Ŝ−1
C). (4.16)

As an illustration, consider the model displayed in Fig. 4.2 and let A =
{Fat13,LeanMeat}, B = {Meat12,Meat13} and C = {Fat11,Fat12,

Meat11}. Then the triple (A,B,C) is a decomposition of its dependence graph.
Secondly, the marginal models MA∪C and MB∪C are both saturated models so for
these K̂A∪C = S−1

A∪C and K̂B∪C = S−1
B∪C . Therefore the MLE of K can be found

using (4.15) as follows:

> K.hat<-S.carc
> K.hat[]<-0
> AC <- c("Fat11","Fat12","Fat13","Meat11","LeanMeat")
> BC <- c("Meat11","Meat12","Meat13","Fat11","Fat12")
> C <- c("Fat11","Fat12","Meat11")
> K.hat[AC,AC] <- K.hat[AC,AC] + solve(S.carc[AC,AC])
> K.hat[BC,BC] <- K.hat[BC,BC] + solve(S.carc[BC,BC])
> K.hat[C,C] <- K.hat[C,C] - solve(S.carc[C,C])
> round(100*K.hat)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 44 1 -20 -7 -16 6 10
Meat11 1 16 -4 -6 -4 -5 -5
Fat12 -20 -4 54 6 -20 -4 9
Meat12 -7 -6 6 14 0 -9 0
Fat13 -16 -4 -20 0 55 0 7
Meat13 6 -5 -4 -9 0 16 0
LeanMeat 10 -5 9 0 7 0 26

> Sigma.hat <- solve(K.hat)
> round(Sigma.hat,2)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.45 41.47 5.41
Fat13 7.66 2.01 6.84 2.45 7.62 0.89 -6.93
Meat13 -0.76 31.97 -0.60 41.47 0.89 41.44 6.43
LeanMeat -9.08 5.33 -7.95 5.41 -6.93 6.43 12.90

92 4 Gaussian Graphical Models

> round(S.carc,2)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93
Meat13 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat -9.08 5.33 -7.95 6.03 -6.93 7.23 12.90

This example also demonstrates the likelihood equations in (4.6): S.carc and
Sigma.hat match on entries which correspond to edges in the dependence graph

An UGGM is decomposable if its dependence graph is triangulated. For a de-
composable UGGM, the MLE for K can be found by successively applying (4.15);
see Lauritzen (1996), p. 145 for an explicit expression.

4.4 Model Selection

For a general description of model selection issues for graphical models, please see
Chap. 2. For UGGMs the problems are typically simpler, as one can concentrate on
identifying the graph rather than more general forms of model generating classes.

A practical problem with stepwise selection strategies is that they tend to become
time consuming for problems with many variables and usually only a small part of
the relevant search space is covered during a search.

For UGGMs specific types of alternative model identification methods have been
developed in this case exploiting the simplicity of UGGMs when compared to log-
linear models. We describe and illustrate some of these on the carcass data example.
See also Chap. 7 for methods that are specifically tailored to high-dimensional cases.

4.4.1 Stepwise Methods

The stepwise() function in gRim performs stepwise model selection, based on
a variety of criteria. Use of the AIC and BIC was illustrated above in Sect. 4.2.1.
Alternatively, significance tests may be used, as we now illustrate. The default sig-
nificance level is 0.05.

> test.carc <- stepwise(sat.carc, details=1,"test")

STEPWISE:
criterion: test
direction: backward
type : decomposable
search : all
steps : 1000
. BACKWARD: type=decomposable search=all, criterion=test, alpha=0.05

4.4 Model Selection 93

Fig. 4.7 Model for the carcass data found by stepwise selection using significance tests

. Initial model: is graphical=TRUE is decomposable=TRUE
p.value 0.7089 Edge deleted: Fat13 Meat12
p.value 0.7414 Edge deleted: Meat12 LeanMeat
p.value 0.0812 Edge deleted: Fat13 Meat13

> plot(test.carc,"neato")

As the output shows, the default method is backward elimination of edges (as
opposed to forward addition of edges). This results in the model shown in Fig. 4.7.
It has one edge less than the model aic.carc; the edge between Meat13 and Fat13
is also removed.

The default selection criterion is the Akaike information criterion or AIC (Akaike
1974) which mimimizes the negative of a penalized likelihood

AIC(k) = −2 logL + k dim(M)

where dim(M) is the number of independent parameters in model M and k = 2
for the AIC. Other values of k can be specified by the user as an option to step-

wise(). For example, choosing k = logn where n is the number of observations
gives the Bayesian information criterion or BIC (Schwarz 1978) as used for the
model bic.carc below.

94 4 Gaussian Graphical Models

Default is to search among decomposable models (if the initial model is decom-
posable; otherwise the search will be among all models). The reason is that search-
ing among decomposable models (as opposed to searching among general models)
is faster: Suppose M0 is a decomposable model with cliques C = {C1, . . . ,CQ} and
let K̂0 be the estimated concentration matrix under that model. Consider a model
reduction where M1 is the model obtained by deleting an edge e = {u,v} which
belongs to only one clique C ∈ C. Then M1 is also decomposable. The likelihood
ratio test for M1 under M0 can be carried out as a test for u ⊥⊥ v|C \ {u,v}, that is
a test for deletion of e from the saturated marginal model given by C. Thus test for
deletion of e does not require a large model to be fitted. The reason is that the con-
tributions to from all the other cliques than C to the likelihood are the same under
the two models and hence cancel out in the likelihood ratio. Moreover, fitting M1

is straightforward if K̂0 is given: the triple ({u}, {v},C \ {u,v}) is a decomposition
of the C-marginal model (after e has been deleted). Hence K̂C can be found from
(4.15) and the submatrix K̂0

CC of K̂0 is then to be replaced by K̂C to obtain K̂1. A fi-
nal computational saving is obtained by exploiting that several of the test statistics
can be reused during a sequence of reductions.

Also forward selection among decomposable models is faster than searching
among general models. If adding an edge e to a decomposable model M0 gives
a model M1 which is also decomposable then the testing scheme above can also be
applied. However, determining from M0 and e whether M1 is decomposable is not
straightforward. The approach taken in cmod() is to actually create M1 and then
check whether M1 is decomposable. This can be done using maximum cardinality
search, see Sect. 1.4.1.

The default search method in gRim is to consider all edges in M0 and then
choose the optimal one (according to the selection criterion) to delete. However,
setting search ="headlong" will cause edges to be searched in random order.
When an edge which can be deleted (or added) is found, this edge is deleted (or
added) and the new model is formed. Thereby the headlong strategy can make model
search considerably faster.

> ind.carc<-cmod(~.^1,data=carcass)
> set.seed(123)
> forw.carc<-stepwise(ind.carc,search="headlong",
+ direction="forward",k=log(nrow(carcass)),details=0)
> forw.carc

Model: A cModel with 7 variables
graphical : TRUE decomposable : TRUE
-2logL : 11393.53 mdim : 23 aic : 11439.53
ideviance : 2447.70 idf : 16 bic : 11527.87
deviance : 26.08 df : 5

> plot(forw.carc,"neato")

This model, shown in Fig. 4.8, is considerably smaller than any of those previously
found, although the only variable which can be ignored for prediction of LeanMeat
is Meat11.

4.4 Model Selection 95

Fig. 4.8 Model for the
carcass data found by
headlong stepwise selection
using the AIC criterion

4.4.2 Convex Optimization

One way to avoid a stepwise search is to use the glasso algorithm (Friedman et
al. 2008). This gives a fast technique to find the Gaussian graphical model that
maximizes a log-likelihood for K which is penalized by the L1-norm |K|; this is
implemented in the package glasso. From (4.5) an L1-penalized log-likelihood is
equivalent to

Lpen(K, μ̂) = log det(K) − tr(KS) − ρ|K| (4.17)

where ρ is a non-negative penalty parameter. Thee L1-norm |K| is the sum of the
absolute values of the elements of the concentration matrix K . This sum is largely a
proxy for the number of non-zero elements of K and as this penalized log-likelihood
is convex in K , it can be optimized by convex programming methods.

The smaller the value of ρ, the denser the graph that results. No penalization
occurs for values of ρ close to zero. We illustrate the methods on the gRbodyfat

data:

> C.body<-cov2cor(S.body)
> library(glasso)
> res.lasso<-glasso(C.body,rho=0.1)
> AM <- res.lasso$wi != 0
> diag(AM) <- F
> g.lasso <- as(AM, "graphNEL")
> nodes(g.lasso)<-names(gRbodyfat)
> glasso.body<-cmod(g.lasso,data=gRbodyfat)
> plot(glasso.body, "neato")

This graph, shown in Fig. 4.9, has a similar density with a total of 60 edges, but
BodyFat is now only connected to Age, Height, Chest, Abdomen, Hip, and Thigh.

96 4 Gaussian Graphical Models

Fig. 4.9 Model for the
gRbodyfat data selected by
the glasso algorithm

> graph::degree(as(glasso.body,"graphNEL"))

Weight Knee Thigh Hip Abdomen Ankle Biceps Forearm
11 9 10 9 8 8 8 10

Height Wrist Neck Chest Age BodyFat
7 9 8 9 8 6

4.4.3 Thresholding

A simple and apparently naive method for selecting a UGGM is to set a specific
threshold for the partial correlations, so edges are removed for all partial correlations
less than a given value.

> round(100*PC.carc)

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 100 -11 41 30 32 -16 -29
Meat11 -11 100 9 41 19 35 16
Fat12 41 9 100 -24 38 18 -24
Meat12 30 41 -24 100 2 61 2
Fat13 32 19 38 2 100 -9 -18
Meat13 -16 35 18 61 -9 100 7
LeanMeat -29 16 -24 2 -18 7 100

For example, we may stipulate that entries which are numerically smaller than e.g.
0.1 can be set to zero while the remaining values are set to one. Setting also the
diagonal elements to zero then yields an adjacency matrix:

4.4 Model Selection 97

Fig. 4.10 Model for the
carcass data found by
thresholding the partial
correlations

> threshold <- .1
> Z <- abs(PC.carc)
> Z[Z<threshold] <- 0
> diag(Z)<-0
> Z[Z>0] <- 1
> g.thresh<-as(Z, "graphNEL")
> thresh.carc <- cmod(g.thresh, data=carcass)
> thresh.carc

Model: A cModel with 7 variables
graphical : TRUE decomposable : FALSE
-2logL : 11384.93 mdim : 23 aic : 11430.93
ideviance : 2456.30 idf : 16 bic : 11519.27
deviance : 17.48 df : 5

> plot(thresh.carc,"neato")

The resulting model is shown in Fig. 4.10. Here also the edge between LeanMeat

and Meat13 has been removed.

4.4.4 Simultaneous p-Values

A special form of thresholding is the approach implemented in the package SIN,
due to Drton and Perlman (2007, 2008). Consider the set of hypotheses

H = {Huv : Yu ⊥⊥ Yv|YV \{u,v}}u<v,

and let P = {puv}u<v be the corresponding nominal p-values. Using Fisher’s z-
transform and an inequality of Sidak (1967) these are transformed to a set of si-
multaneous p-values P̃ = {p̃uv} which control the familywise error rate: that is to
say, if we reject Huv whenever p̃uv < α, the probability of rejecting one or more
true hypotheses Huv is less or equal to α. A sequential multiple testing procedure

98 4 Gaussian Graphical Models

Fig. 4.11 A plot of the
simultaneous p-values for the
carcass data

due to Holm (1979) can then further be applied to P̃ to derive a modified set P̌ of
simultaneous p-values with higher probability of rejecting Huv when Huv is in fact
false.

It follows that if we construct a graph G(α) by including precisely those edges
with p̌uv < α, then the probability of incorrectly including one or more edges is less
or equal to α. Or to put this another way, the probability that G(α) is not a subgraph
of the true model is less or equal to α.

The authors suggest using two α thresholds so as to partition the simultaneous p-
values into three sets: a significant set S, an intermediate set I and a non-significant
set N (hence the spicy acronym, SIN). The following code displays a plot of the
simultaneous p-values, see Fig. 4.11.

> library(SIN)
> psin.carc<-sinUG(S.carc,n=nrow(carcass))
> plotUGpvalues(psin.carc)

We may take α = 0.1 and 0.3, for example.

> gsin.carc <- as(getgraph(psin.carc, 0.1), "graphNEL")
> plot(gsin.carc, "neato")

Figure 4.12 shows G(0.1). Note that LeanMeat depends primarily on the fat vari-
ables, plus Meat11. Using α = 0.3 would just add the edge between Fat11 and
Meat11, so we omit this here.

Other functions in the SIN package implement the same approach with differ-
ent classes of models for Gaussian data, for example, DAGs with known variable
ordering, and chain graphs with known block structure.

We can perform a similar analysis of gRbodyfat:

> psin.body<-sinUG(S.body,n=nrow(gRbodyfat))
> plotUGpvalues(psin.body)

4.4 Model Selection 99

Fig. 4.12 Model for the
carcass data found by
thresholding the simultaneous
p-values

Fig. 4.13 A plot of the
simultaneous p-values for the
gRbodyfat data

The plot, which is shown in Fig. 4.13, is a lot less clear. If we let α = 0.1, BodyFat is
only connected to Abdomen. For α = 0.3, also Wrist gets included in the predictor,
as shown in Fig. 4.14.

> gsin.body <- as(getgraph(psin.body, 0.3), "graphNEL")
> plot(gsin.body, "neato")

This model is considerably sparser than the previously selected, with only 33 edges
present:

> graph::degree(gsin.body)

BodyFat Age Weight Height Neck Chest Abdomen Hip
2 5 8 5 2 5 7 6

Thigh Knee Ankle Biceps Forearm Wrist
7 3 4 2 5 5

100 4 Gaussian Graphical Models

Fig. 4.14 Model for the
gRbodyfat data found by
thresholding the simultaneous
p-values

and it is probably too simple:

> sin.body <- cmod(gsin.body,data=gRbodyfat)
> sin.body$fitinfo$dev

[1] 244.6

> sin.body$fitinfo$dimension[4]

df
58

However, we should remember that the ambition of the SIN procedure is to identify
a graph that is a subgraph of the true graph, rather than the true graph itself, so it
attempts to only include edges that are definitely present.

4.4.5 Summary of Models

To get an overview of all the graphs selected by the various methods we could, for
example, look at the edges which are included in all of them.

> commonedges.carc<-intersection(as(aic.carc,"graphNEL"),
+ as(bic.carc,"graphNEL"))
> othermodels<-list(test.carc,forw.carc,
+ thresh.carc,gsin.carc)
> othermodels<-lapply(othermodels, as, "graphNEL")
> for(ii in 1:length(othermodels))
+ {
+ commonedges.carc<-intersection(commonedges.carc,othermodels[[ii]])
+ }
> plot(commonedges.carc,"fdp")

Figure 4.15 shows the resulting graph. We note that all models selected have Fat11,
Fat12, Fat13, and LeanMeat in the same clique, i.e. indicate that LeanMeat is
directly associated to all fat measurements.

4.4 Model Selection 101

Fig. 4.15 The intersection of
the previously selected
models for the carcass data

Fig. 4.16 The intersection of
the previously selected
models for the gRbodyfat
data

Figure 4.16 displays the corresponding graph for the gRbodyfat data. It appears
that the only stable neighbour of BodyFat is Abdomen:

> commonedges.body<-intersection(as(bic.body,"graphNEL"),
+ as(glasso.body,"graphNEL"))
> commonedges.body<-intersection(commonedges.body,gsin.body)
> plot(commonedges.body,"fdp")

102 4 Gaussian Graphical Models

4.5 Directed Gaussian Graphical Models

In the next two sections we consider models for Gaussian data that can be rep-
resented as directed acyclic graphs (DAGs). Recall that a probability distribution
factorizes w.r.t. a DAG G if it can be expressed as

f (x) =
∏

v∈V

f (xv|xpa(v)) (4.18)

that is, as a product of conditional densities of individual variables given their par-
ents in G. To construct models of this type we need a list of univariate conditional
models, one for each variable in V . In general, we may use any such models—linear
or non-linear, additive or non-additive—but here we only consider linear regression
models with Gaussian errors, since these are closely related to the undirected graph-
ical Gaussian models described above. We call these directed Gaussian graphical
models, or DGGMs for short.

The function fitDag in the ggm package fits DGGMs. For example,

> library(ggm)
> gdag1 <- DAG(LeanMeat ~ Meat13:Fat11:Fat12, Meat13 ~ Meat11:Meat12,
+ Fat12~Fat11, Fat13 ~ Meat11:Meat12, Meat12 ~ Meat11)
> plot(as(gdag1, "graphNEL"))
> fdag1 <- fitDag(gdag1, S.carc, nrow(carcass))
> fdag1$dev

[1] 552.3

> fdag1$df

[1] 12

The DAG is shown in Fig. 4.17.

Fig. 4.17 A DGGM for the
carcass data

4.5 Directed Gaussian Graphical Models 103

Fig. 4.18 The DGGMs (i) to
(iii) are distributionally
equivalent to the UGGM (iv)

4.5.1 Markov Equivalence

Consider the graph in Fig. 4.18(iv). Since ({X}, {Y }, {Z}) is a decomposition of
Γ = {X,Y,Z}, the joint density can be factorized into

f (x, y, z) = f (x)f (y|x)f (z|y)

where f (y|x) and f (z|y) are linear regressions. Thus the density factorizes accord-
ing to the DAG shown in Fig. 4.18(i). Similarly, Fig. 4.18(i)–(iii) represent DGGMs
that essentially are reparametrizations of the undirected graphical Gaussian model
in Fig. 4.18(iv). In all four cases one conditional independence relation holds: that
X ⊥⊥ Z|Y .

DAGs which induce the same sets of conditional independence relations are
called Markov equivalent. Frydenberg (1990a) and Verma and Pearl (1990) showed
that two DAGs are Markov equivalent if and only if they have the same skeleton and
the same immoralities. The skeleton of a DAG is the undirected graph formed by
replacing all arrows with (undirected) lines. An unshielded collider or immorality
occurs when two directed edges from non-adjacent nodes meet head-on. For exam-
ple, the DAGs shown in Fig. 4.18(i)–(iii) have the same skeleton and no unshielded
colliders, and so are Markov equivalent. Although these models are distributionally
equivalent, they are of course quite distinct when interpreted causally; we refrain
from discussing this aspect further and refer to Spirtes et al. (1993) or Pearl (2000).

Since DGGMs that are Markov equivalent cannot be distinguished on the basis
of sample distributions, model selection algorithms based on data samples can only
select equivalence classes of DGGMs, not individual DGGMs. So it is important to

104 4 Gaussian Graphical Models

Fig. 4.19 A DAG with four
nodes and one immorality

Fig. 4.20 The pDAG of the
DAG shown in Fig. 4.19

be able to represent these equivalence classes. There are several ways to do this, of
which we now describe two. Consider the DAG shown in Fig. 4.19:

This graph has one immorality, b → d ← c. We can represent the equivalence
class using the graph constructed from the skeleton by orienting all edges that take
part in an immorality. This is called the partially directed acyclic graph or pDAG
for short (Chickering 2002). Figure 4.20 shows the pDAG for the current example.

Alternatively, we can construct a graph from the DAG by orienting all edges
whose direction is fixed in the equivalence class, and letting edges be undirected
if there are two members of the equivalence class which have arrows in opposite
directions. This construction has been given different names: the most commonly
used are CPDAG which is short for completed partial directed acylic graph (Chick-
ering 2002), essential graph (Andersson et al. 1996) or pattern (Verma and Pearl
1990). In the current example, if we try to reverse the edge a → d , all orientations
of the remaining two edges introduce cycles or immoralities. So all DAGs in the
equivalence class have the arrow a → d , and the essential graph is that shown in
Fig. 4.21:

The function essentialGraph() from the ggm package returns the essential
graph of a DAG. For example, Fig. 4.22 displays the essential graph of the DAG
shown in Fig. 4.17.

> eG1 <- as(essentialGraph(gdag1),"igraph")
> V(eG1)$size <- 40
> E(eG1)$arrow.mode <- 2
> E(eG1)[is.mutual(eG1)]$arrow.mode <- 0
> plot(eG1, layout=layout.kamada.kawai)

4.6 Model Selection for DGGMs 105

Fig. 4.21 The essential
graph of the DAG shown in
Fig. 4.19

Fig. 4.22 The essential
graph of gdag1

The individual DAGs in the equivalence class can be obtained by assigning
any orientation to the undirected edges, provided this does not introduce any cy-
cles or immoralities into the graph. For example, orienting Meat13 → Meat11 and
Fat13 → Meat11 in the above graph would introduce an immorality, and so is in-
valid.

To relate essential graphs to undirected graphs, consider a DAG generated by
ordering the vertices in a triangulated graph using a perfect ordering. Then the DAG
has no immoralities, and all DAGs generated in this way are Markov equivalent.
Indeed, as any vertex can appear as the first in a perfect ordering, they constitute
an equivalence class whose essential graph is the original triangulated graph. So a
decomposable model can be regarded as being the essential graph of the class of
DAGs generated from it using perfect orderings.

4.6 Model Selection for DGGMs

Sometimes variable orderings may be known in advance: for example, temporal
orderings. In this case, model selection reduces to a series of univariate model se-
lection tasks, regressing each variable on the prior variables. More often, however,
variable ordering is not known in advance, and must be inferred from the data—but
as we have seen, this can only be done up to Markov equivalence. In this section we
illustrate some methods to do this.

106 4 Gaussian Graphical Models

4.6.1 The PC Algorithm

The PC algorithm (Spirtes and Glymour 1991; Spirtes et al. 1993) for model se-
lection in DGGMs is implemented in the pcalg package. The algorithm has two
stages.

In the first stage the skeleton of the DAG is determined by exploiting the fact that
adjacency in the skeleton is given as

u �∼ v ⇐⇒ ∃S ⊆ V : u ⊥⊥ v|S.

Beginning from a complete graph, a series of conditional independence relations are
tested of successively increasing order and edges are removed as conditional inde-
pendence relations are identified. That is, first marginal independences are tested,
then further relations of the form u ⊥⊥ v|S for |S| = 1,2, . . . and so on. To avoid
performing a huge number of independence tests, the PC algorithm exploits that at
any time, when an edge between u and v is tested, it is sufficient to consider sets S

which are subsets of bd(u) or bd(v). As edges are removed, the skeleton becomes
sparse, and the cardinality of S increases, such sets are very few.

This process results in a list of identified conditional independences, that is to
say, triplets (u, v, S) for which u ⊥⊥ v|S. The S sets are called sepsets, since they
correspond to sets which d-separate variables u and v in the unknown true DAG,
when such a DAG exists.

Comparing the skeleton and the dependence graph we note that the latter is de-
fined by

u �∼ v ⇐⇒ u ⊥⊥ v|V \ {u,v}
so the skeleton for a DAG will typically have fewer edges than its independence
graph.

The following code illustrates the first stage of the algorithm as applied to the
carcass data. Note that we use pcalg::skeleton to ensure the relevant version
of the command skeleton is used.

> library(pcalg)
> C.carc<-cov2cor(S.carc)
> suffStat<-list(C=C.carc,n=nrow(carcass))
> indepTest<-gaussCItest
> skeleton.carc <- pcalg::skeleton(suffStat,gaussCItest,p=ncol(carcass),
+ alpha=0.05)
> nodes(skeleton.carc@graph)<-names(carcass)

The selected skeleton is shown in Fig. 4.23.
Note this has fewer edges than the dependence graphs found by model selection

among undirected models, suggesting that a DGGM might possibly be more ap-
propriate. If indeed the data follow a DGGM, the undirected models in Sect. 4.2.1
may be interpreted as estimates of the moral graph of the DAG. The skeleton in-
dicates that LeanMeat is directly associated to two of the fat measurements Fat11
and Fat12 and one of the meat measurements (Meat13).

4.6 Model Selection for DGGMs 107

Fig. 4.23 Skeleton selected
by PC algorithm for carcass
data

The second stage of the algorithm assigns directions to the edges in the skeleton,
using the list of conditional independence relations found while establishing the
skeleton. This information is contained in skeleton.carc. For example

> names(carcass)

[1] "Fat11" "Meat11" "Fat12" "Meat12" "Fat13" "Meat13"
[7] "LeanMeat"

> str(skeleton.carc@sepset[[1]])

List of 7
$: NULL
$: int(0)
$: NULL
$: int(0)
$: NULL
$: int(0)
$: NULL

indicates that the first variable, Fat11, was marginally independent of variables
Meat11, Meat12, and Meat13, leading to the corresponding edges being removed
from the skeleton. Similarly

> str(skeleton.carc@sepset[[2]])

List of 7
$: NULL
$: NULL
$: int(0)
$: NULL
$: int 4
$: NULL
$: int 6

indicates that Meat11 is marginally independent of Fat12, conditionally indepen-
dent of Fat13 given Meat12, and conditionally independent of LeanMeat given
Meat13.

108 4 Gaussian Graphical Models

Fig. 4.24 The mixed graph
for the carcass data
returned by the PC-algorithm

Fig. 4.25 The mixed graph
for the gRbodyfat data
returned by the PC-algorithm

Different algorithms are available for the second stage where directions are iden-
tified: in pcalg some of these are implemented in the functions udag2pdag(),
udag2pdagRelaxed() and udag2pdagSpecial(). See the help functions for an
explanation of these. The function udag2pdagRelaxed() here returns the mixed
graph shown in Fig. 4.24.

> pdag.carc <- udag2pdagRelaxed(skeleton.carc, verbose=0)
> nodes(pdag.carc@graph) <- names(carcass)
> plot(pdag.carc@graph,"neato")

Note that undirected edges are here represented as bi-directed edges; since
pdag.carc@graph is a graphNEL object, Rgraphviz is here used to plot it. Note
also that the algorithm did not succeed in returning a pDAG, since the edge from
Meat12 to Meat13 is not part of an immorality.

4.6 Model Selection for DGGMs 109

In practice it is easier to invoke both steps of the algorithm using the function pc.
For the gRbodyfat data we could for example use:

> C.body<-cov2cor(S.body)
> suffStat.body<-list(C=C.body,n=nrow(gRbodyfat))
> cpdag.body <- pc(suffStat.body,gaussCItest,p=ncol(gRbodyfat),

alpha=0.01)
> nodes(cpdag.body@graph)<-names(gRbodyfat)
> plot(cpdag.body@graph)

which again identifies Abdomen as the central predictor for BodyFat: see Fig. 4.25.
The PC-algorithm gives a correct result (pDAG or essential graph) under the

assumption that the distribution is faithful to a DAG and all independence relations
are correctly decided. A probability distribution P is said to be faithful to a DAG D
if all the conditional independences that hold under P can be inferred from D using
the d-separation criterion.

However, if the true distribution is not faithful to a DAG, for example because it
matches the conditional independence structure of a chordless four-cycle

the algorithm will find in the first stage that a ⊥⊥ d|{b, c} and b ⊥⊥ c|{a, d}, and
correctly identify the skeleton as the given four-cycle; but no orientation of the edges
is consistent with the conditional independence relations identified.

If, say, significance tests are used to decide conditional independences in the
skeleton stage, it may happen by chance that the conditional independence relations
may not be consistent with a DAG. In this case the second step is not guaranteed to
return a pDAG, as we have just seen. Further inspection of the sepsets leads to the
suspicion that a strong linear relation between the meat measurements is the culprit.
A reasonable modification of the model is the DAG model shown in Fig. 4.26.

> gdag2 <- DAG(LeanMeat ~ Meat13:Fat11:Fat12, Meat13 ~ Meat11:Meat12,
+ Meat12 ~ Meat11, Fat11~Fat12:Fat13, Fat12~Fat13)
> plot(as(gdag2, "graphNEL"))

This, however, does not fit too well:

> fitDag(gdag2, S.carc, nrow(carcass))[c("dev","df")]

$dev
[1] 87.74

$df
[1] 12

110 4 Gaussian Graphical Models

Fig. 4.26 A DGGM for the
carcass data obtained by
modifying the output of the
PC-algorithm

Fig. 4.27 The progress of the
lasso algorithm

This model implies that the meat measurements are marginally independent of the
fat measurements, with LeanMeat now depending on Fat11, Fat12, and Meat13.

For comparison we can look at a lasso regression of LeanMeat on the remaining
variables, using the lars() function in the lars package:

> library(lars)

Loaded lars 0.9-8

> lassoreg<-lars(as.matrix(carcass[c(1,2,3,4,5,6)]),
as.vector(carcass[7]))

> lassoreg

Call:
lars(x = as.matrix(carcass[c(1, 2, 3, 4, 5, 6)]),

4.6 Model Selection for DGGMs 111

y = as.vector(carcass[7]))
R-squared: 0
Sequence of LASSO moves:

Fat11 Fat12 Meat13 Fat13 Meat11 Meat12
Var 1 3 6 5 2 4
Step 1 2 3 4 5 6

which identifies the same variables as the three most important predictors, although
Fat13 is next included. The progress of the algorithm is shown in Fig. 4.27.

> plot(lassoreg)

4.6.2 Alternative Methods for Identifying DGGMs

In the following sections we briefly illustrate some functions in the bnlearn pack-
age for selecting DGGMs. Note that these can also be used to select discrete DAG
models, see Sect. 3.4.

4.6.2.1 Greedy Search

The hill-climbing algorithm is implemented in the hc function in the bnlearn pack-
age. This implements greedy search to optimize a score, for example the BIC. By
this is meant that the current DAG is compared to all DAGs obtained by adding an
edge, removing an edge, or reversing the direction of an edge. The model with the
optimal score is chosen, and the process repeats until no score improvement can be
made.

A potential problem with this approach is that the algorithm may get trapped
in an equivalence class, since edge reversals within the class will not change the
score. To continue the hill-climbing analogy: we may arrive at a ledge, and the
way up is at the other end of the ledge, but we cannot move to the other end since
we can only climb upwards. A method to deal with this is to use random restarts.
When a local optimum is found, a pre-specified number of edges are perturbed
(added/removed/reversed), and if the resulting model has improved score, then the
process restarts at this new model.

We illustrate this process, starting off from the graph found by modifying the
result of the PC algorithm.

> library(bnlearn)
> bn.init = empty.graph(nodes = names(carcass))
> amat(bn.init) = as(gdag2, "matrix")

Now we call the hc function, using bn.init as start model. If we omitted a start
model, the null model would be used. The default score is the BIC. We specify 10
restarts, in which 4 edges are perturbed. In general hc may randomly return a cyclic
graph which we have avoided by setting the seed of the random number generator.

112 4 Gaussian Graphical Models

Fig. 4.28 A DGGM for the
carcass data found using
the hill-climbing algorithm

Fig. 4.29 The essential
graph of the DGGM found
previously

> set.seed(100)
> for (i in 1:6) carcass[,i] <- as.numeric(carcass[,i])
> bn.hc <- hc(carcass, bn.init, restart=10, perturb=4)
> fitDag(amat(bn.hc), S.carc, nrow(carcass))[c("dev","df")]

$dev
[1] 9.408

$df
[1] 6

> plot(as(amat(bn.hc),"graphNEL"), main="hill-climbing")

The model is shown in Fig. 4.28. The essential graph, shown in Fig. 4.29, is obtained
as follows:

> eg.hc <- as(essentialGraph(amat(bn.hc)),"igraph")
> E(eg.hc)$arrow.mode <- 2
> E(eg.hc)[is.mutual(eg.hc)]$arrow.mode <- 0
> plot(eg.hc, layout=layout.kamada.kawai, vertex.size=40)

An attractive feature of the model selected by the PC algorithm was that the
LeanMeat variable was a response to the fat and meat variables. This is in accor-

4.6 Model Selection for DGGMs 113

Fig. 4.30 A DGGM for the
carcass found using
hill-climbing with a blacklist

dance with expectation, since LeanMeat is essentially derived from the fat and meat
variables. If we wish to build on this prior belief, we can disallow all edges from
LeanMeat to the other variables by specifying a blacklist, that is, a list of forbidden
edges.

> bl <- data.frame(from=names(carcass)[rep(7,6)],
to=names(carcass)[1:6])

> bn.hcbl <- hc(carcass, bn.init, restart=20, perturb=4, blacklist=bl)
> fitDag(amat(bn.hcbl), S.carc, nrow(carcass))[c("dev","df")]

$dev
[1] 7.894

$df
[1] 6

> plot(as(amat(bn.hcbl),"graphNEL"))

The selected model is shown in Fig. 4.30. We should note that also the PC algo-
rithm itself can take constraints in the form of edges which are known to be present,
absent, or having fixed directions.

4.6.2.2 A Hybrid Algorithm

We now illustrate the use of a hybrid constraint/score-based algorithm, the max–
min hill-climbing algorithm of Tsamardinos et al. (2003), implemented in the mmhc
function in the bnlearn package. A constraint-based algorithm is used to find the
skeleton, which is then oriented using a greedy hill-climbing algorithm. Per default,

114 4 Gaussian Graphical Models

Fig. 4.31 A DGGM for the
carcass data found using
max–min hill-climbing

Fig. 4.32 The essential
graph of the DGGM found
previously

the first step uses significance tests with level 0.05, and the second step uses BIC
scores.

> bn.mmhc <- mmhc(carcass)
> fitDag(amat(bn.mmhc), S.carc, nrow(carcass))[c("dev","df")]

$dev
[1] 87.74

$df
[1] 12

> plot(as(amat(bn.mmhc),"graphNEL"))

The selected model is shown in Fig. 4.31. We note that this is the same model as we
originally found by modifying the result of the PC algorithm. The essential graph is
shown in Fig. 4.32.

4.7 Gaussian Chain Graph Models 115

Fig. 4.33 Constructing a chain graph model

> plot(as(essentialGraph(amat(bn.mmhc)),"graphNEL"))

If we compare the models found by the different algorithms we find that the
constraint-based and hybrid algorithms (the PC algorithm and the max–min hill-
climbing algorithm) tend to find simple models with relatively poor overall fit, con-
forming with the fact that they are not optimizing a global score. In contrast, the
score-based algorithms (the hill-climbing algorithm, with or without blacklisting)
find more complex models that overall fit relatively well.

4.7 Gaussian Chain Graph Models

In this section we briefly consider models for Gaussian data that can be represented
as chain graphs.

The factorization requirements were described in Sect. 1.3. For each chain com-
ponent C ∈ C in the component DAG, the conditional densities f (xC |xpa(C)) must
factorize according to an undirected graph formed by moralizing the graph induced
by C ∪ pa(C).

A convenient way of constructing such models is to derive them from the corre-
sponding undirected models by conditioning. For example, the chain graph model
shown on the right of Fig. 4.33 is constructed by combining the marginal model for
(A,D) (shown on the left) and the conditional model for c = {B,C} given (A,D)

induced by the undirected model shown in the middle. The conditional distributions
are found in the usual way from the joint distribution under the model: see (4.11).

4.7.1 Selecting a Chain Graph Model

Several functions in the lcd package enable a general Gaussian chain graph model
to be selected, using an algorithm due to Ma et al. (2008). This is a constraint-based
algorithm that consists of three steps:

1. Firstly, an undirected graphical model for the data is chosen. Any conditional
independences that hold under this model will also hold under the selected chain
graph, so this step serves to restrict the search space in the third step.

116 4 Gaussian Graphical Models

Fig. 4.34 A chain graph
model for the carcass data
found using the lcd
algorithm

2. A junction tree for the undirected graph is derived.
3. The algorithm proceeds by performing a series of conditional independence tests,

following a scheme based on the junction tree. Provided that the test results are
consistent with a chain graph, the algorithm is guaranteed to return this.

We illustrate this process on the carcass data.

> library(lcd)
> ug <- naive.getug.norm(carcass, 0.05)
> jtree <- ug.to.jtree(ug)
> cg <- learn.mec.norm(jtree, cov(carcass), nrow(carcass), 0.01,

"CG")
> icg <- as(cg, "igraph")
> E(icg)$arrow.mode <- 2
> E(icg)[is.mutual(icg)]$arrow.mode <- 0
> V(icg)$size <- 40
> plot(icg, layout=layout.kamada.kawai)

Here we use a simple thresholding algorithm in the lcd package to find the undi-
rected model for the first step. Any of the algorithms described in Sect. 4.4 could in
principle be used here. We note that the selected chain graph is very similar to that
selected by the max–min hill-climbing algorithm above. The chain graph selected,
shown in Fig. 4.34, is in fact Markov equivalent to the graph we found by modifying
the output of the PC algorithm, shown in Fig. 4.26, and equal to the essential graph
of that DAG.

4.8 Various

The package ggm has facilities for working with other classes of graphical models
for Gaussian data, for example covariance graph models and ancestral graph models.
In addition to those described in this chapter, a number of packages support model
selection for Gaussian graphical models, including qp, GeneNet and gRapHD (see
Chap. 7).

Chapter 5
Mixed Interaction Models

5.1 Introduction

This chapter introduces mixed interaction models, a class of models for discrete
and continuous variables that combine log-linear models for discrete variables (de-
scribed in Chap. 2) with graphical Gaussian models for continuous variables (de-
scribed in Chap. 4). The exposition given here is restricted to homogeneous mixed
interaction models. Homogeneity in this context means that the covariance matrix
of the Gaussian variables does not depend on the values of discrete variables. More
general types of mixed interaction models that do not assume homogeneity are de-
scribed in Lauritzen (1996) and Edwards (2000). An important advantage of the
homogeneous models is that they can be specified using model formulae that are
similar to the model formulae for log-linear models and for graphical Gaussian mod-
els.

5.2 Example Datasets

To introduce the models we consider three datasets that are in gRbase. The first
dataset, milkcomp1, comes from a study comparing the composition of sow milk
in terms of fat, protein and lactose content under 8 different diets. The control diet
consisted of soybean meal, barley and wheat. The other diets added 8% fat to this
basis diet: animal fat, rapeseed oil, fish oil, coconut oil, palm oil or sunflower oil.
Sow milk was analysed for the concentration of dry matter, protein, fat and lactose:
here we consider the data recorded four days after farrowing (i.e., giving birth). For
further details see Lauridsen and Danielsen (2004). The first rows of the dataset are:

> data(milkcomp1, package='gRbase')
> head(milkcomp1)

treat fat protein dm lactose
1 d 6.16 6.65 18.55 5.06
2 c 4.06 5.44 18.32 5.23
3 f 9.25 5.67 20.68 5.15

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_5, © Springer Science+Business Media, LLC 2012

117

http://dx.doi.org/10.1007/978-1-4614-2299-0_5

118 5 Mixed Interaction Models

4 b 5.82 5.62 17.57 5.74
5 a 4.98 5.37 16.38 5.55
6 b 9.06 5.08 20.21 5.29

The second dataset, wine, contains the results of a study of the chemical constituents
of three varieties of grape, grown in the same region in Italy. There are 178 ob-
servations on 14 variables, of which one is discrete (grape variety) and the rest
(chemical constituents) are continuous. For more information on this dataset see
http://archive.ics.uci.edu/ml/datasets/Wine.

> data(wine, package='gRbase')
> head(wine)

Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw
1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92
2 v1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40
3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17
4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45
5 v1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93
6 v1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85
Prln

1 1065
2 1050
3 1185
4 1480
5 735
6 1450

The third dataset, Nutrimouse, stems from a study of the effect of nutrition on lipid
levels and gene expression in mice. Forty mice were each assigned one of five dif-
ferent diets, with different fatty acid compositions. Two strains of mice were used,
one with the PPARα gene knocked out and the other was wild-type (i.e. the PPARα

gene was present). The PPARα gene is known to affect fatty acid metabolism. The
concentrations of 21 lipids (fatty acids) in the liver were recorded. In addition the
data include the expression levels of 120 genes in the liver: these 120 were selected
from a much greater number as potentially relevant for nutrition. Thus the dataset
contains N = 40 observations of 143 variables: two discrete design variables—
genotype (with two levels) and diet (with five levels), 120 gene expression values
and 21 lipid values. For more details see Martin et al. (2007).

The following code fragment lists a small subset of the data.

> data(Nutrimouse, package='gRbase')
> head(Nutrimouse[,c(1:5,123:126)])

genotype diet X36b4 ACAT1 ACAT2 C14.0 C16.0 C18.0 C16.1n.9
1 wt lin -0.42 -0.65 -0.84 0.34 26.45 10.22 0.35
2 wt sun -0.44 -0.68 -0.91 0.38 24.04 9.93 0.55
3 wt sun -0.48 -0.74 -1.10 0.36 23.70 8.96 0.55
4 wt fish -0.45 -0.69 -0.65 0.22 25.48 8.14 0.49
5 wt ref -0.42 -0.71 -0.54 0.37 24.80 9.63 0.46
6 wt coc -0.43 -0.69 -0.80 1.70 26.04 6.59 0.66

http://archive.ics.uci.edu/ml/datasets/Wine

5.3 Mixed Data and CG-densities 119

5.3 Mixed Data and CG-densities

Suppose that N observations of d discrete variables and q continuous variables
are available. We denote the set of discrete variables by Δ, the set of continuous
variables by Γ , and the combined variable set by V = Δ ∪ Γ .

An observation has the form x = (i, y) = (i1, . . . , id , y1, . . . , yq). This combines
the notation of Chap. 2 and Chap. 4. As in Chap. 2 we write the set of possible cells
i = (i1, . . . , id) as I .

We construct a homogeneous conditional Gaussian density, or CG-density for
short, for x = (i, y) in the following way. Firstly, the probability of the discrete
variables falling in cell i is denoted p(i). We assume that p(i) > 0 for all i ∈ I .
Secondly, the conditional distribution of the continuous variables given that the dis-
crete variables fall in cell i is multivariate Gaussian N {μ(i),Σ}. Observe that the
mean may depend on i but the variance does not. The density takes the form

f (i, y) = p(i)(2π)−q/2 det(Σ)−1/2 exp

[
−1

2
{y − μ(i)}�Σ−1{y − μ(i)}

]
(5.1)

The parameters {p(i),μ(i), i ∈ I;Σ}, that is, the cell probability and mean vector
for each cell i and the common covariance matrix, are called the moment parame-
ters.

It is convenient to represent (5.1) in exponential family form as

f (i, y) = exp

{
g(i) +

∑

u

hu(i)yu − 1

2

∑

uv

yuyvkuv

}

= exp

{
g(i) + h(i)�y − 1

2
y�Ky

}
(5.2)

The parameters {g(i), h(i), i ∈ I;K} are called the canonical parameters. Note that
the canonical parameters have the same dimensions as the moment parameters: for
each i, g(i) is a scalar (the discrete canonical parameter) and h(i) is a q-vector
(the linear canonical parameter); also, the concentration matrix K is a symmetric
positive definite q × q matrix.

Occasionally it is convenient to use the mixed parameters which are given
as {p(i), h(i), i ∈ I;K}. We allow ourselves to write the parameters briefly as
{p,μ,Σ}, {g,h,K} and {p,h,K}.

We can transform back and forth between the different parameterizations using
the relations

K = Σ−1

h(i) = Σ−1μ(i)

g(i) = logp(i) − 1

2
log det(Σ) − 1

2
μ(i)�Σ−1μ(i) − q

2
log(2π),

120 5 Mixed Interaction Models

and

Σ = K−1

μ(i) = K−1h(i)

p(i) = (2π)
q
2 det(K)−

1
2 exp

{
g(i) + 1

2
h(i)�K−1h(i)

}
. (5.3a)

5.4 Homogeneous Mixed Interaction Models

The homogeneous mixed interaction models, which we for brevity here refer to as
MI-models, are defined by constraining the canonical parameters of CG-densities so
as follow factorial expansions.

For example, let Δ = {A,B} and Γ = {X,Z} and let the levels of the factors A

and B be denoted j and k. So in this case i = (j, k) and y = (x, z). The joint density
can be written

f (i, y) = exp

{
g(i) + hx(i)x + hz(i)z − 1

2
(kxxx

2 + 2kxzxz + kzzz
2)

}
(5.4)

and we can write the unrestricted (or saturated) model as

g(i) = u + ua
j + ub

k + uab
jk (5.5)

hx(i) = v + va
j + vb

k + vab
jk (5.6)

hz(i) = w + wa
j + wb

k + wab
jk (5.7)

K =
(

kxx kxz

kxz kzz

)
(5.8)

where the u’s, v’s and w’s are interaction terms. In this model g(i), hx(i) and hy(i)

are unrestricted functions of the cells i = (j, k). To estimate the interaction terms
uniquely would require some further constraints but we do not bother about this
here. This is because we use the factorial expansions to constrain the way canonical
parameters vary over I , but are not usually interested in their values per se.

Models are defined by setting certain interaction terms to zero. The usual hierar-
chical rule, that if a term is set to zero then all higher-order terms must also be zero,
is respected. So by this rule, if we set va

j to zero for all j , we must also set vab
jk to

zero for all j and k.
Conditional independence constraints can be imposed by setting interaction

terms to zero. For example, to make A ⊥⊥ X | (B,Z) we must set all terms involv-
ing A and X in (5.4) to zero, that is, va

j = vab
jk = 0, ∀j, k. To make A ⊥⊥ B | (X,Z)

we must set all terms involving A and B to zero, i.e., uab
jk = vab

jk = wab
jk = 0, ∀j, k.

Finally, to obtain X ⊥⊥ Z | (A,B) we set kxz = 0.

5.4 Homogeneous Mixed Interaction Models 121

For example, consider the milkcomp1 data:

> head(milkcomp1,3)

treat fat protein dm lactose
1 d 6.16 6.65 18.55 5.06
2 c 4.06 5.44 18.32 5.23
3 f 9.25 5.67 20.68 5.15

The CGstats() function calculates the number of observations and the means of
the continuous variables for each cell i, as well as (by default) a common covariance
matrix:

> library(gRim)
> SS <- CGstats(milkcomp1, varnames=c("treat","fat","protein",

"lactose"))
> SS

$n.obs
treat
a b c d e f g
8 8 8 8 8 7 8

$center
a b c d e f g

fat 6.641 8.010 7.053 7.401 8.134 7.519 6.974
protein 5.487 5.287 5.475 5.817 5.263 5.296 5.580
lactose 5.491 5.489 5.468 5.314 5.406 5.383 5.415

$cov
fat protein lactose

fat 2.31288 0.19928 -0.07028
protein 0.19928 0.12289 -0.03035
lactose -0.07028 -0.03035 0.04530

Note that the mean of fat (and to a lesser extent of protein) varies over the treatments
whereas the lactose means seem to be more or less constant. The coefficients of
variation are:

> apply(SS$center,1,sd) / apply(SS$center,1,mean)

fat protein lactose
0.07416 0.03656 0.01187

The corresponding canonical parameters are

> can.parms<-CGstats2mmodParms(SS,type="ghk")
> print(can.parms, simplify=FALSE)

MIparms: form=ghk
$g
treat

a b c d e f g
-745.5 -729.4 -740.5 -743.6 -712.7 -710.5 -740.2

$h
a b c d e f g

[1,] 0.787 1.628 0.9976 0.8736 1.686 1.344 0.8642
[2,] 88.221 85.006 87.6318 90.1511 84.137 84.817 88.5107
[3,] 181.555 180.651 180.9626 179.0642 178.338 177.745 180.1856

122 5 Mixed Interaction Models

$K
[,1] [,2] [,3]

[1,] 0.5056 -0.7503 0.2817
[2,] -0.7503 10.8649 6.1158
[3,] 0.2817 6.1158 26.6104

Let j refer to a level of the treatment factor. Then h(j) takes the form

h(j) = (hfat(j), hprotein(j), hlactose(j)).

The coefficients of variation for h are

> apply(can.parms$h,1,sd) / apply(can.parms$h,1,mean)

[1] 0.324840 0.026150 0.007934

which suggests that hlactose(j) is constant as a function of j ; that is

h(j) = (hfat(j), hprotein(j), hlactose).

If we insert this in (5.2) and use the factorization criterion 1.1 we find that

lactose⊥⊥ treat | (fat,protein).

The partial correlation matrix is more informative than the concentration matrix:

> conc2pcor(can.parms$K)

[,1] [,2] [,3]
[1,] 1.00000 0.3201 -0.07679
[2,] 0.32014 1.0000 -0.35968
[3,] -0.07679 -0.3597 1.00000

This suggests that the partial correlation between fat and lactose is zero. If we
set kfat,lactose = 0 in (5.2) and use the factorization criterion we find that

lactose⊥⊥ fat | (treat,protein).

5.5 Model Formulae

In this section we describe how to specify MI-models using model formulae and
show how they may be represented as dependence graphs. Here and later we refer
to the models and graphs shown in Table 5.1.

As we have seen above in Sect. 5.4, we define an MI-model by constraining g(i)

and the hu(i) for u ∈ Γ to satisfy factorial expansions, and by constraining some
off-diagonal elements of K to zero. So in principle we can define an MI-model by
giving a list of generating classes—one for g(i) and one for hu(i) for each u ∈ Γ —
together with list of off-diagonal elements of K that are allowed to be non-zero.
Together these specifications define an MI-model, although some restrictions in the
different components are necessary, as we describe below.

5.5 Model Formulae 123

Table 5.1 Some homogeneous mixed interaction models

Model Formula Graph Graphical Decomposable

(a) A*B*X*Z true true

(b) A*B*Z+B*X*Z true true

(c) A*B*Z+A*X true true

(d) A*Z+B*Z+A*X true false

(e) A*X+A*Z+B*X+B*Z true false

(f) A*B+A*Z+B*X*Z false false

(g) A*X+B*X true false

To give all these generating classes would be very cumbersome, however. It
is much more convenient to specify a model using a single generating class C =
{G1, . . . ,Gm}, with Gj ⊆ V for each j = 1 . . .m. We now explain how this is done.

We use the following convention. We write a generator G as a pair (a, b) where
a = G∩Δ are discrete variables and b = G∩Γ are continuous variables. For a ⊂ Δ,
by ga(ia) we mean a function which depends on an index i only through ia . Let q be
the number of variables in Γ . Suppose that y is a q-vector. For b ⊂ Γ we write the
corresponding subvector of y as yb . Furthermore, we take [yb] to mean the q-vector
obtained by padding yb with zeros in the right places to obtain full dimension.

Using this convention we can define the restrictions which a generating class C
imposes on a general (homogeneous) CG-density.

1. The discrete canonical parameter g(i) is constrained to follow the factorial ex-
pansion

g(i) =
∑

(a,b)∈C
ga(ia)

That is to say, the generators for g(i) are the maximal elements of {a | (a, b) ∈ C},
which we write compactly as max({a | (a, b) ∈ C}). These are called the discrete
generators of the model.

124 5 Mixed Interaction Models

2. The linear canonical parameter h is constrained to follow the factorial expansion

h(i) =
∑

(a,b)∈C
[hb

a(ia)].

It follows that h(i)�y = ∑
(a,b)∈C hb

a(ia)
�yb . For each u ∈ Γ , the generators for

hu(i) are Cu = max({a | (a, b) ∈ C ∧ u ∈ b}); that is, the discrete components
of those generators containing u. These are termed the linear generators of the
model.

3. Finally, the quadratic canonical parameter K is constrained as follows: elements
kuv of K are set to zero unless {u,v} ⊂ b for some generator (a, b) ∈ C. The sets
{b | (a, b) ∈ C} induce a graph whose edges of correspond to those kuv which are
not set to zero. The cliques of the graph are called the quadratic generators of
the model.

For example, the last model in Table 5.1 has the generating class

{(A,B), (A,Z), (B,X,Z)}.
The derived formulae for g(i), hx(i) and hz(i) are {(A,B)}, {(B)}, and {(A), (B)},
respectively. Hence g(i) is unrestricted, hx(i) satisfies hx(i) = v + vb

k for all i =
(j, k) and hz(i) satisfies hz(i) = w + wa

j + wb
k for all i = (j, k). Since (X,Z) ⊂

(B,X,Z), kxz is not set to zero.
It can be shown that to ensure location and scale invariance, the formula for g(i)

must be “larger” than the formulae for each hu(i) in the sense that each generator
for hu(i) must be contained in a generator for g(i). This constraint is automatically
fulfilled by the above construction.

The model formula notation for MI-models used here has the disadvantage
that distinct formulae can specify the same model. For example, if Δ = {I } and
Γ = {X,W,Z} then the formulae I*X*W+X*W*Z and I*X*W+X*Z+W*Z give identi-
cal models. This is not usually problematic, but it can impact the efficiency of the
iterative estimation procedure, as we describe later. We can define a particular rep-
resentation, termed the maximal form of the model. This has generators defined as
the maximal sets A ⊆ Δ ∪ Γ such that:

1. A∩ Δ is contained in a generator of g(i),
2. for each u ∈A∩ Γ , A∩ Δ is contained in a generator of hu(i), and
3. for each x, y ∈A∩ Γ , with u �= v, kuv is not set to be zero.

For example, I*X*W+X*W*Z is of maximal form but I*X*W+X*Z+W*Z is not.
The mmod() function in the gRim package allows MI-models to be defined using

model formulae. For example, to define the model for the milk composition dataset
with the conditional independences arrived at in Sect. 5.4, we specify the gener-
ating class with generators {treat,fat,protein} and {protein,lactose}, as
follows:

> milkmod <- mmod(~treat*fat*protein + protein*lactose, data=milkcomp1)

5.6 Graphical and Decomposable MI-models 125

Fig. 5.1 Mixed interaction
model for milk composition
data. Discrete variables are
shown as grey nodes while
continuous variables are white

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 428.47 mdim : 26 aic : 480.47
ideviance : 18.97 idf : 14 bic : 532.66
deviance : 2.11 df : 7

The discrete, linear and quadratic generators of the model are

> str(milkmod$modelinfo$dlq)

List of 3
$ discrete :List of 1
..$: chr "treat"
$ linear :List of 2
..$: chr [1:2] "fat" "treat"
..$: chr [1:2] "protein" "treat"
$ quadratic:List of 2
..$: chr [1:2] "fat" "protein"
..$: chr [1:2] "protein" "lactose"

To construct the dependence graph of an MI-model defined using such a formula, we
connect with an edge all variable pairs appearing in the same generator. By conven-
tion, discrete variables are drawn with filled circles and continuous variables with
hollow circles. The global Markov property (Sect. 1.3) can be used for reading con-
ditional independencies from the dependence graph in the usual way. For example,
the dependence graph for the model milkmod just discussed is shown in Fig. 5.1. It
can be obtained using the plot function:

> plot(milkmod)

5.6 Graphical and Decomposable MI-models

Suppose we are given an undirected graph with vertex set Δ ∪ Γ and consider the
MI-model for Δ ∪ Γ whose generators are the cliques of the graph. An MI-model
that can be formed in this way is termed a graphical MI-model. Table 5.1 shows
some graphical MI-models.

As with log-linear models, it is possible to set higher-order interactions to zero,
without introducing new conditional independence relations. Such models are called

126 5 Mixed Interaction Models

non-graphical. For example, consider model (b) in Table 5.1. Since the generators
of the formula correspond to the cliques of the graph, the model is graphical. The
model implies that the term hy(i) is unrestricted, say as

hy(i) = w + wa
j + wb

k + wab
jk .

If we constrain wab
jk = 0, ∀j, k, then hy(i) has the additive form hy(i) = w + wa

j +
wb

k , ∀j, k. This does not correspond to a conditional independence restriction, but
results in model (f) in Table 5.1. So model (f) is non-graphical. Since no further
conditional independence restrictions have been added model (f) has the same de-
pendence graph as model (b).

We now turn to a subclass of the graphical MI-models, the decomposable MI-
models. These build on a more basic concept, that of a decomposition, which we
describe first.

The notion of a decomposition of a graph G with mixed variables relates to the
question of how and when the analysis of a graphical MI-model may be broken
down into analyses of smaller models. This notion is slightly more elaborate than
in the purely discrete and purely continuous cases. Let A, B and S be disjoint non-
empty subsets of V such that A ∪ B ∪ S = V . We define (A,B,S) to be a decom-
position of G if the following conditions hold:

1. A and B are separated by S in G,
2. S is complete in G, and
3. S ⊂ Δ or B ⊂ Γ .

It can be shown that when (A,B,S) is a decomposition of G, the maximum likeli-
hood estimator f̂ of the density of the graphical MI-model with dependence graph
G is given by

f̂ = f̂[A∪S]f̂[B∪S]
f̂[S]

where f̂[A∪S], f̂[B∪S], f̂[S] are the estimates of densities based on the models corre-
sponding to the relevant induced subgraphs and based on marginal data only. Indeed
they are weak marginals of f̂ , see Sect. 5.7.5.1 below.

A graph with mixed variables G is called decomposable if it is complete or it can
be successively decomposed into complete graphs.

Various characterizations of graphs with this property are useful. One is based on
the forbidden path property: a forbidden path is a path between two non-adjacent
discrete vertices that passes through only continuous vertices. It can be shown that
a graph is decomposable if and only if it is triangulated and has no no forbidden
paths. A simple example of a graph with mixed variables that is not decomposable
is:

�� �

Another characterization is that the cliques of a decomposable graph with mixed
variables can be ordered as (C1, . . . ,Ck) with a modified version of the running in-

5.6 Graphical and Decomposable MI-models 127

Fig. 5.2 Decomposable
graphs with mixed variables.
If a and d are discrete and b

and c are continuous then the
first graph is not
decomposable whereas the
second graph is

tersection property. For j > 1 define Hj = ⋃j−1
t=1 Ct and Sj = Cj ∩ Hj . The modi-

fied condition is that

1. for each j > 1, Sj ⊂ Ci for some i < j , and
2. for each j > 1 it holds that Cj \ Sj ⊆ Γ or Sj ⊆ Δ.

The additional condition (2) states that continuous variables cannot be prior to dis-
crete ones. A graph with mixed variables is decomposable if and only there exists
an ordering of its cliques fulfilling conditions (1) and (2).

A decomposable MI-model is a graphical MI-model whose dependence graph is
decomposable. For such a model, the maximum likelihood estimates take the closed
form

f̂ (x) =
k∏

j=1

f̂[Cj](xCj
)

f̂[Sj](xSj
)

(5.9)

where we have let S1 = ∅ and f̂∅ = 1.
To check whether a graph with mixed variables is decomposable, the so-called

star graph construction can be used. That is, let G� be a new graph obtained by
adding an extra vertex, �, to G and adding edges between � and all discrete variables.
Then G� is triangulated (which can be checked with maximum cardinality search)
if and only if G is decomposable.

It can also be shown that a graph G with mixed variables is decomposable if
and only if the vertices of G can be given a perfect ordering. For such graphs this is
defined as an ordering {v1, v2, . . . , vT } such that (i) Sk = ne(vk)∩{v1, v2, . . . , vk−1}
is complete in G and (ii) Sk ⊂ Δ if vk ∈ Δ. The mcsmarked() function is based on
constructing G� as described above and returns a perfect ordering if the graph is
decomposable.

As an example consider the following two graphs shown in Fig. 5.2. If a and d

are discrete and b and c are continuous then the graph on the left is not decompos-
able whereas the graph on the right is. Note that since a graph object contains no
information about whether the nodes are discrete or continuous, mcsmarked() has
to be supplied this information explicitly.

> uG1 <- ug(~a:b+b:c+c:d)
> uG2 <- ug(~a:b+a:d+c:d)
> mcsmarked(uG1, discrete=c("a","d"))

128 5 Mixed Interaction Models

character(0)

> mcsmarked(uG2, discrete=c("a","d"))

[1] "a" "d" "b" "c"

5.7 Maximum Likelihood Estimation

In this section we derive expressions for the likelihood and describe algorithm(s)
the maximize this.

5.7.1 Likelihood and Deviance

In this section we derive some expressions for the likelihood and the deviance. The
log density can be written as

logf (i, y) = logp(i) − q log(2π)/2 − log det(Σ)/2

− {y − μ(i)}�Σ−1{y − μ(i)}/2,

so the log-likelihood of a sample (iν, yν), ν = 1, . . . ,N is

� =
∑

i

n(i) logp(i) − Nq log(2π)/2 − N log det(Σ)/2

−
N∑

ν=1

{yν − μ(iν)}�Σ−1{yν − μ(iν)}/2.

We can simplify the last term using that

∑

i

∑

ν:iν=i

{yν − μ(i)}�Σ−1{yν − μ(i)}

= N tr(SΣ−1) +
∑

i

n(i){ȳ(i) − μ(i)}�Σ−1{ȳ(i) − μ(i)}.

So an alternative expression for the log likelihood is

� =
∑

i

n(i) logp(i) − Nq log(2π)/2 −
∑

i

n(i) log det(Σ)/2

− N tr(SΣ−1)/2 −
∑

i

n(i){ȳ(i) − μ(i)}�Σ−1{ȳ(i) − μ(i)}/2.

5.7 Maximum Likelihood Estimation 129

The full homogeneous model has MLEs p̂(i) = n(i)/N , (so that m̂(i) = Np̂(i)),
μ̂(i) = ȳ(i), and Σ̂ = S = ∑

i n(i)Si/N , so the maximized log likelihood for this
model is

�̂s =
∑

i

n(i) log{n(i)/N} − Nq log(2π)/2 − N log det(S)/2 − Nq/2, (5.10)

and the deviance of a homogeneous model M with MLEs p̂(i), μ̂(i), and Σ̂ with
respect to the full homogeneous model simplifies to

D = 2
∑

i

n(i) log{n(i)/m̂(i)} − N log det(SΣ̂−1) + N{tr(SΣ̂−1) − q}

+
∑

i

n(i){ȳ(i) − μ̂(i)}�Σ̂−1{ȳ(i) − μ̂(i)}.

Note that in contrast to the models considered in Chap. 4, we do not necessarily
have tr(SΣ̂−1) = q so the term N log det(SΣ̂−1) does not disappear.

5.7.2 Dimension of MI-models

The dimension of a mixed interaction model may be simply calculated by adding
the dimensions of the component models for g(i) and each hu(i) to the number of
free elements of the covariance matrix, and finally subtract one for the normalisation
constant.

5.7.3 Inference

Under M, the deviance D is asymptotically χ2(k) where the degrees of freedom
k is the difference in dimension (number of free parameters) between the saturated
model and M. Similarly, for two nested models M1 ⊆ M2, the deviance difference
D1 − D2 is asymptotically χ2(k) where the degrees of freedom k is the difference
in dimension (number of free parameters) between the two models.

5.7.4 Likelihood Equations

Suppose we have a sample of N independent, identically distributed observations
(iν, yν) for ν = 1 . . .N . Let (n(i), t (i), y(i))i∈I be the observed counts, variate to-
tals and variate means, for cell i, and SS and S be the uncorrected sums of squares
and sample covariance matrices, i.e.,

n(i) = #{ν : iν = i},

130 5 Mixed Interaction Models

t (i) =
∑

ν:iν=i

yν,

y(i) = t (i)/n(i),

SS =
∑

ν

yν(yν)�,

SSD =
∑

i∈I

∑

ν:iν=i

{yν − y(i)}{yν − y(i)}� = SS − n(i)
∑

i∈I
y(i){y(i)}�

S = SSD/N

For a ⊆ Δ, we write the marginal cell corresponding to i as ia and likewise for
b ⊆ Γ , we write the subvector of y as yb. Similarly, we write the marginal cell
counts as {n(ia)}ia∈Ia

, marginal variate totals as {tb(ia)}ia∈Ia
and marginal variate

means as {ȳb(ia)}ia∈Ia
. Define

SSDb
a(ia) =

∑

ν:iνa =ia

{yk
b − ȳb(ia)}{yk

b − ȳb(ia)}�

and let

SSDb
a =

∑

ia∈Ia

SSDb
a(ia) = SSb −

∑

ia∈Ia

n(ia)ȳb(ia)ȳb(ia)
�

where SSb is the b-submatrix of the sums-of-squares matrix SS.
The log-likelihood for the sample is

l =
∑

(a,b)∈C

∑

ia∈Ia

n(ia)ga(ia) +
∑

(a,b)∈C

∑

ia∈Ia

hb
a(ia)

�tb(ia)

−
∑

u∈Γ

SSuukuu/2 −
∑

{u,v}∈Γ

SSuvkuv (5.11)

where in the last term there is a contribution from SSuv only if kuv �= 0, that is if
{u,v} ∈ b for some generator (a, b) ∈ C.

Consider now a given model with generators C = {G1, . . . ,Gm} and derive the
formulae for g(i) and each hu(i) as described in Sect. 5.5. Then a set of minimal
sufficient statistics is given by

1. A set of marginal tables of cell counts {n(ia)}ia∈Ia
for each discrete generator a.

2. For each u ∈ Γ , a set of marginal variate totals {tu(ia)}ia∈Ia
for each linear gen-

erator a of u.
3. A set of marginal tables of uncorrected sums and squares {SSb} for each

quadratic generator b.

From exponential family theory, we know that the MLE of {p(i),μ(i),Σ} can be
found by equating the expectations of these minimal sufficient statistics to their
observed values. Equating the minimal sufficient statistics to their observed values
for a generator (a, b) yields:

5.7 Maximum Likelihood Estimation 131

n(ia) = Np(ia), ∀ia ∈ Ia, (5.12)

tb(ia) = N
∑

j :ja=ia

p(j)μb(j), ∀ia ∈ Ia (5.13)

SSb = N

{
Σb +

∑

j∈I
p(j)μb(j)μb(j)�

}
. (5.14)

Each generator (a, b) ∈ C defines a set of equations of the form (5.12)–(5.14) and
the collection of these equations are the likelihood equations for the model. The
MLEs, when they exist, are the unique solution to these equations that also satisfy
the model constraints.

For example, for the saturated model on V = Δ ∪ Γ , we set a = Δ and b = Γ .
Here there are no model constraints, and from the equations we find that the MLEs
are given as p̂(i) = n(i)/N , μ̂(i) = y(i) and Σ̂ = S.

5.7.5 Iterative Proportional Scaling

As with discrete log-linear models and graphical Gaussian models, iterative meth-
ods to find the maximum likelihood parameter estimates are generally necessary.
The iterative proportional scaling algorithm for mixed interaction models proceeds
by equating observed and expected margins, in much the same way as with dis-
crete and continuous models. An important conceptual difference, however, relates
to marginalization. Whereas multinomial and Gaussian distributions are preserved
under marginalization, the same is not generally true in the mixed case: the marginal
distribution of a CG-distribution is not necessarily CG. For this reason the concept
of weak marginals is needed.

5.7.5.1 Weak Marginals

Consider a CG-density fV defined over the variables V = Δ∪Γ . Letting a ⊂ Δ and
b ⊂ Γ we wish to obtain the marginal density fa∪b . This density is obtained by first
integrating over yΓ \b to produce fΔ∪b which again is a CG-density. The next step is
to sum over iΔ\a to form fa∪b . This summation may involve forming a mixture of
normal densities, which does not generally have the form of a CG-density. However,
even though fa∪b is not in general a CG-density we can find the moments of fa∪b

using standard formulae, namely

p[a](ia) = p(Ia = ia) = p(ia) =
∑

j :ja=ia

p(j)

μb[a](ia) = E(Y b | Ia = ia) =
∑

j :ja=ia

p(j)

p[a](ia)
μb(j), and

132 5 Mixed Interaction Models

Σb[a](ia) = V(Y b | Ia = ia)

= Σb +
∑

j :ja=ia

p(j)

p[a](ia)
{μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�.

These moments {p[a](ia),μb[a](ia),Σb[a](ia)}ia∈Ia
define a CG density f[a∪b] de-

noted the weak marginal density (which is not homogeneous).
Furthermore, we define the homogeneous weak marginal variance to be:

Σb[a] =
∑

ia∈Ia

p[a](ia)Σb[a](ia)

= Σb +
∑

ia∈Ia

∑

j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�.

The moments {p[a](ia),μb[a](ia),Σb[a]}ia∈Ia
define a CG density f h

[a∪b] which is de-
noted the homogeneous weak marginal density.

The weak marginal density is the CG-density which best approximates the true
marginal fa∪b in the sense of minimizing the Kullback–Leibler distance, see Lau-
ritzen (1996), p. 162. The same proof yields that the analogous statement holds for
the homogeneous weak marginal.

5.7.5.2 Likelihood Equations Revisited

It is illustrative to rewrite the likelihood equations as follows. Observe that

Qb
a =

∑

ia∈Ia

∑

j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�

=
∑

i∈I
p(i)μb(i){μb(i)}� −

∑

ia∈Ia

p[a](ia)μb[a](ia){μb[a](ia)}� (5.15)

Using the definitions of the parameters of weak marginal models, (5.12) and
(5.13) imply that

n(ia)/N = p[a](ia), ȳb(ia) = tb(ia)/n(ia) = μb[a](ia). (5.16)

Using (5.15) and (5.16) we get from (5.14) that

SSDb
a = SSb −

∑

ia∈Ia

n(ia)ȳ
b(ia)ȳ

b(ia)
�

= N

[
Σb +

∑

ia∈Ia

∑

j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�
]

= N(Σb + Qb
a) = NΣb[a]

5.7 Maximum Likelihood Estimation 133

The MLEs under the saturated MI-model for the variables a ∪ b (whose density
is denoted f̃a∪b) are {p̃a(ia), μ̃

b
a(ia), S̃

b
a }ia∈Ia

where

p̃a(ia) = n(ia)/N, μ̃b
a(ia) = ȳb(ia) and S̃b

a = SSDb
a/N.

In other words, the likelihood equations are:

p̃a(ia) = n(ia)/N = p[a](ia) (5.17)

μ̃b
a(ia) = ȳb(ia) = μb[a](ia) (5.18)

S̃b
a = SSDb

a/N = Σb[a] (5.19)

thus the homogeneous weak marginal model on a ∪ b should be identical to the
saturated MI-model on a ∪ b, i.e. f h

[a∪b] = f̃a∪b .

5.7.5.3 General IPS Update Step

Here we describe the iterative algorithm for general MI-models implemented in
gRim and MIM (Edwards 2000). Equations (5.17)–(5.19) suggest the following
IPS update step for a generator (a, b):

f ∗(i, y) ∝ f (i, y)
f sat

a∪b(ia, yb)

f h
[a∪b](ia, yb)

(5.20)

Note that the right-hand side of (5.20) will not in general be a density: Integrating
over yΓ \b and summing over iΔ\a gives

fa∪b(ia, y
b)f sat

a∪b(ia, y
b)/f h

[a∪b](ia, y
b)

which will not be a density unless the marginal density fa∪b(ia, yb) equals the ho-
mogeneous weak marginal density f h

[a∪b](ia, yb).
It is convenient to perform the update (5.20) on log-densities using the canon-

ical parametrisation, since it just involves to addition and subtraction of canonical
parameters. From (5.17)–(5.19), to update (g,h,K) we first transform the moment
parameters {p̃a, μ̃

b
a, S̃

b
a } and {p[a],μb[a],Σb[a]} of f̃a∪b and f h

[a∪b] to canonical pa-

rameters (g̃a, h̃
b
a, K̃

b
a) and (g[a], hb[a],Kb[a]). Then we

1. Update g as follows: For each ia ∈ Ia do for all j for which ja = ia :

g(j) ← g(j) + {g̃a(ia) − g[a](ia)}. (5.21)

2. Update the b subvector of h as follows: For each ia ∈ Ia do for all j for which
ja = ia :

hb(j) ← hb(j) + {h̃b
a(ia) − hb[a](ia)}. (5.22)

134 5 Mixed Interaction Models

3. Update the b submatrix Kbb of K as follows:

Kbb ← Kbb + {K̃b
a − Kb[a]}. (5.23)

After the update steps (5.21)–(5.23) we know h and K and hence the conditional
distribution of y given i. To complete the update we must transform (g,h,K) to
moment form (p,μ,Σ), normalize p to sum to one and transform back to canonical
form (g,h,K) again before moving on to the next generator. Running through the
generators (a1, b1), (a2, b2), . . . , (aM,bM) as described above constitutes one cycle
of the iterative fitting process.

A measure of how much the updates (5.21)–(5.23) change the parameter esti-
mates may be obtained by comparing the moments of f̃a∪b and f h

[a∪b]. Following
Edwards (2000) we use the quantity:

mdiff(a, b) = max
ia∈Ia,u,v∈b

{
N |p[a](ia) − p̃a(ia)|√

Np[a](ia) + 1
,
|μu[a](ia) − μ̃u

a(ia)|√
(Σb[a])uu

,

|(Σb[a])uv − (Σ̃b
a)uv|√

(Σb[a])uu(Σ
b[a])vv + (Σb[a])2

uv

}
(5.24)

It sometimes happens that the updates (5.21)–(5.23) lead to a decrease in the likeli-
hood. To avoid this situation we first calculate mdiff(a, b) in (5.24). If mdiff(a, b)

is smaller than some prespecified criterion we do not update the model but proceed
to the next generator. If this is true for all generators we exit the iterative process, as
it essentially only happens when we are close to the MLE.

Since the estimation algorithm in the mmod() function is based on the model for-
mula, which is not unique, there will be efficiency differences between the different
representations of the same model. The maximal form is the most efficient.

5.7.5.4 Step-Halving Variant

It can happen that the updates (5.21)–(5.23) fail to increase the likelihood, or lead to
a K that is not positive definite. The step-halving variant of the algorithm (currently
not implemented in gRim) replaces the three update steps in (5.21)–(5.23) with:

g(j) ← g(j) + κ{g̃a(ia) − g[a](ia)},
hb(j) ← hb(j) + κ{h̃b

a(ia) − hb[a](ia)},
Kbb ← Kbb + κ{K̃b

a − Kb[a]}.
Initially κ = 1. The update is attempted and it is then checked if (1) K is posi-
tive definite and (2) the likelihood is increased. If either of these conditions fail, κ

is halved and the update is attempted again. The step-halving variant is therefore
slower than the general algorithm. Edwards (2000, p. 312) shows an example with
contrived data where step-halving is necessary.

5.8 Using gRim 135

5.7.5.5 Mixed Parameterisation Variant

If the model is collapsible onto the discrete parameters, the estimate p̂(i) is identical
to the estimate obtained in the log-linear model with the same discrete generator.
This permits another variant based on the mixed parametrisation to be used. It has
the following update scheme

p(j) ← p(j){p(ia)/p[a](ia)},
hb(j) ← hb(j) + κ{h̃b

a(ia) − hb[a](ia)},
Kbb ← Kbb + κ{K̃b

a − Kb[a]}.

The model is collapsible onto Δ if and only every connected component of the sub-
graph induced by the continuous variables has a complete boundary in the subgraph
induced by the discrete variables (Frydenberg 1990b). This variant is currently not
implemented in gRim.

5.8 Using gRim

The function mmod() in the gRim package allows homogeneous mixed interaction
models to be defined and fitted to data.

> glist <- ~treat:fat:protein+protein:lactose

~treat:fat:protein + protein:lactose

> milk <- mmod(glist, data=milkcomp1)

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 428.47 mdim : 26 aic : 480.47
ideviance : 18.97 idf : 14 bic : 532.66
deviance : 2.11 df : 7

This model is shown in Fig. 5.1. More details about the model are obtained with

> summary(milk)

Mixed interaction model:
Generators:
:"treat" "fat" "protein"
:"protein" "lactose"

Discrete: 1 Continuous: 3
Is graphical: TRUE Is decomposable: TRUE
logL: -214.233011, iDeviance: 241.774364

The parameters are obtained using coef() where the desired parameterization can
be specified. For example, the canonical parameters are

> coef(milk, type="ghk")

136 5 Mixed Interaction Models

MIparms: form=ghk
a b c d e f

[1,] -676.055 -666.0859 -675.0546 -690.992 -664.9730 -666.7805
[2,] -1.135 -0.2838 -0.9179 -1.022 -0.2012 -0.5375
[3,] 84.349 81.3414 83.8954 86.851 81.0040 81.8196
[4,] 164.634 164.6335 164.6335 164.634 164.6335 164.6335

g
[1,] -680.022 NA NA NA
[2,] -1.043 0.5026 -0.815 0.000
[3,] 84.953 -0.8150 10.762 5.667
[4,] 164.634 0.0000 5.667 24.646

5.8.1 Updating Models

Models are changed using the update() method. A list with one or more of the
components add.edge, drop.edge, add.term and drop.term is specified. The
updates are made in the order given. For example:

> milk2 <- update(milk, list(add.edge=~fat:lactose,
drop.edge=~treat:protein))

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 446.17 mdim : 21 aic : 488.17
ideviance : 10.12 idf : 9 bic : 530.33
deviance : 10.96 df : 12

5.8.2 Inference

Functions such as ciTest(), testInEdges(), testOutEdges(), etc. behave
more or less as for pure discrete and pure continuous variables. For example

> ciTest(milkcomp1)

Testing treat _|_ fat | protein dm lactose
Statistic (DEV): 4.371 df: 6 p-value: 0.6266 method: CHISQ

and

> testInEdges(milk,getInEdges(milk$glist))

statistic df p.value aic V1 V2 action
1 5.530 6 0.47780 -6.470 fat treat +
2 9.345 6 0.15510 -2.655 protein treat +
3 4.139 1 0.04191 2.139 protein fat -
4 5.123 1 0.02362 3.123 lactose protein -

> testOutEdges(milk,getOutEdges(milk$glist))

statistic df p.value aic V1 V2 action
1 1.9464 6 0.9246 10.054 lactose treat -
2 0.4914 1 0.4833 1.509 lactose fat -

5.8 Using gRim 137

or

> milk3 <- update(milk, list(drop.edge=~treat:protein))

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 447.16 mdim : 20 aic : 487.16
ideviance : 9.63 idf : 8 bic : 527.30
deviance : 11.45 df : 13

> compareModels(milk, milk3)

Large:
:"treat" "fat" "protein"
:"protein" "lactose"

Small:
:"protein" "lactose"
:"treat" "fat"
:"fat" "protein"

-2logL: 18.69 df: 6 AIC(k= 2.0): 6.69 p.value: 0.155100

and

> testdelete(milk, c("treat","protein"))

dev: 9.345 df: 6 p.value: 0.15510 AIC(k=2.0): -2.7 edge:
treat:protein

Notice: Test perfomed by comparing likelihood ratios

> testadd(milk, c("treat","lactose"))

dev: 1.946 df: 6 p.value: 0.92456 AIC(k=2.0): 10.1 edge:
treat:lactose

Notice: Test perfomed by comparing likelihood ratios

5.8.3 Stepwise Model Selection

The stepwise() function in the gRim package implements stepwise selection for
mixed interaction models. The functionality is very similar to that described above
in Sect. 2.4 and Sect. 4.4.1, for discrete graphical models and undirected graphical
Gaussian models respectively. We refer to those sections for further details, and
illustrate using the wine dataset described in Sect. 5.2. We start from the saturated
model and use the BIC criterion:

> data(wine, package=`gRbase')
> mm <- mmod(~.^., data=wine)
> mm2 <- stepwise(mm, k=log(nrow(wine)), details=0)

The selected model is shown below:

> plot(mm2)

138 5 Mixed Interaction Models

We note that the model is non-decomposable, since there are several chordless four-
cycles in the graph. Since the graph is connected, it appears that all constituents dif-
fer over the grape varieties. Seven constituents are adjacent to the discrete variable.
The model implies that these seven are sufficient to predict grape variety, since the
remaining six are independent of variety given the seven, and so would not increase
predictive ability.

5.9 An Example of Chain Graph Modelling

In this section we illustrate an approach that is appropriate when there is a clear
overall response to the data, that is, when some variables are prior or explanatory
to others, that are themselves prior or explanatory to others, and so on. The vari-
ables can a priori be divided into blocks, whose mutual ordering in this respect is
clear. The goal of the analysis is to model the data, respecting this ordering between
blocks, but not assuming any ordering within blocks. Chain graph models fit this
purpose well.

The Nutrimouse dataset described above in Sect. 5.2 is here used as example.
Here, the variables fall into three blocks: two discrete design variables (genotype
and diet), 120 gene expression variables, and 21 lipid measurements. Clearly the
design variables, which are subject to the control of the experimenter, are causally
prior to the others. It is also natural as a preliminary working hypothesis to suppose
that the gene expression measurements are causally prior to the lipid measurements,
and this is the approach taken here. More advanced methods would be necessary to
study whether there is evidence of influence in the opposite direction.

The chain graph is constructed using two graphical models: the first is for the
gene expressions (block 2) given the design variables (block 1), and the second is
for the lipids (block 3) given blocks 1 and 2. We use the gRapHD package described
in Chap. 7. This package supports decomposable mixed models, both homogeneous
and heterogeneous, exploiting the closed-form expressions for the MLEs (5.9). This
restriction also means that models can simply be specified as graphs, rather than
using model formulae.

5.9 An Example of Chain Graph Modelling 139

Fig. 5.3 A tree model for the gene expression variables (block 2) given the design variables
(block 1)

To model the conditional distribution of block 2 given block 1 we restrict atten-
tion to models in which block 1 is complete, that is, there is an edge between the
two design variables. See Fig. 4.33. The following code first finds the minimal BIC
forest containing this edge, and then uses this as initial model in a forward selection
process to find the minimal BIC decomposable model. This takes a few seconds.

> data(Nutrimouse, package='gRbase')
> library(gRapHD)
> block2 <- Nutrimouse[,1:122]
> gF1 <- minForest(block2, cond=list(1:2))
> gD1 <- stepw(gF1, data=block2)

> xyD1 <- plot(gD1, numIt=5000, disp=F)
> plot(gF1, numIt=0, coord=xyD1)

> plot(gD1, numIt=0, coord=xyD1)

We display the two graphs in Figs. 5.3 and 5.4, using the same vertex coordinates
for clarity. The vertex coordinates are saved in a matrix xyD1.

We now turn to modelling the conditional distribution of block 3 variables given
the prior blocks. We adopt the same approach as before, first finding a minimal BIC

140 5 Mixed Interaction Models

Fig. 5.4 A decomposable model for the gene expression variables (block 2) given the design
variables (block 1)

forest and then using this as start model in a forward selection process. As before
we restrict the search space to conditional models by including all edges between
prior variables in the models considered. The forward selection process seeks the
decomposable MI-model with minimum BIC in this search space.

> gF2 <- minForest(Nutrimouse, cond=list(1:122))
> gD2 <- stepw(gF2, data=Nutrimouse)

The stepw() function is computationally intensive, taking around 10 minutes on an
ordinary laptop running Windows. We display the decomposable model in Fig. 5.5.

> plot(gD2, numIt=1000)

Now we construct a graph gD3 by adding to gD1 those edges in gD2 that have a
vertex in block 3:

> E2 <- data.frame(gD2@edges)
> names(E2) <- c("v1", "v2")
> E2 <- as.matrix(E2[(E2$v1>122) | (E2$v2>122),])
> E3 <- rbind(gD1@edges, E2)
> gD3 <- gD2
> gD3@edges <- E3

5.9 An Example of Chain Graph Modelling 141

Fig. 5.5 A decomposable model for the lipid variables given the gene expression and design vari-
ables. The subgraph induced by the gene expression and design variables is complete, and is shown
as a compact splat

Note that gD3 is an undirected graph rather than a chain graph. We use the igraph
package to display it as a chain graph using different colours for the blocks, in-
terblock edges displayed as arrows, in a layout in which the different blocks are
separated for clarity. See Fig. 5.6

> # Define the blocks
> blk <- c(rep(1,2),rep(2,120),rep(3,21))
> # Derive the layout from the graph with only intrablock edges
> E <- gD3@edges
> E1 <- cbind(blk[E[,1]],blk[E[,2]])
> intrablock <- E1[,1]==E1[,2]
> tG3 <- gD3; tG3@edges <- E[intrablock,]
> itG3 <- as(as(tG3, "graphNEL"),"igraph")
> xy.coord <- piecewise.layout(itG3)
> # Use this for the chain graph
> igD3 <- graph.edgelist(E-1, directed=T)
> V(igD3)$label <- as.character(1:143)
> V(igD3)[blk==1]$color <- "white"
> V(igD3)[blk==2]$color <- "SkyBlue2"

142 5 Mixed Interaction Models

Fig. 5.6 A chain graph model for the nutrimouse data. The design variables are shown as open
circles, the gene expression variables as blue circles, and the lipid variables as red circles. The
variables are shown as column numbers

> V(igD3)[blk==3]$color <- "red"
> V(igD3)$size <- 8
> V(igD3)$label.cex <- 0.5
> E(igD3)[intrablock]$arrow.mode <- "-"
> E(igD3)[!intrablock]$arrow.mode <- "->"
> E(igD3)$arrow.size <-0.3
> plot(igD3, layout=xy.coord)

5.10 Various

Several other R packages are designed for graphical modelling with mixed discrete
and Gaussian variables. The package CoCo (Badsberg 1991) implements undi-
rected graphical (and hierarchical) models with mixed variables. The package deal
(Bøttcher and Dethlefsen 2003) allows a Bayesian analysis using models for mixed

5.10 Various 143

variables based on DAGs, based on the conditional Gaussian distribution. Prior dis-
tributions for the model parameters are set and posterior distributions given data are
derived. A heuristic search strategy for structural learning is also supported. The
package RHugin also supports the use of Bayesian network models with mixed
variables: see Chap. 3.

Chapter 6
Graphical Models for Complex Stochastic
Systems

6.1 Introduction

In this chapter we describe the use of graphical models in a Bayesian setting, in
which parameters are treated as random quantities on equal footing with the ran-
dom variables. This allows complex stochastic systems to be modelled. This is one
of the most successful application areas of graphical models; we give only a brief
introduction here and refer to Albert (2009) for a more comprehensive exposition.

The paradigm used in Chaps. 2, 4 and 5 was that of identifying a joint distribution
of a number of variables based on independent and identically distributed samples,
with parameters unknown apart from restrictions determined by a log-linear, Gaus-
sian, or mixed graphical model.

In contrast, Chap. 3 illustrated how a joint distribution for a Bayesian network
may be constructed from a collection of conditional distributions; the network can
subsequently be used to infer values of interesting unobserved quantities given ev-
idence, i.e. observations of other quantitites. As parameters and random variables
are on an equal footing in the Bayesian paradigm, we may think of the interesting
unobserved quantitites as parameters and the evidence as data.

In the present chapter we follow this idea through in a general statistical setting.
We focus mainly on constructing full joint distributions of a system of observed and
unobserved random variables by specifying a collection of conditional distributions
for a graphical model given as a directed acyclic graph with nodes representing all
these quantities. Bayes’ theorem is then invoked to perform the necessary inference.

6.2 Bayesian Graphical Models

6.2.1 Simple Repeated Sampling

In the simplest possible setting we specify the joint distribution of a parameter θ and
data x through a prior distribution π(θ) for θ and a conditional distribution p(x | θ)

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_6, © Springer Science+Business Media, LLC 2012

145

http://dx.doi.org/10.1007/978-1-4614-2299-0_6

146 6 Graphical Models for Complex Stochastic Systems

Fig. 6.1 Representation of a Bayesian model for simple sampling. The graph to the left indicates
that observations are conditionally independent given θ ; the picture to the right represents the
same, but the plate allows a more compact representation

of data x for fixed value of θ , leading to the joint distribution

p(x, θ) = p(x | θ)π(θ).

The prior distribution represents our knowledge (or rather uncertainty) about θ be-
fore the data have been observed. After observing that X = x our posterior distri-
bution π∗(θ) of θ is obtained by conditioning with the data x to obtain

π∗(θ) = p(θ |x) = p(x|θ)π(θ)

p(x)
∝ L(θ)π(θ),

where L(θ) = p(x | θ) is the likelihood. Thus the posterior is proportional to the
likelihood times the prior and the normalizing constant is the marginal density
p(x) = ∫

p(x|θ)π(θ)dθ .
If the data is a sample x = (x1, x2, x3, x4, x5) we can represent this process by a

small Bayesian network as shown to the left in Fig. 6.1. This network represents the
model

p(x1, . . . , x5, θ) = π(θ)

5∏

ν=1

p(xν | θ).

reflecting that the individual observations are conditionally independent and identi-
cally distributed given θ . We can make a more compact representation of the net-
work by introducing a plate which indicates repeated observations, such as shown
to the right in Fig. 6.1.

For a more sophisticated example, consider a graphical Gaussian model given
by the conditional independence X1 ⊥⊥ X3 |X2 for fixed value of the concentra-
tion matrix K . In previous chapters we would have represented this model with its
dependence graph:

However, in the Bayesian setting we need to include the parameters explicitly
into the model, and could for example do that by the graph in Fig. 6.2.

The model is now represented by a chain graph, where the first chain component
describes the structure of the prior distribution for the parameters in the concen-

6.2 Bayesian Graphical Models 147

Fig. 6.2 A chain graph
representing N independent
observations of
X = (X1,X2,X3) from a
Bayesian graphical Gaussian
model in which
Xν

1 ⊥⊥ Xν
3 |Xν

2 ,K and K

follows a hyper Markov prior
distribution

tration matrix. We have here assumed a so-called hyper Markov prior distribution
(Dawid and Lauritzen 1993): conditionally on k22, the parameters (k11, k12) are
independent of (k23, k33). The plate indicates that there are N independent obser-
vations of X, so the graph has 3N + 5 nodes. The chain component on the plate
reflects the factorization

f (x1, x2, x3 |K)

∝ det(K)1/2 exp{−(x2
1k11 + x2

2k22 + x2
3k33 + 2x1x2k12 + 2x2x3k23)/2}

for each of the individual observations of X = (X1,X2,X3).

6.2.2 Models Based on Directed Acyclic Graphs

A key feature of Bayesian graphical models is that explicitly including parame-
ters and observations themselves in the graphical representation enables much more
complex observational patterns to be accommodated. Consider for example a linear
regression model

Yi ∼ N(μi, σ
2) with μi = α + βxi for i = 1, . . . ,N.

To obtain a full probabilistic model we must specify a joint distribution for (α,β,σ)

whereas the dependent variables xi are assumed known (observed). If we specify in-
dependent distributions for these quantities, Fig. 6.3 shows a plate- based represen-
tation of this model with α, β , and σ being marginally independent and independent
of Yi .

Note that μi are deterministic functions of their parents and the same model
can also be represented without explicitly including these nodes. However, there
can be specific advantages of representing the means directly in the graph. If the
independent variables xi are not centered, i.e. x̄ �= 0, the model would change if xi

were replaced with xi − x̄, as α then would be the conditional mean when xi = x̄

rather than when xi = 0, inducing a different distribution of μi .
For a full understanding of the variety and complexity of models that can easily

be described by DAGs with plates, we refer to the manual for BUGS (Spiegelhalter
et al. 2003), which also gives the following example.

148 6 Graphical Models for Complex Stochastic Systems

Fig. 6.3 Graphical representations of a traditional linear regression model with unknown intercept
α, slope β , and variance σ 2. In the representation to the left, the means μi have been represented
explicitly

Fig. 6.4 Graphical representation of a random coefficient regression model for the growth of rats

Weights have been measured weekly for 30 young rats over five weeks. The
observations Yij are the weights of rat i measured at age xj . The model is essentially
a random effects linear growth curve:

Yij ∼ N (αi + βi(xj − x̄), σ 2
c)

and

αi ∼ N (αc, σ
2
α), βi ∼ N (βc, σ

2
β),

where x̄ = 22. Interest particularly focuses on the intercept at zero time (birth),
denoted α0 = αc − βcx̄. The graphical representation of this model is displayed in
Fig. 6.4.

For a final illustration we consider the chest clinic example in Sect. 3.1.1. Fig-
ure 6.5 shows a directed acyclic graph with plates representing N samples from the
chest clinic network.

6.3 Inference Based on Probability Propagation 149

Fig. 6.5 A graphical
representation of N samples
from the chest clinic network,
with parameters unknown and
marginally independent for
seven of the nodes

Here we have introduced a parameter node for each of the variables. Each of these
nodes may contain parameters for the conditional distribution of a node given any
configuration of its parents, so that, following Spiegelhalter and Lauritzen (1990),
we would write for the joint model

p(x, θ) =
∏

v∈V

π(θv)

N∏

ν=1

p(xν
v |xν

pa(v), θv).

6.3 Inference Based on Probability Propagation

If the prior distributions of the unknown parameters are concentrated on a finite
number of possibilities, i.e. the parameters are all discrete, the marginal posterior
distribution of each of these parameters can simply be obtained by probability prop-
agation in a Bayesian network with 7 + 8N nodes, inserting the observations as ob-
served evidence. The moral graph of this network is shown in Fig. 6.6. This graph
can be triangulated by just adding edges between xν

L and xν
B and the associated junc-

tion tree would thus have 10N cliques of size at most 4. Thus, propagation would
be absolutely feasible, even for large N .

We illustrate this procedure in the simple case of N = 3 where we only introduce
unknown parameters for the probability of visiting Asia and the probability of a
smoker having lung cancer, each having three possible levels, low, medium and
high. We first define the parameter nodes

> library(gRain)
> lmh <- c("low","medium","high")
> thA<- cptable(~theta_A, values =c(1,1,1), levels=lmh)

150 6 Graphical Models for Complex Stochastic Systems

Fig. 6.6 Moral and
triangulated graph of N

samples from the chest clinic
network, with seven unknown
parameters

> thL<- cptable(~theta_L, values =c(1,1,1), levels=lmh)
> param <- list(thA, thL)

and then specify a template for probabilities where we notice that A and L have an
extra parent

> yn <- c("yes","no")
> a <- cptable(~asia[i]|theta_A, values=c(1,99,2,98,5,95),levels=yn)
> t.a <- cptable(~tub[i]|asia[i], values=c(5,95,1,99),levels=yn)
> s <- cptable(~smoke[i], values=c(5,5), levels=yn)
> l.s <- cptable(~lung[i]|smoke[i]:theta_L,
+ values=c(5,95,1,99,1,9,1,99,1,4,1,99), levels=yn)
> b.s <- cptable(~bronc[i]|smoke[i], values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either[i]|lung[i]:tub[i],
+ values=c(1,0,1,0,1,0,0,1),levels=yn)
> x.e <- cptable(~xray[i]|either[i], values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp[i]|bronc[i]:either[i],
+ values=c(9,1,7,3,8,2,1,9), levels=yn)
> plist.tmp <- list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

We create three instances of the pattern defined above. In these instance the variable
name asia[i] is replaced by asia1, asia2 and asia3 respectively.

> plate <- repeatPattern(plist.tmp, instances=1:3)

We then proceed to the specification of the full network which is displayed in
Fig. 6.7:

> plist <- compileCPT(c(param, plate))
> chestlearn <-grain(plist)
> plot(chestlearn)

Finally we insert evidence for three observed cases, none of whom have been
to Asia, all being smokers, one of them presenting with dyspnoea, one with a pos-

6.3 Inference Based on Probability Propagation 151

Fig. 6.7 Bayesian network
for the chest clinic example
with two unknown parameter
nodes and two potential
observations of the network.
Parameters appear as nodes in
the graph

itive X-ray, one with dyspnoea and a negative X-ray; we then query the posterior
distribution of the parameters:

> chestlearn.ev<- setFinding(chestlearn,
+ nodes = c("asia1","smoke1","xray1"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia2","smoke2","dysp2"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia3","smoke3","dysp3","xray3"),

c("no","yes","yes","no"))
> querygrain(chestlearn.ev,nodes =c("theta_A","theta_L"))

$theta_A
theta_A

low medium high
0.3504 0.3399 0.3096

$theta_L
theta_L

low medium high
0.2211 0.3099 0.4690

We see that the probabilities of visiting Asia is now more likely than before to be
low, whereas the probability of having lung cancer for a smoker is more likely to be
high.

In the special case where all cases have been completely observed, it is not nec-
essary to form the full network with 7 + 8N nodes, but updating can be performed
sequentially as follows.

152 6 Graphical Models for Complex Stochastic Systems

Let p∗
n(θ) denote the posterior distribution of θ given n observations x1, . . . , xn,

i.e. p∗
n(θ) = p(θ |x1, . . . , xn). We then have the recursion:

p∗
n(θ) ∝ p(x1, . . . , xn, θ) =

{
n∏

ν=1

p(xν | θ)

}
p(θ)

= p(xn | θ)

{
n−1∏

ν=1

p(xν | θ)

}
p(θ)

∝ p(xn | θ)p∗
n−1(θ).

Hence we can incorporate evidence from the n-th observation by using the posterior
distribution from the n − 1 first observations as a prior distribution for a network
representing only a single case. It follows from the moral graph in Fig. 6.6 that if all
nodes in the plates are observed, the seven parameters are conditionally independent
also in the posterior distribution after n observations. If cases are incomplete, such
a sequential scheme can only be used approximately (Spiegelhalter and Lauritzen
1990).

6.4 Computations Using Monte Carlo Methods

In most cases the posterior distribution

π∗(θ) = p(θ |x) = p(x|θ)π(θ)

p(x)
∝ p(x|θ)π(θ) (6.1)

of the parameters of interest cannot be calculated or represented in a simple fashion.
This would for example be the case if the parameter nodes in Fig. 6.5 had values in
a continuum and there were incomplete observations, such as in the example given
in the previous section.

In such models one will often resort to Markov chain Monte Carlo (MCMC)
methods: we cannot calculate π∗(θ) analytically but if we can generate samples
θ(1), . . . , θ (M) from the distribution π∗(θ), we can do just as well.

6.4.1 Metropolis–Hastings and the Gibbs Sampler

Such samples can be generated by the Metropolis–Hastings algorithm. In the fol-
lowing we change the notation slightly.

We suppose that we know p(x) only up to a normalizing constant. That is to say,
p(x) = k(x)/c, where k(x) is known but c is unknown. We partition x into blocks,
for example x = (x1, x2, x3).

6.4 Computations Using Monte Carlo Methods 153

We wish to generate samples x1, . . . , xM from p(x). Suppose we have a sample
xt−1 = (xt−1

1 , xt−1
2 , xt−1

3) and also that x1 has also been updated to xt
1 in the current

iteration. The task is to update x2. To do so we need to specify a proposal distribu-
tion h2 from which we can sample candidate values for x2. The single component
Metropolis–Hastings algorithm works as follows:

1. Draw x2 ∼ h2(· |xt
1, x

t−1
2 , xt−1

3). Draw u ∼ U(0,1).
2. Calculate acceptance probability

α = min

(
1,

p(x2 |xt
1, x

t−1
3)h2(x

t−1
2 |xt

1, x2, x
t−1
3)

p(xt−1
2 |xt

1, x
t−1
3)h2(x2 |xt

1, x
t−1
2 , xt−1

3)

)
(6.2)

3. If u < α set xt
2 = x2; else set xt

2 = xt−1
2 .

The samples x1, . . . , xM generated this way will form an ergodic Markov chain
that, under certain conditions, has p(x) as its stationary distribution so that the ex-
pectation of any function of x can be calculated approximately as

∫
f (x)p(x)dx = lim

M→∞
1

M

M∑

ν=1

f (xν) ≈ 1

M

M∑

ν=1

f (xν).

Note that p(x2 |xt
1, x

t−1
3) ∝ p(xt

1, x2, x
t−1
3) ∝ k(xt

1, x2, x
t−1
3) and therefore the ac-

ceptance probability can be calculated even though p(x) may only be known up to
proportionality.

A special case of the single component Metropolis–Hastings algorithm is the
Gibbs sampler: If as proposal distribution h2 we choose p(x2 |xt

1, x
t−1
3) then the

acceptance probability becomes 1 because terms cancel in (6.2). The conditional
distribution of a single component X2 given all other components (X1,X3) is known
as the full conditional distribution.

For a directed graphical model, the density of full conditional distributions can
be easily identified:

f (xi |xV \i) ∝
∏

v∈V

f (xv |xpa(v))

∝ f (xi |xpa(i))
∏

v∈ch(i)

f (xv |xpa(v)) = f (xi |xbl(i)), (6.3)

where bl(i) is the Markov blanket of node i:

bl(i) = pa(i) ∪ ch(i) ∪
{ ⋃

v∈ch(i)

pa(v) \ {i}
}

or, equivalently, the neighbours of i in the moral graph, see Sect. 1.4.1. Note that
(6.3) holds even if some of the nodes involved in the expression correspond to values
that have been observed. To sample from the posterior distribution of the unobserved

154 6 Graphical Models for Complex Stochastic Systems

values given the observed ones, only unobserved variables should be updated in the
Gibbs sampling cycle.

In this way, a Markov chain of pseudo-observations from all unobserved vari-
ables is generated, and those corresponding to quantities (parameters) of interest
can be monitored.

6.4.2 Using WinBUGS via R2WinBUGS

The program WinBUGS (Gilks et al. 1994) is based on the idea that the user specifies
a Bayesian graphical model based on a DAG, including the conditional distribu-
tion of every node given its parents. WinBUGS then identifies the Markov blanket
of every node and using properties of the full conditional distributions in (6.3), a
sampler is automatically generated by the program. As the name suggests, Win-
BUGS is available on Windows platforms only. WinBUGS can be interfaced from R

via the R2WinBUGS package (Sturtz et al. 2005) and to do this, WinBUGS must be
installed. R2WinBUGS works by calling WinBUGS, doing the computations there,
shutting WinBUGS down and returning control to R.

The model described in Fig. 6.3 can be specified in the BUGS language as follows
(notice that the dispersion of a normal distribution is parameterized in terms of the
concentration τ where τ = σ−2):

model {

for (i in 1:N) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta*(x[i] - x.bar)

}

x.bar <- mean(x[])

alpha ~ dnorm(0, 1.0E-6)

beta ~ dnorm(0, 1.0E-6)

sigma ~ dunif(0,100)

tau <- 1/pow(sigma,2)

}

BUGS comes with a Windows interface in the program WinBUGS. To analyse this
model in R we can use the package R2WinBUGS. First we save the model specifi-
cation to a plain text file:

> cat(
+ "model {
+ for (i in 1:N) {
+ Y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*(x[i] - x.bar)
+ }
+ x.bar <- mean(x[])
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,100)

6.4 Computations Using Monte Carlo Methods 155

+ tau <- 1/pow(sigma,2)
+ }",
+ file="linesModel.txt")

We specify data:

> Y <- c(1,3,3,3,5)
> x <- c(1,2,3,4,5)
> N <- 5

As the sampler must start somewhere, we specify initial values for the unknowns:

> p.ini <- list(alpha = 0, beta = 0, sigma = 1)

We may now ask WinBUGS for a sample from the model:

> library(R2WinBUGS)
> lines.res <-
+ bugs(data = list(Y=Y, x=x, N=N),
+ inits = list(p.ini),
+ param = c("alpha","beta","sigma"),
+ model = "linesModel.txt",
+ n.chains = 1,
+ ## Total number of samples, including burn-in:
+ n.iter = 7000,
+ ## Burn-in values; will be discarded in subsequent analyses:
+ n.burnin = 5000,
+ ## Of the non-discarded samples only every 'n.thin'th
+ will be used.
+ n.thin = 5,
+ bugs.directory = "c:/Programs/WinBUGS14/",
+ debug = F,
+ clearWD = TRUE)

The file lines.res contains the output. A simple summary of the samples is

> print(lines.res)

Inference for Bugs model at "linesModel.txt", fit using WinBUGS,
1 chains, each with 7000 iterations (first 5000 discarded), n.thin = 5
n.sims = 400 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%
alpha 3.0 1.0 1.7 2.7 3.0 3.3 4.6
beta 0.9 0.7 -0.1 0.6 0.8 1.0 2.3
sigma 1.5 2.1 0.5 0.7 1.0 1.5 6.2
deviance 14.4 5.3 9.0 10.8 12.8 16.4 28.5

DIC info (using the rule, pD = Dbar-Dhat)
pD = 0.2 and DIC = 14.7
DIC is an estimate of expected predictive error (lower deviance is

better).

We next convert the output to a format suitable for analysis with the coda package:

> library(coda)
> lines.coda <- as.mcmc.list(lines.res)

An summary of the posterior distribution of the monitored parameters is as follows:

> summary(lines.coda)

156 6 Graphical Models for Complex Stochastic Systems

Iterations = 5001:6996
Thinning interval = 5
Number of chains = 1
Sample size per chain = 400

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 2.980 1.037 0.0518 0.0525
beta 0.887 0.735 0.0367 0.0465
deviance 14.425 5.307 0.2654 0.3996
sigma 1.534 2.139 0.1070 0.1536

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 1.708 2.708 3.023 3.28 4.56
beta -0.065 0.598 0.813 1.04 2.35
deviance 9.046 10.837 12.775 16.41 28.47
sigma 0.459 0.740 1.002 1.49 6.16

As the observations are very informative, the posterior distributions of the regres-
sion parameters α and β are similar to the sampling distributions obtained from a
standard linear regression analysis:

> summary(lm(Y~I(x-mean(x))))

Call:
lm(formula = Y ~ I(x - mean(x)))

Residuals:
1 2 3 4 5

-4.00e-01 8.00e-01 4.84e-17 -8.00e-01 4.00e-01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000 0.327 9.19 0.0027 **
I(x - mean(x)) 0.800 0.231 3.46 0.0405 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.73 on 3 degrees of freedom
Multiple R-squared: 0.8, Adjusted R-squared: 0.733
F-statistic: 12 on 1 and 3 DF, p-value: 0.0405

A traceplot (see Fig. 6.8) of the samples is useful for visual inspection of indications
that the sampler has not converged. There appears to be no problem here:

> library(coda)
> par(mfrow=c(2,2))
> traceplot(lines.coda)

A plot of the marginal posterior densities (see Fig. 6.9) provides a supplement to the
numeric summaries shown above:

> par(mfrow=c(2,2))
> densplot(lines.coda)

6.4 Computations Using Monte Carlo Methods 157

Fig. 6.8 A traceplot of the samples produced by BUGS is a useful tool for visual inspection of
indications of that the sampler has not converged

Fig. 6.9 A plot of each posterior marginal distribution provides a provides a supplement to the
numeric summary statistics

158 6 Graphical Models for Complex Stochastic Systems

6.5 Various

An alternative to WinBUGS is OpenBUGS (Spiegelhalter et al. 2011). The two pro-
grams have the same genesis and the model specification languages are very similar.
OpenBUGS can be interfaced from R via the BRugs package and OpenBUGS/BRugs
is available for all platforms. The modus operandi of BRugs is fundamentally differ-
ent from that of WinBUGS: a sampler created using BRugs remains alive in the sense
that one may call the sampler repeatedly from within R. Yet another alternative is
package rjags which interfaces the JAGS program; this must be installed separately
and is available for all platforms.

Chapter 7
High Dimensional Modelling

7.1 Introduction

This chapter describes and compares some methods available in R for selecting and
working with high-dimensional graphical models. By ‘high-dimensional’ we are
thinking of models with hundreds to tens of thousands of variables. Modelling such
data has become of central importance in molecular biology and other fields, but is
challenging. Many graph-theoretic operations scale poorly: for example, finding the
cliques of a general undirected graph is known to be NP-hard. Model selection al-
gorithms that work well in low dimensional applications may be quite infeasible for
high dimensional ones. There can be statistical as well as algorithmic limitations:
for example, for high-dimensional Gaussian data with modest numbers of observa-
tions, maximum likelihood estimates will not exist for complex models. Generally
it is necessary to assume that relatively simple models are adequate to model high-
dimensional data.

In Sect. 7.2 two example datasets are described. In Sect. 7.3 some model selection
algorithms available in R are compared in respect to their scalability. Sections 7.4,
7.5 and 7.6 describe the use of some of the more scalable methods in more detail.
Finally, in Sect. 7.7 we describe a Bayesian approach, showing how to identify the
MAP (maximum a posteriori) forest for high-dimensional discrete data.

7.2 Two Datasets

We illustrate the methods in this chapter using two datasets. The first is supplied
along with gRbase and is taken from a study comparing gene expression profiles in
tumours taken from two groups of breast cancer patient, namely those with and those
without a mutation in the p53 tumour suppression gene. See Miller et al. (2005) for
a further description of the study.

> data(breastcancer)
> dim(breastcancer)

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_7, © Springer Science+Business Media, LLC 2012

159

http://dx.doi.org/10.1007/978-1-4614-2299-0_7

160 7 High Dimensional Modelling

[1] 250 1001

> table(sapply(breastcancer, class))

factor numeric
1 1000

> table(breastcancer$code)

case control
58 192

There are N = 250 observations and 1001 variables, comprising 1000 continuous
variables (the log-transformed gene expression values) and one binary factor, code.
There are 58 cases (with a p53 mutation) and 192 controls (without the mutation).

The second dataset comes from a large multinational project to study human
genetic variation, the HapMap project (http://www.hapmap.org/). The dataset con-
cerns a sample of 90 Utah residents with northern and western European ancestry,
the so-called CEU population, and contains information on genetic variants and
gene expression values for this sample. The genetic variants are SNPs (single nu-
cleotide polymorphisms), that is to say, individual bases at particular loci on the
genome that show variation in the population. In statistical terms SNPs are categor-
ical variables with three levels—two homozygotes and a heterozygote. Around 10
million SNPs have been identified in humans. Datasets containing both SNP and
gene expression data enable study of the the genetic basis for differences in gene
expression. The data from this sample are supplied along with the package GGtools
in the BioConductor repository. The code

> data(hmceuB36.2021)
> k <- 200
> ggdata <- data.frame(hmceuB36.2021$male,
+ as(smList(MAFfilter(hmceuB36.2021, lower=.1))
+ [["21"]][,1:k], "character"), t(exprs(hmceuB36.2021))[,1:k])
> ggdata[,1:(k+1)] <- lapply(ggdata[,1:(k+1)], factor)

loads an object hmceuB36.2021 containing SNP data from chromosomes 20 and
21, gene expression data and other phenotypic information recorded for individuals
in the sample. In all it contains data on 199921 SNPs on chromosome 20, 50165
on chromosome 21, and expression values for 47293 genes. The above code frag-
ment creates a dataframe ggdata by extracting the individuals sex, the first 200
SNPs from chromosome 21 and the first 200 log-transformed gene expression val-
ues from hmceuB36.2021. Prior to extraction the SNPs are filtered so that SNPs
with a minimum allele frequency of less than 10% are discarded. Some values of
the SNPs are missing, but here the missing values are coded as a distinct charac-
ter value, so the SNPs are factors with up to four levels. The last line converts the
discrete variables into factors.

7.3 Computational Efficiency

A thorough study of the computational efficiency of the algorithms described in this
book would be a huge and complex task. In this section, we report on some timings

http://www.hapmap.org/

7.3 Computational Efficiency 161

Fig. 7.1 Timing comparisons

of the algorithms when applied to a specific dataset, in a specific computing envi-
ronment. It is hoped that this will give at least a rough impression of their relative
efficiency on similar datasets in other computing environments.

The algorithms were applied to data from the HapMap project described in
Sect. 7.2. For various values of the dimension p, the first p gene expression val-
ues were used. So there were 90 cases and p Gaussian variables, where p ranges
from 50 to 50000. Three algorithms to select undirected graphical models, and four
to select (equivalence classes of) graphical models based on DAGs were compared.
The computations were run under Redhat Fedora 10 Linux on a Intel i7 four-core
2.93 GHz machine with 48 GB RAM. The timings are shown in Fig. 7.1.

The undirected model selection methods were:

(i) The extended Chow-Liu algorithm, implemented in the minForest() function
in the gRapHD package, that finds the minimum BIC forest. This is further
described in Sect. 7.4.

(ii) A greedy decomposable search algorithm, implemented in the stepw() func-
tion in the gRApHD package, that seeks (but is not guaranteed to find) the
minimum BIC decomposable model. See Sect. 7.5 below. Here the minimum
BIC forest is used as initial model.

(iii) The glasso() function in the glasso package described in Sect. 4.4.2. Here
the tuning parameter ρ = 0.2 is used.

162 7 High Dimensional Modelling

The DAG selection methods were:

(iv) The PC-algorithm implemented in the pc() function in the pcalg package, as
described in Sect. 4.6.1. Here α = 0.05 is used.

(v) The hill-climbing algorithm implemented in the hc() function in the bnlearn
package, as described in Sect. 4.6.2.1.

(vi) The max-min hill-climbing algorithm implemented in the mmhc() function in
the bnlearn package, a hybrid constraint- and score-based algorithm, described
above in Sect. 4.6.2.2. Here α = 0.05 is used.

Note that (i) and (ii) return decomposable models, which represent equivalence
classes of DAGs (see Sect. 4.5.1), so these can also be regarded as DAG selection
methods.

We note that the algorithms for undirected models are more efficient than those
for directed models. The most efficient of the latter is the pc-algorithm: however,
when p = 5000, this takes approximately 24 hours whereas the extended Chow–
Liu algorithm takes about 1 minute for these data.

7.4 The Extended Chow–Liu Algorithm

In a paper predating much of the theoretical development of graphical models,
Chow and Liu (1968) described an algorithm to find the maximum likelihood tree
model for multivariate discrete data. In modern terminology, tree models are dis-
crete graphical models whose graphs are trees. Trees and forests are special cases
of undirected graphs. A forest is an acyclic undirected graph, that is, an undirected
graph with no cycles. A tree is a connected acyclic undirected graph. So a forest
may have several connected components, these being trees. Chow and Liu showed
that finding the maximum likelihood tree can be formulated as finding a maximum
weight spanning tree—a task for which highly efficient algorithms exist. Their ap-
proach requires, first, that all edge weights are calculated, and then a maximum
weight spanning tree algorithm is applied to find a maximum weight spanning tree.
(This may be non-unique if there are ties in the edge weights.)

Usually the algorithm due to Kruskal (1956) is used to find the maximum
weight spanning tree. This starts with the null graph and successively selects edges
e1, . . . , er . If edges e1, . . . , ek have been selected, the algorithm selects an edge e

such that

(a) e �∈ {e1, . . . ek} and {e1, . . . ek, e} is a forest, and
(b) e has maximum weight among all edges satisfying (a).

Chow and Liu’s approach may be extended in various ways (Edwards et al. 2010):

• It can be applied to Gaussian data using appropriate weights.
• By modifying the weights appropriately it can be adapted to find the minimal

AIC or BIC forest. If this has several connected components we can analyze these
separately—a dimension reduction that can be very useful with high-dimensional
problems.

7.4 The Extended Chow–Liu Algorithm 163

• It can be applied to mixed discrete and Gaussian data by modifying the weights
appropriately and limiting the search space in (a) to strongly decomposable
forests, that is, forests containing no forbidden paths. Recall that a forbidden path
is a path between non-adjacent discrete nodes passing through continuous nodes.
This restriction implies that in each tree of the forest, the discrete nodes induce a
connected subgraph.

• In the conditional Chow–Liu algorithm (Kirshner et al. 2004) the search space is
extended to graphs that include a given set of edges, E0 say. Formally, the search
space becomes

{G = (V ,E) : E0 ⊆ E ∧ any cycle in G has all edges in E0}
To do this, the algorithm starts off from G0 = (V ,E0) and (a) is modified to
restrict candidate edges to those that do not create new cycles.

The extended algorithm is implemented in the minForest() function in the
gRapHD package. It requires the data to be supplied as a dataframe with discrete
and/or continuous variables. The discrete variables must be represented as factors.
For example, we can apply it to the breastcancer dataframe as follows:

> bF <- minForest(breastcancer)
> bF

gRapHD object
Number of edges = 1000
Number of vertices = 1001
Model = mixed and homogeneous
Statistic (minForest) = BIC
Statistic (stepw) =
Statistic (user def.) =
Edges (minForest) = 1...1000
Edges (stepw) = 0...0
Edges (user def.) = 1...1000

Per default, the minForest function returns the minimal BIC forest, in the form of
a gRapHD object. Note that bF has 1001 nodes and 1000 edges. Since a forest with
n nodes and k connected components has n − k edges, we see that bF is a tree: all
nodes are interconnected.

These gRapHD objects are essentially undirected graphs represented in node and
edge list form, in which nodes are identified by their column numbers in the input
dataframe. They also contain information on variable types (discrete or continuous)
and names (which are used to label the nodes in plots). They may be displayed using
the plot function

> plot(bF)

but here, plotting a high-dimensional graph like bF would not be a good idea: no
structure would be visible. Instead, since we are primarily interested in the effect of
the mutation on gene expression, let us look at the neighbourhood of the discrete
variable, code. This is the last column of breastcancer, column number 1001.
The following two lines of code extract the nodes of bF whose path length from
code is less than or equal to 4, and then display the subgraph of bF induced by
these nodes.

164 7 High Dimensional Modelling

> nby <- neighbourhood(bF, orig=1001, rad=4)$v[,1]
> plot(bF, vert=nby, numIter=1000)

The plot() function, when applied to gRapHD objects, shows discrete variables
as dots and continuous variables as circles. It uses the iterative layout algorithm of
Fruchterman and Reingold (1991): here we specify 1000 iterations to get a clear lay-
out. We see that the effect of the mutation on gene expression appears to be mediated
by its effect on the expression of gene A.202870_s_at. To find out more about this
gene we can google this string, from which we learn that under the alias CDC20 the
gene “. . . appears to act as a regulatory protein interacting with several other proteins
at multiple points in the cell cycle. It is required for two microtubule-dependent pro-
cesses, nuclear movement prior to anaphase and chromosome separation.” In other
words, it is involved in cell division. Below, using strongly decomposable models,
we re-examine the hypothesis that the effect of p53 mutation on gene expression is
mediated by its effect on the expression of this gene.

The following code illustrates the extended Chow-Liu approach applied to the
ggdata dataset. The minimal BIC forest is obtained using the minForest() func-
tion:

> ggF <- minForest(ggdata)
> ggF

7.4 The Extended Chow–Liu Algorithm 165

gRapHD object
Number of edges = 392
Number of vertices = 401
Model = mixed and homogeneous
Statistic (minForest) = BIC
Statistic (stepw) =
Statistic (user def.) =
Edges (minForest) = 1...392
Edges (stepw) = 0...0
Edges (user def.) = 1...392

> table(Degree(ggF))

0 1 2 3 4 5 6 7 8 10
5 198 103 49 23 7 10 4 1 1

> plot(ggF, numIter=500, vert.labels=1:ggF@p, main="min BIC forest")

We see that ggF is a forest with 401 − 392 = 9 connected components. The De-

gree() function returns a vector containing the degree (number of adjacent nodes)
of each node: we see that there are 5 isolated nodes. We can identify the components
by converting the gRapHD object to a graphNEL object using the as() function, and
then applying the connComp() function, which returns a list of components.

166 7 High Dimensional Modelling

> cc <- connComp(as(ggF, "graphNEL"))
> sapply(cc, length)

[1] 172 218 3 1 3 1 1 1 1

The 9 connected components consist of two large components (with 172 and 218
nodes), two components with 3 nodes, and 5 isolated nodes. If we look at the two
largest components

> intersect(cc[[1]], names(ggdata)[1:201])

[1] "hmceuB36.2021.male"

> length(intersect(cc[[2]], names(ggdata)[1:201]))

[1] 189

we see that the first contains only one discrete variable (sex), but the second contains
189 SNPs and 29 gene expression variables.

7.5 Decomposable Stepwise Search

In a celebrated paper, Chickering (1996) showed that identifying the Bayesian net-
work that maximizes a score function is in general a NP-hard problem, and it is
reasonable to suppose that this is also true of undirected graphical models (Markov
networks). However, there are ways to improve computational efficiency. A use-
ful approach is to restrict the search space to models with explicit estimates, the
decomposable models. The following key result is exploited: if M0 ⊂ M1 are de-
composable models differing by one edge e = {u,v} only, then e is contained in
one clique C of M1 only, and the likelihood ratio test for M0 versus M1 can be
performed as a test of u ⊥⊥ v|C \ {u,v}. These computations only involve the vari-
ables in C. It follows that for likelihood-based scores such as AIC or BIC, score
differences can be calculated locally—which is far more efficient then fitting both
M0 and M1—and then stored, indexed by u, v and C, so that they can be reused
again if needed in the course of the search. This can lead to considerable efficiency
gains.

The stepw() function in the gRapHD package implements forward search
through decomposable models to minimize the AIC or BIC. At each step, the edge
giving the greatest reduction in AIC or BIC is added. A convenient choice of start
model is the minimal AIC/BIC forest, but an arbitrary decomposable start model
may be used. We illustrate use of this function by resuming the analysis of the breast
cancer dataset. The minimal BIC forest for the neighbourhood of the code variable
is obtained as follows.

> bc.marg <- breastcancer[,nby]
> mbF <- minForest(bc.marg)
> plot(mbF, numIter=1000)

7.5 Decomposable Stepwise Search 167

The gene adjacent to code is A.202870_s_at (CDC20) as we saw before. This
suggests that the effect of p53 mutation on gene expression is mediated by its effect
on CDC20. However, this might be a consequence of adopting this restrictive—and
sparse—model class. It is interesting to expand the search space to decomposable
models. The minimal BIC decomposable model is obtained using the stepw() func-
tion:

> mbG <- stepw(model=mbF, data= bc.marg)
> mbG

gRapHD object
Number of edges = 225
Number of vertices = 94
Model = mixed and homogeneous
Statistic (minForest) = BIC
Statistic (stepw) = BIC
Statistic (user def.) =
Edges (minForest) = 1...93
Edges (stepw) = 94...225
Edges (user def.) = 1...93

To plot mbG using the same layout as in the previous plot, we store the node coordi-
nates from the previous plot and reuse them when plotting mbG, as follows:

> posn <- plot(mbF, numIter=1000, disp=F)
> plot(mbG, numIter=0, coord=posn)

168 7 High Dimensional Modelling

Although the minimal BIC decomposable model is considerably less sparse, the
interpretation is unaltered: it still appears that the effect of p53 mutation on gene
expression is mediated by its effect on the expression of CDC20.

An interesting aspect of this example is the presence of so-called hub genes—
nodes of high degree—that may play a key role in the regulatory network. If we
compare the degree distributions of the two graphs

> table(Degree(mbF))

1 2 3 4 5 6 12 17
68 12 5 1 2 2 3 1

> table(Degree(mbG))

1 2 3 4 5 6 7 8 9 12 15 21 22 25 29
7 28 21 10 8 1 8 3 1 1 1 1 1 2 1

> Degree(mbF)[Degree(mbF)>4]

2 6 13 18 20 24 27 31
12 17 6 6 5 12 12 5

> Degree(mbG)[Degree(mbF)>4]

2 6 13 18 20 24 27 31
25 29 15 12 21 22 25 9

we see that the hub genes in the—presumably more realistic—graph mbG are reliably
identified using the forest mbF.

7.6 Selection by Approximation 169

7.6 Selection by Approximation

Here we illustrate use of the graphical lasso algorithm of Friedman et al. (2008)
described in Sect. 4.4.2. We apply it to the breastcancer dataset (omitting the discrete
class variable since the algorithm is only applicable to Gaussian data).

> S <- cor(breastcancer[,nby[-1]])
> res.lasso <- glasso(S, rho=0.8)
> AM <- res.lasso$wi != 0
> diag(AM) <- F
> rownames(AM) <- colnames(AM) <- names(breastcancer)[nby[-1]]
> g.lasso <- as(AM, "graphNEL")
> g.lasso

A graphNEL graph with undirected edges
Number of Nodes = 93
Number of Edges = 198

> g.HD <- as(g.lasso, "gRapHD")
> plot(g.HD, numIt=1000)

The example selects a model to the variables in the neighbourhood of the code

variable in the breast cancer dataset (omitting the code variable itself since it is dis-
crete). We apply the glasso() function to the expirical correlation matrix of the
variables, in effect standardizing the variables to unit variance. Note that since the
glasso procedure is not scale invariant, this is normally a sensible step. As penalty

170 7 High Dimensional Modelling

parameter we use ρ = 0.8: this choice was made so as to obtain a graph of com-
parable density to those obtained previously. The glasso() function returns a list
containing the estimated inverse covariance matrix wi. Note that the method com-
bines model selection with parameter estimation. In the code fragment shown we
derive the adjacency matrix from the inverse covariance and use this to construct a
graphNEL graph of the model. The diagonal elements of the adjacency matrix are
set to false to omit self-edges from the graph.

The graph selected by the algorithm contains a module of interconnected vari-
ables and a large number of isolated ones. To see the former more closely, we can
use the following code:

> cc <- connComp(g.lasso)
> sapply(cc, length)

[1] 32 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
[23] 1 2 1
[45] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> g.sub <- subGraph(cc[[1]], g.lasso)
> g.subHD <- as(g.sub, "gRapHD")
> plot(g.subHD, numIt=1000)

7.7 Finding MAP Forests 171

7.7 Finding MAP Forests

In this section we describe a Bayesian equivalent to the minimal AIC/BIC forest
approach described in Sect. 7.4. This builds on the framework of Dawid and Lau-
ritzen (1993). We write a collection of d discrete random variables as X = (Xv)v∈V ,
and we write a generic observation as i = (i1, . . . , id), and the observed data as
X = (iv, v = 1, . . . ,N). We are interested in a collection of graphs Γ with vertex
set V . For each graph G ∈ Γ , let ΘG be the associated parameter space, and LG be
a prior distribution (or law) on ΘG . Then the marginal likelihood of G is

f (X |G) =
∫

ΘG
f (X |G, θ)LG(dθ).

If π(G) is the prior probability of G, then the posterior probability is given as

π∗(G) = π(G|X) ∝ f (X |G)π(G). (7.1)

The maximum a posteriori (MAP) estimate is the graph in Γ that maximizes π∗(G).
We now sketch how a prior distribution LG on ΘG may be chosen. Consider

first an unconstrained multinomial distribution on an array with parameters p =
(p(i))i∈I , and let λ = (λ(i))i∈I be an array of positive numbers. The Dirichlet
distribution D(λ) has density

π(p|λ) ∝
∏

p(i)λ(i)−1.

If the prior distribution of p is D(λ) and counts n = (n(i))i∈I are observed, then
the posterior distribution of p is D(λ+n): in other words, the Dirichlet distribution
is the conjugate prior of the multinomial. The numbers λ are called the equivalent
sample size, or smoothing parameter.

Dawid and Lauritzen (1993) generalize this to construct the conjugate prior
for a decomposable graphical model G, which they term the hyper-Dirichlet dis-
tribution. Essentially this involves specifying a Dirichlet prior for each clique of
G. Let C = (C1, . . . ,Ck) be these cliques. Thus a hyper-Dirichlet prior is spec-
ified though the collection of arrays (λC)C∈C . These must satisfy a consistency
criterion, namely that for all cliques C,D ∈ C, λC(iC∩D) = λD(iC∩D) for all
cells iC∩D . Without loss of generality we can specify the λC ’s by specifying a
λ = (λ(i))i∈I for the whole array and setting λC to the marginal totals λC(iC) =∑

j∈I:jC=iC
λ(j). This construction automatically fulfills the consistency criteria.

It also allows the array λ to function as a ‘master-prior’ to specify the smoothing
parameters for the hyper-Dirichlet prior for the parameters for any decomposable
model.

Dawid and Lauritzen (1993) also show that for a hyper-Dirichlet prior, the
marginal likelihood factorizes in a fashion similar to the likelihood:

172 7 High Dimensional Modelling

f (X |G) =
∏

i=1...k

f (XCi
|G)

f (XSi
|G)

(7.2)

where S = (S1, . . . , Sk) are the separators corresponding to C. Moreover the factors
f (XCi

|G) are constant for all G in which Ci is (or is contained in) a clique, so in
that sense the conditioning on G is unnecessary.

Let now Γ be the set of forests with vertex set V . These models are decompos-
able, and so using (7.2) we obtain for G ∈ Γ

f (X |G) =
∏

e∈E(G) f (Xe)∏
v∈V f (Xv)

dG(v)−1
(7.3)

where dG(v) is the degree of v in G. Let BF(e) be the Bayes factor for independence
along edge e = (u, v), so that

BF(e) = f (Xe)

f (Xu)f (Xv)
.

Then (7.3) can be written as

f (X |G) =
∏

v∈V

f (Xv)
∏

e∈E(G)

BF(e) (7.4)

It follows from (7.1) and (7.4) that assuming a uniform prior on Γ we can find the
MAP estimate by using a maximum weight spanning tree algorithm, using loga-
rithms to the BF(e) as edge weights.

From (41) in Dawid and Lauritzen (1993) we can derive an expression for BF(e)
in terms of ratios of gamma functions:

BF(e) = Γ (λ·· + n··)/Γ (λ··)
∏

ij Γ (λij + nij)/Γ (λij)∏
i Γ (λi· + ni·)/Γ (λi·)

∏
j Γ (λ·j + n·j)/Γ (λ·j)

where i and j range over the number of levels of Xu and Xv , {nij } is the corre-
sponding table of counts, {λij } the corresponding array of smoothing parameters,
and the · notation indicates marginal totals.

The following example illustrates application of this approach to find the MAP
forest for a dataset with 400 discrete variables (SNPs). A convenient choice is λ(i) =
α/|I| ∀i, where α is a scalar. This implies that λu,v = α/(|Xu||Xv|) where |Xu| and
|Xv| are the number of levels of Xu and Xv . In the following fragment we extract the
dataset from the GGtools package, define a function to calculate the logarithms of
the Bayes factors, and call the minForest() function specifying that logBF be used
to calculate the edge weights. For comparison purposes we also find the minimum
BIC forest:

7.7 Finding MAP Forests 173

> data(hmceuB36.2021)
> p <- 400
> SNPdata <- data.frame(as(smList(MAFfilter(hmceuB36.2021, lower=.1))
+ [["21"]][,1:p],"character"))
> SNPdata[,1:p] <- lapply(SNPdata[,1:p], factor)
> logBF <- function(newEdge, numCat, dataset, alpha=1) {
+ i <- newEdge[1]; j <- newEdge[2]
+ n <- table(dataset[,i], dataset[,j])
+ I <- dim(n)[1]; J <- dim(n)[2]; IJ<-I*J
+ nm <- addmargins(n)
+ ni <- nm[1:I,J+1]; nj <- nm[I+1,1:J]; N <- nm[I+1,J+1]
+ fij <- sum(lgamma(n+alpha/IJ)-lgamma(alpha/IJ))
+ fi <- sum(lgamma(ni+alpha/I)-lgamma(alpha/I))
+ fj <- sum(lgamma(nj+alpha/J)-lgamma(alpha/J))
+ f <- lgamma(N+alpha) - lgamma(alpha)
+ logBF <- fij - fi - fj + f
+ return(logBF)
+ }
> snp.MAP <- minForest(SNPdata, stat=logBF, alpha=1)
> snp.F <- minForest(SNPdata)

Then we display the two graphs:

> plot(snp.MAP, numIt=500, vert.labels=1:snp.MAP@p, main="MAP forest")

174 7 High Dimensional Modelling

> plot(snp.F, numIt=500, vert.labels=1:snp.F@p, main="min BIC forest")

We see that the MAP estimate has many isolated vertices, indicating a stronger
tendency to negative logBF values than negative BIC values for weakly associated
variables.

References

Akaike H (1974) A new look at the statistical identification problem. IEEE Trans Autom Control
19:716–723

Albert J (2009) Bayesian computation with R, 2nd edn. Springer, New York
Andersson SA, Madigan D, Perlman MD (1996) A characterization of Markov equivalence classes

for acyclic digraphs. Ann Stat 25:505–541
Badsberg JH (1991) A guide to CoCo. Tech rep. R-91-43. Department of Mathematics and Com-

puter Science, Aalborg University
Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and prac-

tice. MIT Press, Cambridge
Bøttcher SG, Dethlefsen C (2003) deal: A package for learning Bayesian networks. J Stat Softw

8(20):1–40. http://www.jstatsoft.org/v08/i20
Busk H, Olsen EV, Brøndum J (1999) Determination of lean meat in pig carcasses with the Auto-

fom classification system. Meat Sci 52:307–314
Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz HJ (eds)

Learning from data: artificial intelligence and statistics V. Springer, New York, pp 121–130
Chickering DM (2002) Equivalence classes of Bayesian network structure. J Mach Learn Res

2:445–498
Chow CK, Liu CN (1968) Approximating discrete probability distributions with dependence trees.

IEEE Trans Inf Theory 14:462–467
Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ (1999) Probabilistic networks and expert

systems. Springer, New York
Dawid AP (1992) Applications of a general propagation algorithm for probabilistic expert systems.

Stat Comput 2:25–36
Dawid AP (1998) Conditional independence. In: Kotz S, Read CB, Banks DL (eds) Encyclopedia

of statistical sciences, update, vol 2. Wiley-Interscience, New York, pp 146–155
Dawid AP, Lauritzen SL (1993) Hyper Markov laws in the statistical analysis of decomposable

graphical models. Ann Stat 21:1272–1317
Dempster AP (1972) Covariance selection. Biometrics 28:157–175
Drton M, Perlman MD (2007) Multiple testing and error control in Gaussian graphical model

selection. Stat Sci 22:430–449
Drton M, Perlman MD (2008) A SINful approach to Gaussian graphical model selection. J Stat

Plan Inference 138:1179–1200
Edwards D (2000) Introduction to graphical modelling, 2nd edn. Springer, New York
Edwards D, de Abreu GCG, Labouriau R (2010) Selecting high-dimensional mixed graphical mod-

els using minimal AIC or BIC forests. BMC Bioinform 11:18
Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical

lasso. Biostatistics 9(3):432–441

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0, © Springer Science+Business Media, LLC 2012

175

http://www.jstatsoft.org/v08/i20
http://dx.doi.org/10.1007/978-1-4614-2299-0

176 References

Fruchterman T, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp
21:1129–1164

Frydenberg M (1990a) The chain graph Markov property. Scand J Stat 17:333–353
Frydenberg M (1990b) Marginalization and collapsibility in graphical interaction models. Ann Stat

18:790–805
Gilks WR, Thomas A, Spiegelhalter DJ (1994) BUGS: a language and program for complex

Bayesian modelling. Statistician 43:169–178
Green PJ (2005) GRAPPA: R functions for probability propagation. http://www.stats.bris.ac.uk/~

peter/Grappa/
Grizzle JE, Starmer CF, Koch GG (1969) Analysis of categorical data by linear models. Biometrics

25(3):489–504
Højsgaard S, Thiesson B (1995) BIFROST—block recursive models induced from relevant knowl-

edge, observations and statistical techniques. Comput Stat Data Anal 19:155–175
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Johnson RW (1996) Fitting percentage of body fat to simple body measurements. Journal of Statis-

tics Education 4:1
Kirshner S, Smyth P, Robertson AW (2004) Conditional Chow-Liu tree structures for model-

ing discrete-valued vector time series. In: Proceedings of the 20th conference on uncertainty
in artificial intelligence, UAI ’04, AUAI Press, Arlington, pp 317–324. http://portal.acm.org/
citation.cfm?id=1036843.1036882

Kjærulff U (1990) Graph triangulation—algorithms giving small total state space. Technical report
R 90-09, Aalborg University, Denmark

Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling Salesman problem.
Proc Am Math Soc 7:48–50

Lauridsen C, Danielsen V (2004) Lactational dietary fat levels and sources influence milk compo-
sition and performance of sows and their progeny. Livestock Product Sci 91:95–105

Lauritzen SL (1996) Graphical models. Clarendon Press, Oxford
Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical struc-

tures and their application to expert systems (with discussion). J R Stat Soc B 50:157–224
Ma Z, Xie X, Geng Z (2008) Structural learning of chain graphs via decomposition. J Mach Learn

Res 9:2847–2880
Martin PGP, Guillou H, Lasserre F, Déjean S, Lan A, Pascussi JM, Sancristobal M, Legrand

P, Besse P, Pineau T (2007) Novel aspects of pparalpha-mediated regulation of lipid and
xenobiotic metabolism revealed through a nutrigenomic study. Hepatology 45(3):767–777.
http://dx.doi.org/10.1002/hep.21510

Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET,
Bergh J (2005) An expression signature for p 53 status in human breast cancer predicts mutation
status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–
13555. http://dx.doi.org/10.1073/pnas.0506230102

Pearl J (2000) Causality. Cambridge University Press, Cambridge
Reiniš Z, Pokorný J, Bazika V, Tišerová J, Goričan K, Horáková D, Stuchlíková E, Havránek T,

Hrabovský F (1981) Prognostický význam rizikového profilu v prevenci ischemické choroby
srdce. Bratisl Lek Listy 76:137–150

Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cam-
bridge

Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecol-
ogy 49:704–726

Schwarz G (1978) Estimating the dimension of a model. Ann Math Stat 6:461–464
Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions.

J Am Stat Assoc 62(318):626–633. http://www.jstor.org/stable/2283989
Speed TP, Kiiveri H (1986) Gaussian Markov distributions over finite graphs. Ann Math Stat

14:138–150
Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user manual version 1.4. http://

www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf

http://www.stats.bris.ac.uk/~peter/Grappa/
http://www.stats.bris.ac.uk/~peter/Grappa/
http://portal.acm.org/citation.cfm?id=1036843.1036882
http://portal.acm.org/citation.cfm?id=1036843.1036882
http://dx.doi.org/10.1002/hep.21510
http://dx.doi.org/10.1073/pnas.0506230102
http://www.jstor.org/stable/2283989
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf

References 177

Spiegelhalter D, Thomas A, Best N, Lunn D (2011) OpenBUGS user manual version 3.21.
http://www.openbugs.info/

Spiegelhalter DJ, Lauritzen SL (1990) Sequential updating of conditional probabilities on directed
graphical structures. Networks 20:579–605

Spirtes P, Glymour C (1991) An algorithm for fast recovery of sparse causal graphs. Soc Sci
Comput Rev 9(1):62–72. http://ssc.sagepub.com/content/9/1/62.abstract

Spirtes P, Glymour C, Scheines R (1993) Causation, prediction and search. Springer, New York,
reprinted by MIT Press

Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: A package for running WinBUGS from R. J
Stat Softw 12(3):1–16. http://www.jstatsoft.org

Tsamardinos I, Aliferis C, Statnikov A (2003) Algorithms for large scale Markov blanket discov-
ery. In: Proceedings of the sixteenth international Florida artificial intelligence research society
conference

Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Bonissone PP, Henrion
M, Kanal LN, Lemmer JF (eds) Uncertainty in artificial intelligence, vol. 6. North-Holland,
Amsterdam, pp 255–268

Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, Chichester

http://www.openbugs.info/
http://ssc.sagepub.com/content/9/1/62.abstract
http://www.jstatsoft.org

Index

A
Absorbing, 59
addEdge()[graph], 4
Adjacency matrix, 1, 2, 25
Adjacent nodes, 2
Adjusted degrees of freedom, 37, 45
agopen()[Rgraphviz], 19
AIC, 42, 93
Akaike information criterion, 42, 93
Ancestors, 7
Ancestral graph, 7
Ancestral graph models, 116
Ancestral set, 7
andtable()[gRain], 54
Anterior graph, 11
Anterior set, 11
as()[gRapHD], 165
as()[gRbase], 2, 21, 47

B
Bayes’ theorem, 145
Bayesian information criterion, 42, 93
Bayesian network, 51
BIC, 42, 93, 139
Boundary, 5

C
C-separation, 13
Canonical parameters, 119
Cells, 30
CG-density, 119
CGstats()[gRim], 121
Chain graph components, 10
Chain graphs, 10, 139
Children, 7
Chordal graphs, 14
Chordless cycles, 14

ciTest()[gRim], 136
ciTest_mvn()[gRim], 88
ciTest_ordinal()[gRim], 40
ciTest_table()[gRim], 39, 40
Clique, 4
Clique marginal representation, 59, 60
Clique potential representation, 56, 58
Clique potentials, 56
Closure, 5
cmod()[gRim], 94
Collapsibility, 135
compileCPT()[gRain], 55
compile()[gRain], 55
Complete, 4
Component DAG, 10
Concentration matrix, 78, 119
Conditional Gaussian density, 119
Conditional independence, 11
Conditional model, 115, 139
Conditional probability table, 53
connComp()[graph], 165
Connected components, 14
Contingency table, 29
cov2pcor()[gRbase], 79
Covariance graph models, 116
CPDAG, 104
CPT, 53
cptable()[gRain], 54
Cycle, 4, 8

D
d-separated, 53
D-separation, 13
d.separates(), 53
DAG, 6
dag()[gRbase], 1, 6
Decomposable graphs, 14

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0, © Springer Science+Business Media, LLC 2012

179

http://dx.doi.org/10.1007/978-1-4614-2299-0

180 Index

Decomposable models, 34, 92, 126, 138, 139
Decomposition, 14, 91, 126
Degree()[gRapHD], 165
Dependence graph, 32, 56, 83, 122
Deviance, 36, 87, 128
DGGMs, 102
Directed acyclic graph, 6
Directed edges, 6
Directed Gaussian graphical models, 102
Directed graph, 6
Directed path, 8
Discrete generators, 124
dmod()[gRim], 32, 35, 37, 47
dSep()[ggm], 13

E
edgeList()[gRbase], 4, 7
Edges, 1
edges()[graph], 4, 6, 7
Essential graph, 104
essentialGraph()[ggm], 104
Exact tests, 40
Exponential family, 119

F
Factorial expansions, 120
Factorization criterion, 12, 59
Faithful, 109
Fill-ins, 15, 56
fitDag[ggm], 102
Forbidden path, 126, 163
Forest, 162
formula(), 47
Full conditional distribution, 153

G
gaussCItest()[pcalg], 88
Gaussian graphical model, 83
Generating class, 83, 123
Generators, 32
getFinding()[gRain], 61
ggmfit()[gRim], 86
Gibbs sampling, 153
Glasso algorithm, 95
glasso()[glasso], 161, 169, 170
glm(), 45, 46
Global directed Markov property, 53
Global Markov property, 12, 84, 125
gplot3d()[sna], 24
Grain, 76
grain()[gRain], 55
graph.formula()[igraph], 21

Graphical log-linear model, 33
Graphical MI-models, 125

H
hc()[bnlearn], 162
Headlong search, 44
Hierarchical models, 32
Homogeneous mixed interaction models, 117,

120
Homogeneous weak marginal density, 132
Hyper Markov prior distribution, 147

I
Ideviance, 36, 87
Immorality, 103
Independence deviance, 36
Induced subgraph, 5
Interaction terms, 31
is.chaingraph()[lcd], 10
is.separated()[lcd], 14
Iterative proportional scaling, 35, 86, 131

J
Junction tree, 57, 149

K
Kullback–Leibler distance, 132

L
lars()[lars], 110
Lasso regression, 110
Levels, 30
Likelihood, 128, 146
Likelihood equations, 131
Linear generators, 124
loadHuginNet()[gRain], 71
Location and scale invariance, 124
loglin()[stats], 35

M
Main effect model, 32
Markov blanket, 18, 154
maxClique()[RBGL], 4
Maximal form of a MI-model, 124, 134
Maximal prime subgraph decomposition, 17
Maximum cardinality search, 14, 94, 127
mcs()[gRbase], 15
mcsmarked()[gRim], 127
Metropolis–Hastings, 153
MI-models, 120
minForest()[gRapHD], 161, 163, 164,

172
Minimal triangulation, 16

Index 181

minimalTriang()[gRbase], 16
Minimum triangulation, 16
Mixed graphs, 8
Mixed interaction models, 117
Mixed parametrisation, 119, 135
mmhc()[bnlearn], 162
mmod()[gRim], 124, 134, 135
Model formula shortcuts, 47
Model formulae, 122
Moment parameters, 119
Monte Carlo tests, 40
Moral graph, 149, 154
Moralization, 8, 11, 56
moralize()[gRbase], 8
moralize()[lcd], 11
mpd()[gRbase], 18
Multinomial sampling, 37
Multivariate normal, 78
myiplot(), 3
myiplot()[gRbase], 21

N
Neighbours, 5
Nodes, 1
nodes()[graph], 4, 6
Non-graphical log-linear model, 33
Non-graphical MI-models, 125

O
ortable()[gRain], 54

P
Parents, 7
Partial correlation matrix, 78
Partially directed acyclic graph, 104
Passing the message, 59
Path, 4, 7, 8
Pattern, 104
PC algorithm, 106
pc()[pcalg], 162
PDAG, 104
Penalized likelihood, 42, 93
Perfect vertex ordering, 14, 127
pFinding()[gRain], 61
Plates, 146
plot[gRapHD], 163
plot()[igraph], 21, 22
plot()[Rgraphviz], 3, 6
Poisson sampling, 37
Posterior distribution, 146
Potentials, 56
predict[gRain], 69
Prior distribution, 146

propagate()[gRain], 58, 62
Propagation, 59, 149

Q
Quadratic generators, 124
querygrain()[gRain], 55, 60
querygraph()[gRbase], 25

R
Random propagation, 68
Random restarts, 111
read.rhd()[RHugin], 72
removeEdge()[graph], 4
retractFinding()[gRain], 62
RIP ordering, 15, 56
rip()[gRbase], 15
Running intersection property, 15, 126

S
Saturated model, 31, 86
saveHuginNet()[gRain], 72
Semi-directed path, 8
Separation, 5
Separators, 15
Set chain representation, 59
setFinding()[gRain], 60, 62
Simple graphs, 2
Simplicial node, 14
Simulate(), 68
simulate()[gRain], 63, 68
Skeleton, 103
Star graph, 127
Step-halving, 134
stepw()[gRapHD], 140, 161, 166, 167
stepwise()[gRim], 42, 92, 137
Strongly decomposable forest, 163
Subgraph, 5
summary()[gRim], 34

T
terms(), 47
testdelete()[gRim], 38–40
testInEdges()[gRim], 136
testOutEdges()[gRim], 136
tkplot.getcoords()[igraph], 23
tkplot()[igraph], 22, 23
Traceplot, 156
Tree, 162
Triangulate, 56
Triangulated graphs, 14, 149
triangulate()[gRbase], 15

182 Index

U
udag2pdag()[pcalg], 108
udag2pdagRelaxed()[pcalg], 108
udag2pdagSpecial()[pcalg], 108
UGGM, 83
ug()[gRbase], 1–3
Undirected path, 8
Unshielded collider, 103
update()[gRim], 37, 48, 136

V
Vertices, 1
vpar()[gRbase], 7

W
Weak marginal density, 132
Weak marginals, 126, 131
write.rhd()[RHugin], 72

	Graphical Models with R
	Preface
	Contents

	Chapter 1: Graphs and Conditional Independence
	1.1 Introduction
	1.2 Graphs
	1.2.1 Undirected Graphs
	1.2.2 Directed Acyclic Graphs
	1.2.3 Mixed Graphs

	1.3 Conditional Independence and Graphs
	1.4 More About Graphs
	1.4.1 Special Properties
	1.4.2 Graph Layout in Rgraphviz
	1.4.3 The igraph Package
	1.4.4 3-D Graphs
	1.4.5 Alternative Graph Representations
	1.4.6 Operations on Graphs in Different Representations

	Chapter 2: Log-Linear Models
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Four Datasets
	2.2.2 Data Formats
	As a Raw Case-List
	As an Aggregated Case-List
	As a Contingency Table

	2.3 Log-Linear Models
	2.3.1 Preliminaries and Notation
	2.3.2 Hierarchical Log-Linear Models
	2.3.3 Graphical and Decomposable Log-Linear Models
	2.3.4 Estimation, Likelihood, and Model Fitting
	2.3.5 Hypothesis Testing

	2.4 Model Selection
	2.5 Further Topics
	2.5.1 Fitting Log-Linear Models with glm()
	2.5.2 Working with dModel Objects

	2.6 Various

	Chapter 3: Bayesian Networks
	3.1 Introduction
	3.1.1 The Chest Clinic Example
	3.1.2 Models Based on Directed Acyclic Graphs
	3.1.3 Inference

	3.2 Building and Using Bayesian Networks
	3.2.1 Speciﬁcation of Conditional Probability Tables
	3.2.2 Building the Network
	3.2.2.1 Compilation-Finding the Clique Potentials
	3.2.2.2 Propagation-from Clique Potentials to Clique Marginals

	3.2.3 Absorbing Evidence and Answering Queries

	3.3 Further Topics
	3.3.1 Building a Network from Data
	3.3.2 Bayesian Networks with RHugin
	3.3.3 Simulation
	3.3.4 Prediction
	3.3.5 Working with HUGIN Files

	3.4 Learning Bayesian Networks

	Chapter 4: Gaussian Graphical Models
	4.1 Introduction
	4.2 Some Examples
	4.2.1 Carcass Data
	4.2.2 Body Fat Data

	4.3 Undirected Gaussian Graphical Models
	4.3.1 Preliminaries and Notation
	4.3.2 Estimation, Likelihood, and Model Fitting
	4.3.3 Hypothesis Testing
	4.3.4 Concentration and Regression
	4.3.5 Decomposition of UGGMs

	4.4 Model Selection
	4.4.1 Stepwise Methods
	4.4.2 Convex Optimization
	4.4.3 Thresholding
	4.4.4 Simultaneous p-Values
	4.4.5 Summary of Models

	4.5 Directed Gaussian Graphical Models
	4.5.1 Markov Equivalence

	4.6 Model Selection for DGGMs
	4.6.1 The PC Algorithm
	4.6.2 Alternative Methods for Identifying DGGMs
	4.6.2.1 Greedy Search
	4.6.2.2 A Hybrid Algorithm

	4.7 Gaussian Chain Graph Models
	4.7.1 Selecting a Chain Graph Model

	4.8 Various

	Chapter 5: Mixed Interaction Models
	5.1 Introduction
	5.2 Example Datasets
	5.3 Mixed Data and CG-densities
	5.4 Homogeneous Mixed Interaction Models
	5.5 Model Formulae
	5.6 Graphical and Decomposable MI-models
	5.7 Maximum Likelihood Estimation
	5.7.1 Likelihood and Deviance
	5.7.2 Dimension of MI-models
	5.7.3 Inference
	5.7.4 Likelihood Equations
	5.7.5 Iterative Proportional Scaling
	5.7.5.1 Weak Marginals
	5.7.5.2 Likelihood Equations Revisited
	5.7.5.3 General IPS Update Step
	5.7.5.4 Step-Halving Variant
	5.7.5.5 Mixed Parameterisation Variant

	5.8 Using gRim
	5.8.1 Updating Models
	5.8.2 Inference
	5.8.3 Stepwise Model Selection

	5.9 An Example of Chain Graph Modelling
	5.10 Various

	Chapter 6: Graphical Models for Complex Stochastic Systems
	6.1 Introduction
	6.2 Bayesian Graphical Models
	6.2.1 Simple Repeated Sampling
	6.2.2 Models Based on Directed Acyclic Graphs

	6.3 Inference Based on Probability Propagation
	6.4 Computations Using Monte Carlo Methods
	6.4.1 Metropolis-Hastings and the Gibbs Sampler
	6.4.2 Using WinBUGS via R2WinBUGS

	6.5 Various

	Chapter 7: High Dimensional Modelling
	7.1 Introduction
	7.2 Two Datasets
	7.3 Computational Efﬁciency
	7.4 The Extended Chow-Liu Algorithm
	7.5 Decomposable Stepwise Search
	7.6 Selection by Approximation
	7.7 Finding MAP Forests

	References
	Index

