Graphical Models with R

Tutorial at UiO, Norway, November 2012

Søren Højsgaard
Department of Mathematical Sciences
Aalborg University, Denmark

November 25, 2012
Contents
1 Outline of tutorial 3
1.1 Topics 3
1.2 Book: Graphical Models with R 4
1.3 R-packages 4
1.4 The practicals: The coronary artery disease data 4
1.5 Graphical models in a few words 5
2 Conditional independence 6
2.1 Factorization criterion 6
3 Undirected Graphs 7
3.1 Factorization and dependence graph 11
3.2 Reading conditional independencies - global Markov property 12
4 Directed acyclic graphs (DAGs) 13
4.1 Factorization and dependence graph - DAGs 15
4.2 Reading conditional independencies from DAGs (I) 16
4.3 Moralization 16
4.4 Ancestral sets and graphs* 17
4.5 Reading conditional independences from DAG (II)* 18
5 Bayesian Network (BN) basics 18
6 A small worked example BN 19
6.1 Specification of conditional probability tables. 20
6.2 Brute force computations 20
6.3 Brute force computations will fail 21
7 Decomposable graphs and junction trees 21
7.1 Decomposable graphs 21
7.2 Junction tree 22
7.3 The key to message passing 22
7.4 Computations by message passing 23
7.5 Clique potential representation 23
7.6 Working inwards in junction tree 24
7.7 Working outwards in junction tree 24
8 Propagating findings 26
9 The chest clinic narrative 28
9.1 Findings and queries 28
10 An introduction to the gRain package 29
10.1 Queries. 30
10.2 Setting findings and probability of findings 31
10.3 Queries - II 31
10.4 Dependence graph, moralization and triangulation 31
10.5 Triangulation 32
10.6 Fundamental operations in gRain 33
11 Summary of the BN part 34
12 Contingency tables 34
12.1 Notation 35
12.2 Log-linear models. 36
12.3 Graphical models and decomposable models 38
12.4 ML estimation in decomposable models 38
12.5 Connecting decomposable models and Bayesian networks 40
13 Testing for conditional independence 40
13.1 What is a CI-test - stratification 41
14 Log-linear models using the gRim package 42
14.1 Plotting the dependence graph 44
14.2 Model specification shortcuts 45
14.3 Altering graphical models 45
14.4 Model comparison. 46
14.5 Decomposable models - deleting edges 46
14.6 Decomposable models - adding edges 47
14.7 Test for adding and deleting edges 48
14.8 Model search in log-linear models using gRim 49
15 From graph and data to network 50
15.1 Prediction 52
15.2 Classification error 53
16 Winding up 54
17 Practicals 54
1 Outline of tutorial

- Theoretical part: 3 lectures, each about 45 minutes.
- Practical part: 3 hours of computer exercises.

Goal: Establish a Bayesian network ($\underline{B N}$) for diagnosing coronary artery disease (CAD) from a contingency table.

1.1 Topics

- Bayesian networks and the gRain package
- Conditional independence restrictions and dependency graphs
- Probability propagation
- Log-linear, graphical and decomposable models for contingency tables
- Introduce the $\mathbf{g R i m}$ package; use $\mathbf{g R i m}$ for model selection
- Convert decomposable model to Bayesian network.

1.2 Book: Graphical Models with R

1.3 R -packages

- We shall in this tutorial use the R -packages gRbase, gRain and gRim.
- gRbase and gRain have been on CRAN for some years now and are fairly stable.
- gRim is a recent package and is likely to undergo larger changes.
- If you discover bugs etc. in any of these 3 packages, please send me an e-mail; preferably with a small reproducible example.
1.4 The practicals: The coronary artery disease data

Goal: Build BN for diagnosing coronary artery disease (CAD) from these data:

Validate model by prediction of CAD using these data. Notice: incomplete information.

1.5 Graphical models in a few words

- The "language" of graphical models is conditional independence restrictions among variables.
- Used for identifying direct associations and indirect associations among random variables.
- Used for breaking a large complex stochastic model into smaller components.
- Used for very efficient calculation of conditional distributions via message passing.
- Graphs provide tool for interpreting models
- Graphs provide terminology for organizing certain computations

2 Conditional independence

Let X, Y be random variables. X and Y are independent if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

or, equivalently, if

$$
f_{Y \mid X}(y \mid x)=f_{Y}(y)
$$

Let X, Y, Z be random variables. X and Y are conditionally independent given Z (written $X \Perp Y \mid Z)$ if for each value z of Z, X and Y are independent in the conditional distribution given $Z=z$. That is if

$$
f_{X, Y \mid Z}(x, y \mid z)=f_{X \mid Z}(x \mid z) f_{Y \mid Z}(y \mid z)
$$

- or equivalently

$$
f_{Y \mid X, Z}(y \mid x, z)=f_{Y \mid Z}(y \mid z)
$$

So if $Z=z$ is known then knowledge of X will provide no additional knowledge of Y.

2.1 Factorization criterion

A general condition is the factorization criterion $: ~ X \Perp Y \mid Z$ if

$$
p(x, y, z)=g(x, z) h(y, z)
$$

for non-negative functions $g()$ and $h()$.

Example 2.1

$$
X=\left(X_{1}, X_{2}, X_{3}\right)^{\top} \sim N_{3}(0, \Sigma), \quad \Sigma^{-1}=K=\left[\begin{array}{ccc}
k_{11} & k_{12} & 0 \\
k_{21} & k_{22} & k_{23} \\
0 & k_{32} & k_{33}
\end{array}\right]
$$

Then $X_{1} \Perp X_{3} \mid X_{2}$ because $f(x) \propto \exp \left(x^{\top} K x\right)$ becomes

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & \propto \exp \left(x_{1}^{2} k_{11}+2 x_{1} x_{2} k_{12}+x_{2}^{2} k_{22}+2 x_{2} x_{3} k_{23}+x_{3}^{2} k_{33}\right) \\
& =g\left(x_{1}, x_{2}\right) h\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Example 2.2 Let X_{1}, X_{2}, X_{3} be discrete with

$$
p_{i j k}=P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)
$$

In a \log-linear model we may have, for example,

$$
\log p_{i j k}=\alpha_{i}^{1}+\alpha_{j}^{2}+\alpha_{k}^{3}+\beta_{i j}^{12}+\beta_{j k}^{23}
$$

Exponentiating and collecting terms gives

$$
p_{i j k}=g(i, j) h(j, k)
$$

Hence $X_{1} \Perp X_{3} \mid X_{2}$.

3 Undirected Graphs

Definition 1 An (undirected) graph as a mathematical object is a pair $\mathcal{G}=(V, E)$ where V is a set of vertices (or nodes) and E is a set of edges (and edge is a pair of vertices).

Definition 2 Given a set of vertices V, a collection $\mathcal{A}=\left\{a_{1}, \ldots, a_{Q}\right\}$ of subsets of V where $\cup_{j} a_{j}=V$. The graph generated by \mathcal{A} is $\mathcal{G}(\mathcal{A})=(V, E)$ where E is given as follows: $\{\alpha, \beta\} \in E$ iff $\{\alpha, \beta\} \subset a_{j}$ for some j.

The function $u g()$ from gRbase creates an undirected graph:

```
R> library(gRbase)
R> g1 <- ug(~a:b:e + a:c:e + b:d:e + c:d:e + c:g + d:f)
R> class(g1)
[1] "graphNEL"
attr(,"package")
[1] "graph"
R> as(g1, "matrix")
a b ecdg f
a 0 1 1 1 0 0 0
b}1001010100
e 1}
c 1 0 1 1 0 1 1 0
d
f
```

Graphs can be displayed with the $\operatorname{plot}()$ method

```
R> library(Rgraphviz)
R> plot(g1)
```


Graphs can also be defined using adjacency matrices:

```
R> m <- matrix(c(0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0,
    1, 1, 0, 1, 1, 1, 1, 1, 0), nrow = 5)
R> rownames(m) <- colnames(m) <- c("a", "b", "c", "d", "e")
R>m
    a b c de
a 0 1 1 0 1
b
c 1 0 0 1 1
d 0}1011%\mp@code{1
e 1 1 1 1 0
R> as(m, "graphNEL")
A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 8
```

Graphs can be altered using addEdge() and removeEdge()

```
R> g1a <- addEdge("a", "d", g1)
R> g1b <- removeEdge("c", "d", g1)
R> par(mfrow = c(1, 3))
R> plot(g1, main = "g1")
R> plot(g1a, main = "g1a")
R> plot(g1b, main = "g1b")
```


Definition 3 The graph $\mathcal{G}_{0}=\left(V_{0} ; E_{0}\right)$ is said to be a subgraph of $\mathcal{G}=(V, E)$ if $V_{0} \subset V$ and $E_{0} \subset E$.
For $A \subset V$, let E_{A} denote the set of edges in E between vertices in A. Then $\mathcal{G}_{A}=\left(A, E_{A}\right)$ is the subgraph induced by A.

For example

```
R> g1c <- subGraph(c("b", "c", "d", "e"), g1)
R> par(mfrow = c(1, 3))
R> plot(g1, main = "g1")
R> plot(g1c, main = "g1c")
```


Definition $4 A$ set $A \subset V$ of vertices in a graph $\mathcal{G}=(V, E)$ is complete if all pairs of vertices in A are connected by an edge. A graph $\mathcal{G}=(V, E)$ is complete if V is complete.

Definition 5 clique is a maximal complete subset, that is a complete subset which is not contained in a larger complete subset.

```
R> is.complete(g1,set=c("a","b","e"))
[1] TRUE
R> is.complete(g1)
[1] FALSE
R> str(maxClique(g1))
List of 1
$ maxCliques:List of 6
    ..$ : chr [1:3] "e" "b" "a"
    ..$ : chr [1:3] "e" "b" "d"
    ..$ : chr [1:3] "e" "c" "a"
    ..$ : chr [1:3] "e" "c" "d"
    ..$ : chr [1:2] "g" "c"
    ..$ : chr [1:2] "f" "d"
```

Definition $6 A$ path (of length n) between α and β in an undirected graph is a set of vertices $\alpha=\alpha_{0}, \overline{\alpha_{1}, \ldots}, \alpha_{n}=\beta$ where $\left\{\alpha_{i-1}, \alpha_{i}\right\} \in E$ for $i=1, \ldots, n$.
If a path has $\alpha=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}=\beta$ has $\alpha=\beta$ then the path is said to be a cycle (of length n).

Definition $7 A$ subset $S \subset V$ is said to separate $A \subset V$ and $B \subset V$ if every path between a vertex in A and a vertex in B contains a vertex from S.

```
R> g2 <- ug(~a:b:e + a:c:e + b:d:e + c:d:e)
R> plot(g2)
R> separates("a", "d", c("b", "c", "e"), g2)
[1] TRUE
```


3.1 Factorization and dependence graph

Consider d-dimensional random vector $X=\left(X_{i} ; i \in V\right)$ where $V=\{1, \ldots, d\}$.
For $a \subset V$ define $X_{a}=\left(X_{i} ; i \in a\right)$.
Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{Q}\right\}$ be a collection of subset of V where $\cup_{j} a_{j}=V$.
Consider pmf's/pdf's of the form

$$
p(x)=\prod_{a \in \mathcal{A}} \phi_{a}\left(x_{a}\right)
$$

where $\phi_{a}()$ is a non-negative function of x_{a} (equivalently: a function that depends in x only through x_{a}).

We shall often just write

$$
p=\prod_{a \in \mathcal{A}} \phi_{a} \text { or } p=\prod_{a \in \mathcal{A}} \phi(a)
$$

The dependence graph for p is the graph induced by \mathcal{A}.
Suppose

$$
p(x)=\psi_{A B}\left(x_{A B}\right) \psi_{B C D}\left(x_{B C D}\right) \psi_{C E}\left(x_{C E}\right) \psi_{D E}\left(x_{D E}\right)
$$

Then the dependence graph for p is:

```
R> plot((g3<- ug(~ A:B + B:C:D + C:E + D:E)))
```


3.2 Reading conditional independencies - global Markov property

Conditional independencies can be read off the dependence graph:

- Global Markov Property : If $A \subset V$ and $B \subset V$ are separated by $S \subset V$ in the dependence graph \mathcal{G} then $X_{A} \Perp A_{B} \mid X_{S}$.
- Follows from factorization criterion: $X \Perp Y \mid Z$ if

$$
p(x, y, z)=g(x, z) h(y, z)
$$

- Example: With

$$
p(x)=\psi_{A B}\left(x_{A B}\right) \psi_{B C D}\left(x_{B C D}\right) \psi_{C E}\left(x_{C E}\right) \psi_{D E}\left(x_{D E}\right)
$$

we have $(D, E) \Perp A \mid B$:

$$
\begin{aligned}
p(x) & =\left[\psi_{A B}\left(x_{A B}\right)\right]\left(\psi_{B C D}\left(x_{B C D}\right) \psi_{C E}\left(x_{C E}\right) \psi_{D E}\left(x_{D E}\right)\right) \\
& =g\left(x_{A B}\right) h\left(x_{B C D E}\right)
\end{aligned}
$$

Now integrate over x_{C} and the result follows.

```
R> plot(g3)
R> separates(c("D","E"), "A", "B", g3)
[1] TRUE
```


4 Directed acyclic graphs (DAGs)

Definition 8 directed graph as a mathematical object is a pair $\mathcal{G}=(V, E)$ where V is a set of vertices and E is a set of directed edges, normally drawn as arrows.
A directed graph is acyclic if it has no directed cycles, that is, cycles with the arrows pointing in the same direction all the way around.
A DAG is a directed graph that is acyclic.

A DAG is created by the $d a g()$ function in gRbase. The graph can be specified by a list of formulas or by a list of vectors. The following statements are equivalent:

```
R> dag0 <- dag(~a, ~b * a, ~c * a * b, ~d * c * e, ~e * a)
R> dagO <- dag(~a + b:a + c:a:b + d:c:e + e:a)
R> dagO <- dag("a", c("b", "a"), c("c", "a", "b"), c("d", "c", "e"), c("e", "a"))
R> dag0
A graphNEL graph with directed edges
Number of Nodes = 5
Number of Edges = 6
```

Note that $\mathrm{d} * \mathrm{~b} * \mathrm{c}$ and $\mathrm{d}: \mathrm{b}: \mathrm{c}$ means that " d " has parents "b" and "c".

```
R> plot(dag0)
```


Directed graphs can also be created from matrices:

```
R> (m <- matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 0, 0, 0, 0, 0, 1, 1, 0), nrow = 5))
        [,1] [,2] [,3] [,4] [,5]
[1,]
[3,]
[5,] 0
R> rownames (m) <- colnames(m) <- letters[1:5]
R> dg <- as(m, "graphNEL")
R> plot(dg)
```


(a)

Definition 9 The parents of a vertex β are those nodes α for which $\alpha \rightarrow \beta$. Denote this set $\mathrm{pa}(\beta)$.

The children of α are those nodes β for which $\alpha \rightarrow \beta$. Denote this set by $\operatorname{ch}(\alpha)$.

```
R> parents("d", dag0)
[1] "c" "e"
R> children("c", dag0)
[1] "d"
```


4.1 Factorization and dependence graph - DAGs

Let $\mathcal{D}=(V, E)$ be a DAG, $X=\left(X_{v} ; v \in V\right)$ be random vector with density $p()$. If $p()$ factorizes as

$$
p(x)=\prod_{v \in V} p_{X_{v} \mid X_{p a(v)}}\left(x_{v} \mid x_{p a(v)}\right)
$$

then p factorizes according to \mathcal{D}.
Often just write

$$
p(x)=\prod_{v \in V} p_{v \mid p a(v)}\left(x_{v} \mid x_{p a(v)}\right)
$$

or

$$
p=\prod_{v \in V} p(v \mid \operatorname{pa}(v))
$$

Factorization for $X=\left(X_{a}, X_{b}, \ldots, X_{e}\right)$

$$
p_{X}(x)=p_{a}\left(x_{a}\right) p_{b \mid a}\left(x_{b} \mid x_{a}\right) p_{c \mid a, b}\left(x_{c} \mid x_{a}, x_{b}\right) p_{e \mid a}\left(x_{e} \mid x_{a}\right) p_{d \mid c, e}\left(x_{d} \mid x_{c}, x_{e}\right)
$$

In short form

$$
p_{V}(V)=p(a) p(b \mid a) p(c \mid a, b) p(e \mid a) p(d \mid c, e)
$$

4.2 Reading conditional independencies from DAGs (I)

Reading conditional independencies is different:

```
R> par(mfrow=c(3,1),mar=c(3,1,2,1))
R> plot(dag(~a+b:a+c:b),"circo")
R> plot(dag(~c+b:c+a:b),"circo")
R> plot(dag(~}b+a:b+c:b), "circo"
```



```
\(\mathrm{c} \longleftarrow \mathrm{b} \longrightarrow \mathrm{a}\)
```

In all cases $a \Perp c \mid b$:

$$
\begin{aligned}
p(a) p(b \mid a) p(c \mid b) & =\psi_{1}(a, b) \psi_{2}(b, c) \\
p(c) p(b \mid c) p(a \mid b) & =\psi_{1}(a, b) \psi_{2}(b, c) \\
p(b) p(c \mid b) p(a \mid b) & =\psi_{1}(a, b) \psi_{2}(b, c)
\end{aligned}
$$

But this one is different:

$$
R>\operatorname{plot}\left(\operatorname{dag}\left({ }^{\sim} \mathrm{a}+\mathrm{c}+\mathrm{b}: \mathrm{a}: c\right),\right. \text { "circo") }
$$

$$
p(a) p(c) p(b \mid a, c)
$$

- No factorization so no conditional independence.
- But marginally, $p(a, b)=p(a) p(b)$ so $a \Perp b$.

4.3 Moralization

An important operation on DAGs is to (i) add edges between the parents of each node, and then (ii) replace all directed edges with undirected ones, thus returning an undirected graph. This is known as moralization.

```
R> dagOm <- moralize(dag0)
R> par(mfrow=c(1,2))
R> plot(dag0)
R> plot(dagOm)
```


$$
\begin{aligned}
p(V) & =(p(a) p(b \mid a) p(c \mid a, b)) p(e \mid a) p(d \mid c, e) \\
& =\psi(c, a, b) \psi(e, a) \psi(d, c, e)=\psi(c, a, b) \psi(c, e, a) \psi(d, c, e)
\end{aligned}
$$

- Hence, if p factorizes according to DAG then p also factorizes according to the moral graph.
- Therefore the conditional indpendencies that can be read of the moral graph holds but there may be more: For example: $c \Perp e \mid a$ - but this can not be seen from moral graph.

4.4 Ancestral sets and graphs*

Definition 10 If there is a path from α to β we write $\alpha \mapsto \beta$. The ancestors of a node β are the nodes α such that $\alpha \mapsto \beta$. The ancestral set of a set A is the union of A with its
ancestors. The ancestral graph of a set A is the subgraph induced by the ancestral set of A.

```
R> ancestralSet(c("a", "c", "e"), dag0)
[1] "a" "b" "c" "e"
R> plot(ancestralGraph(c("a", "c", "e"), dag0))
```


4.5 Reading conditional independences from DAG (II)*

To check if $A \Perp B \mid S$ form the ancestral graph of $A \cup B \cup S$. Moralize this ancestral graph. If A and B are separated by S in this moral graph then $A \Perp B \mid S$.

```
R> par(mfrow=c(1,2))
R> plot(ancestralGraph(c("a", "c", "e"), dag0))
R> plot(moralize(ancestralGraph(c("a", "c", "e"), dag0)))
```


Why this works: Because we can integrate over the variables not in the ancestral set of $A \cup B \cup S$. Then we use the factorization structure in $p(\operatorname{An}(A \cup B \cup S))$.

5 Bayesian Network (BN) basics

- A Bayesian network is a often understood to be graphical model based on a directed acyclic graph (a $\underline{D A G}$).
- A BN typically will typically satisfy conditional independence restrictions which enables computations of updated probabilities for states of unobserved variables to be made very efficiently.
- The DAG only is used to give a simple and transparent way of specifying a probability model.
- The computations are based on exploiting conditional independencies in an undirected graph.
- Therefore, methods for building undirected graphical models can just as easily be used for building BNs.

This is the main point when we come to linking BNs to statistical models and data!!!

6 A small worked example BN

Consider the following narrative:
Having flu (F) may cause elevated temperature (T). Elevated tempearture may cause a headache (H).

Illustrate this narrative by $\underline{D A G}$:

```
R> plot((FTH<-dag(~ F + T:F + H:T)), "circo")
```

$$
\mathrm{F} \longrightarrow(\mathrm{~T} \longrightarrow \mathbb{H}
$$

We define a joint pmf for X as

$$
\begin{equation*}
p_{X}(x)=p_{X_{F}}\left(x_{F}\right) p_{X_{H} \mid X_{F}}\left(x_{T} \mid x_{F}\right) p_{X_{H} \mid X_{T}}\left(x_{H} \mid x_{T}\right) \tag{1}
\end{equation*}
$$

In a less rigorous notation (1) may be written

$$
p(V)=p(F) p(T \mid F) p(H \mid T)
$$

Conditional independence assumption: headache is conditionally independent of flu given temperature.

Conditional independence assumption: Flu does not directly cause headache; the headache comes from the fever.

Given a finding or evidence that a person has headache we may want to calculate

$$
P(F=\text { yes } \mid H=\text { yes }) \text { or } P(T=\text { yes } \mid H=\text { yes })
$$

In this small example we can compute everything in a brute force way using table operation functions from gRbase.

6.1 Specification of conditional probability tables

We specify $p(F), p(T \mid G)$ and $p(H \mid T)$ as tables $(1=\mathrm{yes}, 2=\mathrm{no})$:

```
R> (p.F <- parray("F", levels=2, values=c(.01,.99)))
F
    F1 F2
0.01 0.99
R> (p.TgF <- parray(c("T","F"), levels=c(2,2), values=c(.95,.05, .001,.999)))
    F
T F1 F2
    T1 0.95 0.001
    T2 0.05 0.999
R> (p.HgT <- parray(c("H","T"), levels=c(2,2), values=c(.80,.20, .010,.990)))
    T
H
    H1 0.8 0.01
    H2 0.2 0.99
```


6.2 Brute force computations

1) Calculate joint distribution $p(F T H)$
```
R> p.FT <- tableMult(p.F, p.TgF)
R> p.FTH <- tableMult(p.FT, p.HgT)
R> as.data.frame.table(p.FTH)
    H T F Freq
1 H1 T1 F1 0.0076000
2 H2 T1 F1 0.0019000
3 H1 T2 F1 0.0000050
4 H2 T2 F1 0.0004950
5 H1 T1 F2 0.0007920
6 H2 T1 F2 0.0001980
7 H1 T2 F2 0.0098901
8 H2 T2 F2 0.9791199
```

2) Calculate the marginal distribution $p(F H)$
```
R> p.FH <- tableMargin(p.FTH, margin=c('F','H'))
R> as.data.frame.table(p.FH)
    F H Freq
1 F1 H1 0.0076050
2 F2 H1 0.0106821
3 F1 H2 0.0023950
4 F2 H2 0.9793179
```

3) calculate conditional distribution $p(I \mid H)$
```
R> p.H <- tableMargin(p.FH, margin='H')
R> (p.FgH <- tableDiv(p.FH, p.H))
F
H F1 F2
    H1 0.415866923 0.5841331
    H2 0.002439613 0.9975604
```

So $p(F=1($ yes $) \mid H=1($ yes $))=0.42$ while $p(F=1($ yes $))=0.01$.

6.3 Brute force computations will fail

However, this scheme is computationally prohibitive in large models.

- If the model has 80 variables each with 10 levels, the joint distribution will have 10^{80} states $=$ the estimated number of atoms in the universe!
- In practice we a never interested in the joint distribution itself. We typically want the conditional distribution of one (or a few) variables given some of the other variables.
- We want to obtain this without calculating the joint distribution...

7 Decomposable graphs and junction trees

7.1 Decomposable graphs

Definition 11 A graph is decomposable (or triangulated) if it contains no cycles of length ≥ 4.

Decomposable graphs play a central role.

```
R> par(mfrow=c(1,3))
R> plot(ug(~1:2+2:3:4+3:4:5:6+6:7), "circo") # decomposable
R> plot(ug(~1:2+2:3+3:4:5+4:1),"circo") # not decomposable
R> plot(ug(~1:2:5+2:3:5+3:4:5+4:1:5),"circo") # not decomposable
```


7.2 Junction tree

Result: A graph is decomposable iff it can be represented by a junction tree (not unique).

For any two cliques C and $D, C \cap D$ is a subset of every node between them in the junction tree.

7.3 The key to message passing

Suppose

$$
p(x)=\prod_{C: c l i q u e s} \psi_{C}\left(x_{C}\right)
$$

where C are the cliques of a decomposable graph (equivalently: nodes in the junction tree) We may write p in a clique potential representation

$$
p(x)=\frac{\prod_{C: \text { cliques }} \psi_{C}\left(x_{C}\right)}{\prod_{S: \text { separators }} \psi_{S}\left(x_{S}\right)}
$$

The terms are called potentials ; the representation is not unique.
Potential representation easy to obtain from DAG factorization:

- Set all $\psi_{C}\left(x_{C}\right)=1$ and all $\psi_{S}\left(x_{S}\right)=1$
- Assign each conditional $p\left(x_{v} \mid x_{p a(v)}\right)$ to a potential ψ_{C} for a clique C containing $v \cup$ $p a(v)$ by

$$
\psi_{C}\left(x_{C}\right) \leftarrow \psi_{C}\left(x_{C}\right) p\left(x_{v} \mid x_{p a(v)}\right)
$$

Using local computations we can manipulate the potentials to obtain clique marginal representation :

$$
p(x)=\frac{\prod_{C: \text { cliques }} p_{C}\left(x_{C}\right)}{\prod_{S: \text { separators }} p_{S}\left(x_{S}\right)}
$$

1. First until the potentials contain the clique and separator marginals, i.e. $\psi_{C}\left(x_{C}\right)=$ $p_{C}\left(x_{C}\right)$.
2. Next until the potentials contain the clique and separator marginals conditional on a certain set of findings, i.e. $\psi_{C}\left(x_{C}, e^{*}\right)=p_{C}\left(x_{C} \mid e^{*}\right)$.

Done by message passing in junction tree .
Notice: We do not want to carry out the multiplication above. Better to think about that we have a representation of p as

$$
p \equiv\left\{p_{C}, p_{S} ; C: \text { cliques, } S: \text { separators }\right\}
$$

7.4 Computations by message passing

```
R> par(mfrow=c(1,2), oma=c(2,1,2,1))
R> plot(FTH)
R> plot(moralize(FTH))
```


The moral graph is decomposable (essential for what follows).
Rewrite $p(V)$ as

$$
p(V)=(p(F) p(T \mid F)) p(H \mid T)=\frac{\psi_{F T} \psi_{T H}}{\psi_{T}}
$$

where $\psi_{T} \equiv 1$.
Junction tree:

Setting $\psi_{F T}=p(F) p(T \mid F), \psi_{T H}=p(H \mid T)$ and $\psi_{T}=1$ gives

$$
p(F, T, T)=\frac{\psi_{F T} \psi_{T H}}{\psi_{T}}
$$

7.5 Clique potential representation

$$
p(F, T, H)=\frac{\psi_{F T} \psi_{T H}}{\psi_{T}}
$$

```
R> (qFT <- tableMult(p.F, p.TgF))
    F
T 
    T1 0.0095 0.00099
    T2 0.0005 0.98901
R> (qTH <- p.HgT)
    T
H T1 T2
    H1 0.8 0.01
    H2 0.2 0.99
R> (qT <- parray("T",levels=2, values=1))
T
T1 T2
```


7.6 Working inwards in junction tree

Work inwards towards root (i.e. from $F T$ towards $T H$):
$\operatorname{Set} \psi_{T}^{*}=\sum_{F} \psi_{F T}$.
Set $\psi_{T H}^{*}=\psi_{T H} \frac{\psi_{T}^{*}}{\psi_{T}}$
Then

$$
p(F, H, T)=\psi_{F T} \frac{1}{\psi_{T}^{*}}\left[\frac{\psi_{T}^{*}}{\psi_{T}} \psi_{T H}\right]=\frac{\psi_{F T} \psi_{T H}^{*}}{\psi_{T}^{*}}
$$

Now we have $\psi_{T H}^{*}$ is the marginal probability $p(T, H)$:

$$
\psi_{T H}^{*}=\sum_{F} p(F, T, H)=p(T, H)
$$

```
R> (qTs <- tableMargin(qFT, "T"))
T
T1 T2
0.01049 0.98951
R> (qTHs <- tableMult(qTH, tableDiv(qTs, qT)))
    H
T
    T2 0.0098951 0.9796149
```


7.7 Working outwards in junction tree

Work outwards from root (i.e. from $T H$ towards $F T$):

Set $\psi_{T}^{* *}=\sum_{H} \psi_{T H}^{*}$. Since $\psi_{T H}^{*}=p(T, H)$ we have

$$
\psi_{T}^{* *}=p(T) \quad \checkmark
$$

```
R> (qTss <- tableMargin(qTHs, "T"))
T
0.01049 0.98951
```

Set $\psi_{F T}^{*}=\psi_{F T} \frac{\psi_{T}^{* *}}{\psi_{T}^{*}}$. Then

$$
p(F, T, H)=\left[\psi_{F T} \frac{\psi_{T}^{* *}}{\psi_{T}^{*}}\right] \frac{1}{\psi_{T}^{* *}} \psi_{T H}^{*}=\psi_{F T}^{*} \frac{1}{\psi_{T}^{* *}} \psi_{T H}^{*}
$$

and

$$
\psi_{F T}^{*}=p(F, T) \quad \checkmark
$$

```
R> (qFTs <- tableMult(qFT, tableDiv(qTss, qTs)))
    F
T F1 F2
    T1 0.0095 0.00099
    T2 0.0005 0.98901
```

This leaves us with marginal distributions on all cliques and separators

```
R> qFTs
    F
T F1 F2
    T1 0.0095 0.00099
    T2 0.0005 0.98901
R> qTHs
    H
T H1 H2
    T1 0.0083920 0.0020980
    T2 0.0098951 0.9796149
R> qTs
T
T1 T2
```

From this we get:

```
R> qTs # probability of temperature
T
T1 T2
0.01049 0.98951
R> tableMargin(qFT, "F") # probability of fever
F
    F1 F2
0.01 0.99
R> tableMargin(qTH, "H") # probability of headache
H
    H1 H2
0.81 1.19
```

- and we never calculated the joint distribution!!

8 Propagating findings

Suppose we have the finding $H=$ yes $(=H 1)$.
Set any entry in $\psi_{T H}$ which is inconsistent with $H=H 1$ equal to 0 . This yields a new potential, say $\tilde{\psi}_{T H}$ and we have

$$
p(F, T \mid H=H 1) \propto P(F, T, H=H 1)=\frac{\psi_{F T} \tilde{\psi}_{T H}}{\psi_{T}}
$$

Repeat the computations above...

```
R> qTH
    T
H T1 T2
    H1 0.8 0.01
    H2 0.2 0.99
R> ## Set finding H=H1
R> qTH[c(2,4)] <- 0
R> qTH
    T
H T1 T2
    H1 0.8 0.01
    H2 0.0 0.00
```

```
R> ## Repeat everything
R> (qTs <- tableMargin(qFT, "T"))
T
0.01049 0.98951
R> (qTHs <- tableMult(qTH, tableDiv(qTs, qT)))
    H
T H1 H2
T1 0.0083920 0
T2 0.0098951 0
R> (qTss <- tableMargin(qTHs, "T"))
T
0.0083920 0.0098951
R> (qFTs <- tableMult(qFT, tableDiv(qTss, qTs)))
    F
T F1 F2
T1 7.6e-03 0.0007920
```

After these operations, the tables only contain the clique probabilities up to a normalizing constant, i.e. $\psi_{C}\left(x_{C}\right) \propto p\left(x_{C}\right)$:

```
R> sum(qFTs)
[1] 0.0182871
```

To get probability of fever we must normalize:

```
R> tableMargin(qFTs, "F")/sum(qFTs)
F
F1 
```

The important point of the computations: After working inwards and outwards in the junction tree, the clique potentials are consistent: They match on their separators:

```
R> tableMargin(qFTs, "T")
T
T1 rra
R> tableMargin(qTHs, "T")
T
T1 T2
R> qTss
T
0.0083920 0.0098951
```


9 The chest clinic narrative

Lauritzen and Spiegehalter (1988) presents the following narrative:
"Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them.
A recent visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.
The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea."

A formalization of this narrative is as follows:
The DAG in Figure 1 now corresponds to a factorization of the joint probability function as

$$
\begin{equation*}
p(V)=p(A) p(T \mid A) p(S) p(L \mid S) p(B \mid S) p(E \mid T, L) p(D \mid E, B) p(X \mid E) \tag{2}
\end{equation*}
$$

9.1 Findings and queries

- Suppose we are given the finding that a person has recently visited Asia and suffers from dyspnoea, i.e. $A=$ yes and $D=$ yes. Generally denote findings as $E=e^{*}$
- Interest may be in the conditional distributions $p\left(L \mid e^{*}\right), p\left(T \mid e^{*}\right)$ and $p\left(B \mid e^{*}\right)$, or possibly in the joint (conditional) distribution $p\left(L, T, B \mid e^{*}\right)$.
- Interest might also be in calculating the probability of a specific event, e.g. the probability of seeing a specific evidence, i.e. $p\left(E=e^{*}\right)$.

Figure 1: The directed acyclic graph corresponding to the chest clinic example.

- A brute-force approach is to calculate the joint distribution by carrying out the table multiplications and then marginalizing.
- This is doable in this example (the joint distribution will have $2^{8}=256$ states) but with 100 binary variables the state space will have 2^{100} states. That is prohibitive.
- The gRain package implements a computationally much more efficient scheme.

10 An introduction to the gRain package

Specify chest clinic network.

```
R> yn <- c("yes", "no")
R> a <- cptable(~asia, values=c(1,99),levels=yn)
R> t.a <- cptable(~
R> s <- cptable(~smoke, values=c (5,5), levels=yn)
R> l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
R> b.s <- cptable(~bronc+smoke, values=c ( }6,4,3,7), levels=yn
R> e.lt <- cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
R> x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
R> d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
R> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
R> bnet <- grain(plist)
R> bnet
Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...
```

```
R> plist
CPTspec with probabilities:
P( asia )
P( tub | asia )
P( smoke )
P( lung | smoke )
P( bronc | smoke )
P( either | lung tub )
P( xray | either )
P( dysp | bronc either )
R> plist$tub
asia
tub yes no
    yes 0.05 0.01
    no 0.95 0.99
```

R> plot(bnet)

10.1 Queries

```
R> querygrain(bnet, nodes=c('lung', 'tub', 'bronc'))
$tub
tub
    yes no
0.0104 0.9896
$lung
lung
    yes no
0.055 0.945
$bronc
bronc
yes no
0.45 0.55
```


10.2 Setting findings and probability of findings

```
R> bnet.f <- setFinding(bnet, nodes=c('asia', 'dysp'), state=c('yes','yes'))
R> bnet.f
Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" ...
Findings: chr [1:2] "asia" "dysp"
R> pFinding(bnet.f)
[1] 0.004501375
```


10.3 Queries - II

```
R> querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'))
$tub
tub
0.08775096 0.91224904
$lung
lung
yes 
$bronc
bronc
    yes no
0.8114021 0.1885979
```

```
R> querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'), type='joint')
, , bronc = yes
    tub
lung yes no
    yes 0.003149038 0.05983172
    no 0.041837216 0.70658410
, , bronc = no
        tub
lung yes no
    yes 0.001827219 0.03471717
    no 0.040937491 0.11111605
```


10.4 Dependence graph, moralization and triangulation

The computational scheme outlined above does not apply directly to the chest clinic example.
An extra step is needed: Triangulation of the moral graph.

Recall chest clinic model

$$
p(V)=p(A) p(T \mid A) p(S) p(L \mid S) p(B \mid S) p(E \mid T, L) p(D \mid E, B) p(X \mid E)
$$

Absorb lower order terms into higher order terms:

$$
p(V)=\psi(T, A) \psi(L, S) \psi(B, S) \psi(E, T, L) \psi(D, E, B) \psi(X, E)
$$

The dependence graph corresponding to the factorization

$$
p(V)=\psi(T, A) \psi(L, S) \psi(B, S) \psi(E, T, L) \psi(D, E, B) \psi(X, E)
$$

is the moral graph - but this graph is NOT triangulated:

```
R> par(mfrow=c(1,2))
R> plot(bnet$dag)
R> plot(moralize(bnet$dag))
```


10.5 Triangulation

We can add edges, so called fill-ins, to the dependence graph to make the graph triangulated. This is called triangulation :

```
R> par(mfrow=c(1,2))
R> plot(moralize(bnet$dag))
R> plot(triangulate(moralize(bnet$dag)))
```


DAG:

$$
p(V)=p(A) p(T \mid A) p(S) p(L \mid S) p(B \mid S) p(D \mid E, B) p(E \mid T, L) p(X \mid E)
$$

Dependence graph (moral graph):

$$
p(V)=\psi(T, A) \psi(L, S) \psi(B, S) \psi(D, E, B) \psi(E, T, L) \psi(X, E)
$$

Triangulated graph:

$$
p(V)=\psi(T, A) \psi(L, S, B) \psi(L, E, B) \psi(D, E, B) \psi(E, T, L) \psi(X, E)
$$

where

$$
\psi(L, S, B)=\psi(L, S) \psi(B, S) \quad \phi(L, E, B) \equiv 1
$$

Notice: We have not changed the fundamental model by these steps, but some conditional independencies are concealed in the triangulated graph.
But the triangulated graph factorization allows efficient calculations.

10.6 Fundamental operations in gRain

Fundamental operations in gRain so far:

- Network specification: grain() Create a network from list of conditional probability tables; and do a few other things.
- Set findings: setFinding() : Set the values of some variables.
- Ask queries: querygrain() : Get updated beliefs (conditional probabilities given findings) of some variables

Under the hood there are two additional operations:

- Compilation: compile() Create a clique potential representation (and a few other steps)
- Propagation: propagate() Turn clique potentials into clique marginals.

These operations must be made before querygrain() can be called but querygrain() will make these operations if necessary.

11 Summary of the BN part

We have used a DAG for specifying a complex stochastic model through simple conditional probabilities

$$
p(V)=\prod_{v} p(v \mid p a(v))
$$

Afterwards we transfer the model to a factorization over the cliques of a decomposable undirected graph

$$
p(V)=\left\{\prod_{C: c l i q u e s} \psi_{C}(C)\right\} /\left\{\prod_{S: \text { separators }} \psi_{S}(S)\right\}
$$

It is through the decomposable graph the efficient computation of probabilities takes place. We then forget about the DAG part and the conditional probability tables.
Therefore, we may skip the DAG part and find the decomposable graph and corresponding clique potentials from data.

12 Contingency tables

In a study of lizard behaviour, characteristics of 409 lizards were recorded, namely species (S), perch diameter (D) and perch height (H). We have $V=\{D, H, S\}$.

```
R> data(lizardRAW, package="gRbase")
R> head(lizardRAW)
    diam height species
    >4 >4.75 dist
    >4 >4.75 dist
    <=4 <=4.75 anoli
    >4 <=4.75 anoli
    >4<=4.75 dist
<=4<=4.75 anoli
R> dim(lizardRAW)
[1] }409 
```

We may summarize data in a contingency table with cells $(d h s)$ and counts $n_{d h s}$ given by:

```
R> data(lizard, package="gRbase")
R> lizard
, , species = anoli
    height
diam >4.75 <=4.75
    l=4
, , species = dist
        height
diam >4.75 <=4.75
    <=4 
```


12.1 Notation

We consider a discrete random vector $X=\left(X_{v} ; v \in V\right)$ where each X_{v} has a finite state space \mathcal{X}_{v}
A configuration of X is denoted by $x=\left(x_{v}, v \in V\right)$.
A configuration x is also a cell in a contingency table. The counts in the cell is denoted $n(x)$ and the total number of observations in denoted n.
The probability of an observation in cell x is denoted $p(x)$.
For $A \subset V$ we correspondingly have $X_{A}=\left(X_{v} ; v \in A\right)$.
A configuration of X_{A} is denoted by x_{A}.
For $A \subset V$ we correspondingly have a marginal table with counts $n\left(x_{A}\right)$.
The probability of an observation in a marginal cell x_{A} is denoted $p\left(x_{A}\right)=\sum_{x^{\prime}: x_{A}^{\prime}=x_{A}} p\left(x^{\prime}\right)$.

```
R> lizard
, , species = anoli
height
diam >4.75 <=4.75
    <=4 32 86
    >4 11 35
, , species = dist
        height
diam >4.75 <=4.75
    <=4
R> ## Marginal table
R> tableMargin(lizard, c("species","height"))
    height
species >4.75<=4.75
    anoli 43 121
dist 102143
```


12.2 Log-linear models

We are interested in modelling the cell probabilities $p_{\text {dhs }}$.
Commonly done by a hierarchical expansion of log-cell-probabilities into interaction terms

$$
\log p_{d h s}=\alpha^{0}+\alpha_{d}^{D}+\alpha_{h}^{H}+\alpha_{s}^{S}+\beta_{d h}^{D H}+\beta_{d s}^{D S}+\beta_{h s}^{H S}+\gamma_{d h s}^{D H S}
$$

Structure on the model is obtained by setting interaction terms to zero following the principle that if an interaction term is set to zero then all higher order terms containing that interaction terms must also be set to zero.
For example, if we set $\beta_{d h}^{D H}=0$ then we must also set $\gamma_{d h s}^{D H S}=0$.
The non-zero interaction terms are the generators of the model. Setting $\beta_{d h}^{D H}=\gamma_{d h s}^{D H S}=0$ the generators are

$$
\{D, H, S, D S, H S\}
$$

If no interaction terms are set to zero we have the saturated model.
If all interaction models are set to zero we have the independence model
Generators contained in higher order generators can be omitted so the generators become

$$
\{D S, H S\}
$$

corresponding to

$$
\log p_{d h s}=\alpha_{d s}^{D S}+\alpha_{h s}^{H S}
$$

Instead of taking logs we may write $p_{h d s}$ in product form

$$
p_{d h s}=\psi_{d s}^{D S} \psi_{h s}^{H S}
$$

The factorization criterion gives directly that $D \Perp H \mid S$.
More generally the generating class of a \log-linear model is a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{Q}\right\}$ where $A_{q} \subset V$.
This corresponds to

$$
p(x)=\prod_{A \in \mathcal{A}} \phi_{A}\left(x_{A}\right)
$$

where ϕ_{A} is a potential, a function that depends on x only through x_{A}.
Under multinomial sampling the likelihood is

$$
L=\prod_{x} p(x)^{n(x)}=\prod_{A \in \mathcal{A}} \prod_{x_{A}} \psi_{A}\left(x_{A}\right)^{n\left(x_{A}\right)}
$$

The MLE for $p(x)$ is the (unique) solution to the likelihood equations

$$
\hat{p}\left(x_{A}\right)=n\left(x_{A}\right) / n, \quad A \in \mathcal{A}
$$

Typically MLE must be found by iterative methods, e.g. iterative proportional scaling (IPS)
Iterative proportional scaling is implemented in $\underline{\log \operatorname{lin}()}$:

```
R> (ll1 <- loglin(lizard, list(c("species","diam"),c("species","height"))))
2 iterations: deviation 0
$lrt
[1] 2.025647
$pearson
[1] 2.017364
$df
[1] 2
$margin
$margin[[1]]
[1] "species" "diam"
$margin[[2]]
[1] "species" "height"
```

A formula based interface to $\underline{\log \operatorname{lin}()}$ is provided by $\log \operatorname{lm}()$:

```
R> (ll2 <- loglm(~species:diam+species:height, data=lizard))
Call:
loglm(formula = ~species:diam + species:height, data = lizard)
Statistics:
X^2 df P(> X^2)
Likelihood Ratio 2.025647 2 0.3631921
Pearson 2.017364 2 0.3646994
```


12.3 Graphical models and decomposable models

Definition $12 A$ hierarchical log-linear model with generating class $\mathcal{A}=\left\{a_{1}, \ldots a_{Q}\right\}$ is graphical if \mathcal{A} are the cliques of the dependence graph.

Definition 13 A graphical log-linear model is decomposable if the models dependence graph is triangulated.

Example $12.1 \mathcal{A}_{1}=\{A B C, B C D\}$ is graphical but $\mathcal{A}_{2}=\{A B, A C, B C D\}$ is not. (Both have dependence graph with cliques \mathcal{A}_{1}). \mathcal{A}_{1} is also decomposable. $\mathcal{A}_{3}=\{A B, A C, B D, C D\}$ is graphical but not decomposable.

```
R> par(mfrow=c(1,3))
R> plot(ug(~A:B:C + B:C:D))
R> plot(ug(~A:B + A:C + B:C:D))
R> plot(ug(~A:B + A:C + B:D + C:D))
```


12.4 ML estimation in decomposable models

Consider model $\mathcal{A}_{1}=\{A B C, B C D\}$. Index levels of A, B, C, D by i, j, k, l.

The MLE for this model is

$$
\hat{p}_{i j k l}=\frac{\frac{n_{i j k+}}{n} \frac{n_{+j k l}}{n}}{\frac{n_{+j k+}}{n}}
$$

- $\frac{n_{i j k+}}{n}$ is MLE $\hat{p}_{i j k}$ under the marginal model $\{A B C\}$ for $A B C$ marginal table.
- $\frac{n_{+j k l}}{n}$ is MLE $\hat{p}_{j k l}$ under the marginal model $\{B C D\}$ for the $B C D$ marginal table.
- $\frac{n_{+j k+}}{n}$ is MLE $\hat{p}_{j k}$ under the marginal model $\{B C\}$ for the $B C$ marginal table.
- Generally, for a decomposable model, the MLE can be found in closed form as

$$
\hat{p}(x)=\frac{\prod_{C: \text { cliques }} \hat{p}_{C}\left(x_{C}\right)}{\prod_{S: \text { separators }} \hat{p}_{S}\left(x_{S}\right)}
$$

where $\hat{p}_{E}\left(x_{E}\right)=n\left(x_{E}\right) / n$ for any clique or separator E.

Example 12.2 Consider the lizard data and the model $\mathcal{A}=\{[D S][H S]\}$. The MLE is

$$
\hat{p}_{d h s}=\frac{\left(n_{d+s} / n\right)\left(n_{+h s} / n\right)}{n_{++s} / n}=\frac{n_{d+s} n_{+h s}}{n n_{++s}}
$$

```
R> n.ds <- tableMargin(lizard, c("diam", "species"))
R> n.hs <- tableMargin(lizard, c("height", "species"))
R> n.s <- tableMargin(lizard, c("species"))
R> ## Expected cell counts
R> (fv <- tableDiv( tableMult(n.ds, n.hs), n.s))
,, diam = <=4
    height
species >4.75 <=4.75
    anoli 30.93902 87.06098
    dist 55.78776 78.21224
, , diam = >4
    height
species >4.75 <=4.75
    anoli 12.06098 33.93902
    dist 46.21224 64.78776
```

```
R> as.data.frame.table(tablePerm(fv, c("diam","height","species")))
    diam height species Freq
    <=4 >4.75 anoli 30.93902
    >4 >4.75 anoli 12.06098
    <=4 <=4.75 anoli 87.06098
    >4 <=4.75 anoli 33.93902
    <=4 >4.75 dist 55.78776
    >4 >4.75 dist 46.21224
    <=4 <=4.75 dist 78.21224
    >4 <=4.75 dist 64.78776
    as.data.frame.table(fitted(ll2))
Re-fitting to get fitted values
    diam height species Freq
    <=4 >4.75 anoli 30.93902
    >4 >4.75 anoli 12.06098
    <=4 <=4.75 anoli 87.06098
    >4 <=4.75 anoli 33.93902
    <=4 >4.75 dist 55.78776
    >4 >4.75 dist 46.21224
    <=4 <=4.75 dist 78.21224
    >4 <=4.75 dist 64.78776
```


12.5 Connecting decomposable models and Bayesian networks

For a decomposable model, the MLE is given as

$$
\begin{equation*}
\hat{p}(x)=\frac{\prod_{C: c l i q u e s} \hat{p}_{C}\left(x_{C}\right)}{\prod_{S: \text { separators }} \hat{p}_{S}\left(x_{S}\right)} \tag{3}
\end{equation*}
$$

- The result (3) is IMPORTANT in connection with Bayesian networks, because (3) is a clique potential representation of p.
- Hence if we find a decomposable graphical model then we can convert this to a Bayesian network.
- We need not specify conditional probability tables (they are only used for specifying the model anyway, the real computations takes place in the junction tree).

13 Testing for conditional independence

Tests of general conditional independence hypotheses of the form $u \Perp v \mid W$ can be performed with ciTest() (a wrapper for calling ciTest_table()).

```
R> args(ciTest_table)
function (x, set = NULL, statistic = "dev", method = "chisq",
    adjust.df = TRUE, slice.info = TRUE, L = 20, B = 200, ...)
NULL
```

The general syntax of the set argument is of the form (u, v, W) where u and v are variables and W is a set of variables.

```
R> ciTest(lizard, set=c("diam","height","species"))
Testing diam _l_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ
```

The set argument can be given in different forms:
Alternative forms are available:

```
R> ciTest(lizard, set=~diam+height+species)
R> ciTest(lizard, ~di+he+s)
R> ciTest(lizard, c("di","he","sp"))
R> ciTest(lizard, c(2,3,1))
```


13.1 What is a CI-test - stratification

Conditional independence of u and v given W means independence of u and v for each configuration w^{*} of W.
In model terms, the test performed by ciTest() corresponds to the test for removing the edge $\{u, v\}$ from the saturated model with variables $\{u, v\} \cup W$.
Conceptually form a factor S by crossing the factors in W. The test can then be formulated as a test of the conditional independence $u \Perp v \mid S$ in a three way table.

The deviance decomposes into independent contributions from each stratum:

$$
\begin{aligned}
D & =2 \sum_{i j s} n_{i j s} \log \frac{n_{i j s}}{\hat{m}_{i j s}} \\
& =\sum_{s} 2 \sum_{i j} n_{i j s} \log \frac{n_{i j s}}{\hat{m}_{i j s}}=\sum_{s} D_{s}
\end{aligned}
$$

where the contribution D_{s} from the s th slice is the deviance for the independence model of u and v in that slice.

```
R> cit <- ciTest(lizard, set=~diam+height+species, slice.info=T)
R> cit
Testing diam _l_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ
R> names(cit)
[1] "statistic" "p.value" "df" "statname" "method" "adjust.df"
[7] "varNames" "slice"
R> cit$slice
    statistic p.value df species
1 0.1779795 0.6731154 1 anoli
2 1.8476671 0.1740550 1 dist
```

The s th slice is a $|u| \times|v|$-table $\left\{n_{i j s}\right\}_{i=1 \ldots|u|, j=1 \ldots|v|}$. The degrees of freedom corresponding to the test for independence in this slice is

$$
d f_{s}=\left(\#\left\{i: n_{i \cdot s}>0\right\}-1\right)\left(\#\left\{j: n_{\cdot j s}>0\right\}-1\right)
$$

where $n_{i \cdot s}$ and $n_{. j s}$ are the marginal totals.

14 Log-linear models using the gRim package

```
R> data(wine, package="gRbase")
R> head(wine,4)
    Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln
1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065
2 v1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050
3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185
4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80}00.86 3.45 1480
R> dim(wine)
[1] 178 14
```

Cult is grape variety (3 levels); all other variables are results of chemical analyses.
Comes from UCI Machine Learning Repository. "Task" is to predict Cult from chemical measurements.

Discretize data:

```
R> wine <- cbind(Cult=wine[,1],
R> head(wine)
    Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw Prln
\begin{tabular}{lllllllllllllll}
1 & v1 & H & L & H & L & H & H & H & L & H & L & L & H & H \\
2 & v1 & H & L & L & L & L & H & H & L & L & L & L & H & H \\
3 & v1 & H & L & H & L & L & H & H & L & H & L & L & H & H \\
4 & v1 & H & L & H & L & L & H & H & L & H & H & L & H & H \\
5 & v1 & H & L & H & H & H & H & L & L & L & L & L & H & L \\
6 & v1 & H & L & H & L & L & H & H & L & L & L & L & H & H
\end{tabular}
R> dim(xtabs(~.,wine))
[1] 32 2 2 2 2 2 2 2 2 2 2 2
```

Just look at some variables

```
R> wine <- wine[,1:4]
R> head(wine)
    Cult Alch Mlca Ash
1 lllll
R> dim(xtabs(~., wine))
[1] 3 2 2 2
```

The function $\operatorname{dmod}()$ is used for specifying log-linear models.

- Data must be a table or dataframe (which can be coerced to a table)
- Model given as generating class:
- A right-hand-sided formula or
- A list.
- Variable names may be abbreviated:

```
R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)
R> mm <- dmod(list(c("Cult","Alch"), c("Alch","Mlca","Ash")), data=wine)
R> mm <- dmod(~}\mp@subsup{~}{}{~}:Alc+Alc:M:As, data=wine)
R>mm
Model: A dModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 926.33 mdim : }11\mathrm{ aic : 948.33
ideviance : 127.86 idf : 6 bic : 983.33
deviance : 48.08 df : }1
```

The generating class as a list is retrieved with terms() and as a formula with formula() :

```
R> str(terms(mm))
List of 2
    $ : chr [1:2] "Cult" "Alch"
    $ : chr [1:3] "Alch" "Mlca" "Ash"
R> formula(mm)
~}\mathrm{ Cult * Alch + Alch * Mlca * Ash
```


14.1 Plotting the dependence graph

\square
R> plot (mm)

Notice: No dependence graph in model object; must be generated on the fly using ugList () :

```
R> # Default: a graphNEL object
R> DG <- ugList(terms(mm))
R>DG
A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 4
R> # Alternative: an adjacency matrix
R> ugList(terms(mm), result="matrix")
\begin{tabular}{lrrrr} 
& Cult & Alch & Mlca & Ash \\
Cult & 0 & 1 & 0 & 0 \\
Alch & 1 & 0 & 1 & 1 \\
Mlca & 0 & 1 & 0 & 1 \\
Ash & 0 & 1 & 1 & 0
\end{tabular}
```


14.2 Model specification shortcuts

Shortcuts for specifying some models

```
R> str(terms(dmod(~.^., data=wine))) ## Saturated model
List of 1
$ : chr [1:4] "Cult" "Alch" "Mlca" "Ash"
R> str(terms(dmod(~.^1, data=wine))) ## Independence model
List of 4
$ : chr "Cult"
$: chr "Alch"
$ : chr "Mlca"
$ : chr "Ash"
R> str(terms(dmod(~.^3, data=wine))) ## All 3-factor model
List of 4
$ : chr [1:3] "Cult" "Alch" "Mlca"
$ : chr [1:3] "Cult" "Alch" "Ash"
    $ : chr [1:3] "Cult" "Mlca" "Ash"
    $ : chr [1:3] "Alch" "Mlca" "Ash"
```

Useful to combine with specification of a marginal table:

```
R> marg <- c("Cult", "Alch", "Mlca")
R> str(terms(dmod(~.^., data=wine, margin=marg))) ## Saturated model
List of 1
$ : chr [1:3] "Cult" "Alch" "Mlca"
R> str(terms(dmod(~. ^1, data=wine, margin=marg))) ## Independence model
List of 3
$ : chr "Cult"
$ : chr "Alch"
$ : chr "Mlca"
```


14.3 Altering graphical models

Natural operations on graphical models: add and delete edges

```
R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)
R> mm2 <- update(mm, list(dedge=~Alch:Ash, aedge=~Cult:Mlca)) # No abbreviations
R> par(mfrow=c(1,2)); plot(mm); plot(mm2)
```


14.4 Model comparison

Models are compared with compareModels().

```
R> mm <- dmod(~Cult:Alch+Alch:Mlca:Ash, data=wine)
R> mm2 <- update(mm, list(dedge=~Alch:Ash+Alch:Cult)) # No abbreviations
R> compareModels(mm,mm2)
Large:
    :"Cult" "Alch"
    :"Alch" "Mlca" "Ash"
Small:
    :"Alch" "Mlca"
    :"Mlca" "Ash"
    :"Cult"
-2logL: 126.66 df: 4 AIC(k= 2.0): 118.66 p.value: 0.000000
```


14.5 Decomposable models - deleting edges

Result: If \mathcal{A}_{1} is a decompsable model and we remove an edge $e=\{u, v\}$ which is contained in one clique C only, then the new model \mathcal{A}_{2} will also be decomposable.

```
R> par(mfrow=c(1,3))
R> plot(ug(~A:B:C+B:C:D))
R> plot(ug(~A:C+B:C+B:C:D))
R> plot(ug(~}A:B+A:C+B:D+C:D)
```


Left: \mathcal{A}_{1} - decomposable; Center: dropping $\{A, B\}$ gives decomposable model; Right: dropping $\{B, C\}$ gives non-decomposable model.
Result: The test for removal of $e=\{u, v\}$ which is contained in one clique C only can be made as a test for $u \Perp v \mid C \backslash\{u, v\}$ in the C-marginal table.
This is done by ciTest(). Hence, no model fitting is necessary.

14.6 Decomposable models - adding edges

More tricky when adding edge to a decomposable model

```
R> plot(ug(~A:B+B:C+C:D), "circo")
```


Adding $\{A, D\}$ gives non-decomposable model; adding $\{A, C\}$ gives decomposable model. One solution: Try adding edge to graph and test if new graph is decomposable. Can be tested with maximum cardinality search as implemented in mcs(). Runs in $O(|e d g e s|+$ |vertices|).

```
R> UG <- ug(~}A:B+B:C+C:D
R> mcs(UG)
[1] "A" "B" "C" "D"
R> UG1 <- addEdge("A", "D",UG)
R> mcs(UG1)
character(0)
R> UG2 <- addEdge("A","C",UG)
R> mcs(UG2)
[1] "A" "B" "C" "D"
```


14.7 Test for adding and deleting edges

Done with testdelete() and testadd()

```
R> mm <- dmod(~}C:Alc+Alc:M:As, data=wine
R> plot(mm)
R> testdelete(mm, edge=c("Mlca","Ash"))
dev: 7.710 df: 2 p.value: 0.02117 AIC(k=2.0): 3.7 edge: Mlca:Ash
host: Alch Mlca Ash
Notice: Test performed in saturated marginal model
```



```
R> mm <- dmod(~C:Alc+Alc:M:As, data=wine)
R> plot(mm)
R> testadd(mm, edge=c("Mlca","Cult"))
dev: 29.388 df: 4 p.value: 0.00001 AIC(k=2.0): -21.4 edge: Mlca:Cult
host: Alch Mlca Cult
Notice: Test performed in saturated marginal model
```


14.8 Model search in log-linear models using gRim

Model selection implemented in stepwise() function.

- Backward / forward search (Default: backward)
- Select models based on p-values or $\operatorname{AIC}(\mathrm{k}=2)$ (Default: $\operatorname{AIC}(\mathrm{k}=2)$)
- Model types can be "unsrestricted" or "decomposable". (Default is decomposable if initial model is decompsable)
- Search method can be "all" or "headlong". (Default is all)

```
R> args(stepwise.iModel)
function (object, criterion = "aic", alpha = NULL, type = "decomposable",
    search = "all", steps = 1000, k = 2, direction = "backward",
    fixinMAT = NULL, fixoutMAT = NULL, details = 0, trace = 2,
    ...)
NULL
```

```
R> dm1 <- dmod(~.`., data=wine)
R> dm2 <- stepwise(dm1, details=1)
STEPWISE:
    criterion: aic ( k = 2 )
direction: backward
type : decomposable
search : all
steps : 1000
. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00
. Initial model: is graphical=TRUE is decomposable=TRUE
    change.AIC -2.5140 Edge deleted: Ash Alch
    change.AIC -1.7895 Edge deleted: Ash Mlca
    change.AIC -0.8054 Edge deleted: Mlca Alch
R> formula(dm2)
~Cult * Ash + Cult * Alch + Cult * Mlca
R> terms(dm2)
[[1]]
[1] "Cult" "Ash"
[[2]]
[1] "Cult" "Alch"
[[3]]
[1] "Cult" "Mlca"
```

```
R> par(mfrow=c(1,2))
R> plot(dm1, "circo")
R> plot(dm2, "circo")
```


15 From graph and data to network

Create graphs from models:

```
R> uG2 <- ugList(terms(dm2))
R> uG2 <- ugList(list(c("Cult", "Ash"), c("Cult", "Alch"), c("Cult", "Mlca")))
R> uG1 <- ugList(terms(dm1))
```

Given a graph (either an undirected decomposable graph or a DAG) and data we can construct BN's on the fly (data can be a dataframe or a table)

```
R> (wine1 <- compile(grain(uG1, data=wine)))
Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:4] "Ash" "Cult" "Alch" "Mlca"
R> (wine2 <- compile(grain(uG2, data=wine)))
Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:4] "Ash" "Cult" "Alch" "Mlca"
```

```
R> querygrain(wine1, "Cult")
$Cult
Cult
v1 
R> querygrain(wine2, "Cult")
$Cult
Cult
0.3314607 0.3988764 0.2696629
```

```
R> querygrain(setFinding(wine1, c("Ash","Alch"), c("L","H")), "Cult")
$Cult
Cult
v1 
R> querygrain(setFinding(wine2, c("Ash","Alch"), c("L","H")), "Cult")
$Cult
Cult
    v1 v2 v3
0.5524341 0.2029550 0.2446109
```

Consider naive Bayesian model for CAD data: All risk factors/symptoms are conditionally independent given the disease:

```
R> par(mfrow=c(1,2))
R> plot(UG <- ug(~Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))
R> plot(DAG <- dag(~Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))
```


From a statistical point of view these two models are equivalent.
Given either a DAG or an UG and data (either as a table or as a dataframe) we can construct BN's on the fly:

```
R> cadmod1 <- compile(grain(UG, cad1))
R> cadmod2 <- compile(grain(DAG, cad1))
```

```
R> querygrain(cadmod1, nodes="CAD")
$CAD
CAD
0.5466102 0.4533898
R> querygrain(cadmod2, nodes="CAD")
$CAD
CAD
No Yes
```


15.1 Prediction

We shall try to predict CAD in the validation dataset cad2

```
R> data(cad2)
R> head(cad2,3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Sex & AngPec & AMI & QWave & QWavecode & STcode & STchange & SuffHeartF \\
\hline 1 & Male & None & NotCertain & No & Usable & Usable & Yes & Yes \\
\hline 2 & Female & None & NotCertain & No & Usable & Usable & Yes & Yes \\
\hline 3 & Female & None & NotCertain & No & Nonusable & Nonusable & No & No \\
\hline \multicolumn{9}{|c|}{Hypertrophi Hyperchol Smoker Inherit Heartfail CAD} \\
\hline 1 & & No & No & <NA> & No & No No & & \\
\hline 2 & & No & No & <NA> & No & No No & & \\
\hline 3 & & No & Yes & <NA> & No & No No & & \\
\hline
\end{tabular}
```

using predict.grain().

```
R> args(predict.grain)
function (object, response, predictors = setdiff(names(newdata),
    response), newdata, type = "class", ...)
NULL
```

```
R> pred1 <- predict(cadmod1, resp="CAD", newdata=cad2, type="class")
R> str(pred1)
List of 2
$ pred :List of 1
    ..$ CAD: chr [1:67] "No" "No" "No" "No" ...
$ pFinding: num [1:67] 0.1382 0.1382 0.1102 0.0413 0.1102 ...
R> pred2 <- predict(cadmod1, resp="CAD", newdata=cad2, type="dist")
R> str(pred2)
List of 2
    $ pred :List of 1
    ..$ CAD: num [1:67, 1:2] 0.914 0.914 0.679 0.604 0.679 ...
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : NULL
    .. .. ..$ : chr [1:2] "No" "Yes"
    $ pFinding: num [1:67] 0.1382 0.1382 0.1102 0.0413 0.1102 ...
```


15.2 Classification error

```
R> table(cad2$CAD)
No Yes
41 26
R> table(cad2$CAD)/sum(table(cad2$CAD))
    No Yes
0.6119403 0.3880597
R> tt <- table(cad2$CAD, pred1$pred$CAD)
R> tt
    No No Yes
    Yes 14 12
R> sweep(tt, 1, apply(tt,1,sum), FUN="/")
    No Yes
    No 0.8292683 0.1707317
    Yes 0.5384615 0.4615385
```


16 Winding up

Brief summary:

- We have gone through aspects of the gRain package and seen some of the mechanics of probability propagation.
- Propagation is based on factorization of a pmf according to a decomposable graph.
- We have gone through aspects of the gRbase package and seen how to search for decomposable graphical models.
- We have seen how to create a Bayesian network from the dependency graph of a decomposable graphical model.

17 Practicals

Goal: Build BN for diagnosing coronary artery disease (CAD) from these (training) data

Validate model by prediction of CAD using these (validation) data. Notice: incomplete information.

$R>$ data (cad2)									
$R>$ head (cad2,5)									
	Sex	AngPec	AMI	QWave	QWavecode		STcode	STchange	SuffHeartF
1	Male	None	NotCertain	No	Usable		Usable	Yes	Yes
2	Female	None	NotCertain	No	Usable		Usable	Yes	Yes
3	Female	None	NotCertain	No	Nonusable	Nonu	usable	No	No
4	Male	Atypical	Definite	No	Usable		Usable	No	Yes
5	Male	None	NotCertain	No	Usable		Usable	Yes	No
Hypertrophi Hyperchol Smoker Inherit Heartfail CAD									
1		No	No <N	A>	No	No	No		
2		No	No <NA>	A>	No	No	No		
3		No	Yes <NA>	A>	No		No		
4		No	Yes <NA>	A>	No	No	No		
5		Yes	Yes <NA>	A>	No	No	No		

- Start out from the saturated model; do stepwise backward model selection among decomposable models to obtain "reduced" model.
- Start out from the independence model; do stepwise forward model selection among decomposable models to obtain "expanded" model.
- Can you identify direct and indirect risk factors from these models?
- "Convert" these two models to a Bayesian nework.
- Predict the disease variable CAD in the validation dataset cad2 (which has incomplete observations).
- How good prediction results can you obtain? Can you improve your result by changing the model selection criterion, for example going from AIC to BIC?
- Create a "naive Bayes model": All predictor variables are independent given CAD. How does this model perform in predicting the validation cases?
- For the curious: Create a recursive partitioning tree using rpart (see supplementary notes).
- Does such trees perform better than the graphical models?
- Discuss pros and cons of the approaches

