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Preface

The analysis of discrete multivariate data, especially in the form of cross-classifica-
tions, has occupied a prominent place in the statistical literature since the days of
Karl Pearson and Sir R. A. Fisher. Although Maurice Bartlett’s pioneering paper
on testing for absence of second-order interaction in 2 x 2 x 2 tables was pub-
lished in 1935, the widespread development and use of methods for the analysis
of multidimensional cross-classified data had to await the general availability of
high-speed computers. As a result, in the last ten years statistical journals, as well
as those in the biological, social, and medical sciences, have devoted increasing
space to papers dealing with the analysis of discrete multivariate data. Many
statisticians have contributed to this progress, as a glance at the reference list will
quickly reveal. We point, especially. to the sustained and outstanding contribu-
tions of Joseph Berkson, M. W. Birch, 1. J. Good, Leo A. Goodman, James E.
Grizzle, Marvin Kastenbaum, Gary G. Koch, Solomon Kullback, H. O. Lancaster,
Nathan Mantel, and R. L. Plackett.

The one person most responsible for our interest in and continued work on the
analysis of cross-classified data is Frederick Mosteller. It is not an overstatement
to say that without his encouragement and support in all phases of our effort, this
book would not exist. Our interest in the analysis of cross-classified data goes back
to 1964 and the problems which arose during and after Mosteller’s work on the
National Halothane study. This work led directly to the doctoral dissertations of
two of us (Bishop and Fienberg), as well as to a number of published papers. But
Fred’s contributions to this book are more than just encouragement; he has read
and copiously commented on nearly every chapter, and while we take complete
responsibility for the final manuscript, if it has any virtues they are likely to be
due to him.

Richard Light enthusiastically participated in the planning of this book, and
offered comments on several chapters. He prepared the earlier drafts of Chapter 11,
Measures of Association and Agreement, and he made the major effort on the
final version of this chapter.

We owe a great debt to many of our colleagues and students who have com-
mented on parts of our manuscript, made valuable suggestions on aspects of our
research, and generally stimulated our interest in the subject. Those to whom we
are indebted include Raj Bahadur, Darrell Bock, Tar Chen, William Cochran,
Joel Cohen, Arthur Dempster, O. Dudley Duncan, Hillel Einhorn, Robert Fay,
John Gilbert, Anne Goldman, Shelby Haberman, David Hoaglin, Nathan Keyfitz,
William Kruskal, Kinley Larntz, Siu-Kai Lee, Lincoln Moses, I. R. Savage,
Thomas Schoener, Michael Sutherland, John Tukey, David Wallace, James
Warram, Sanford Weisberg, Janet Wittes, and Jane Worcester.

For the production of the manuscript we are indebted to Holly Grano, Kathi
Hirst, Carol Lambert, and Mary Jane Schleupner.
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1 Intreduction

1.1 The Need

The scientist searching for structure in large systems of data finds inspiration in
his own discipline, support from modern computing, and guidance from statistical
models. Because large sets of data are likely to be complicated, and because so
many approaches suggest themselves, a codification of techniques of analysis,
regarded as attractive paths rather than as straitjackets, offers the scientist valuable
directions to try. In statistical specialities such as regression and the analysis of
variance, codifications are widely available and sometimes keyed to special
disciplines. In discrete multivariate statistics, however, the excellent guides
already available, for example Cox [1970], Fleiss [1973], Good [1965], Lancaster
[1969]. and Maxwell [1961], stop short of giving a systematic treatment of large
contingency tables, and especially tables that have troublesome irregularities.
This book offers such a treatment.

1.2 Why a Book?

The literature on discrete multivariate analysis, although extensive, unfortunately
is widely scattered. This book brings that literature together in an organized way.
Although we do report a few new results here, that is not our primary purpose.
Our purpose is to organize the materials needed by both theoretical and practical
workers so that key ideas stand out. By presenting parametric models, sampling
schemes, basic theory, practical examples, and advice on computation, this book
serves as a ready reference for various users.

To bring together both the theory and practice of discrete multivariate analysis,
a good deal of space is required. We need to relate various techniques of analysis,
many of which are quite close to one another in both concept and result, so that
the practitioner can know when one method is essentially the same as another,
and when it is not. We need to provide basic theory, both for understanding and
to lay a basis for new variations in the analysis when conditions do not match the
ones presented here.

When we deal with several variables simultaneously, the practical examples
we analyze tend to be large—Ilarger than those ordinarily treated in the standard
texts and monographs. An exploratory analysis of a set of data often leads us to
perform several separate parallel analyses. Sometimes one analysis suggests
another. Furthermore, we are obliged to discuss computing to some extent
because these large-scale analyses are likely to require iterative methods, which
are best done by high-speed computers. The availability of high-speed computing
facilities has encouraged investigators to gather and ready for analysis substantial

1



2 Discrete Multivariate Analysis

sets of data. Applications and examples play a central role in most of the chapters
in this book. and they take considerable space because we illustrate calculations,
present alternative analyses, and discuss the conclusions the practitioner might
draw for various data sets.

These reasons all lead to a treatment of book length.

1.3 Different Users

The applied statistician or quantitative research worker looking for comprehensive
analyses of discrete multivariate data will find here a variety of ways to attack
both standard and nonstandard sets of data. As a result, he has available a sys-
tematic approach to the analysis of multiway contingency tables. Naturally, new
difficulties or constraints raise new problems, but the availability of a flexible
approach should strengthen the practitioner’s hand, just as the ready availability
of analysis of variance and regression methods has for other data. He will under-
stand his computer output better and know what kinds of computer analyses
to ask for.

By skillful use of one computer program for obtaining estimates, the researcher
can solve a wide range of problems. By juxtaposing practical examples from a
variety of fields, the researcher can gain insight into his own problem by recognizing
similarities to and differences from problems that arise in other fields. We have
therefore varied the subject matter of the illustrations as well as the size of the
examples. We have found the methods described in this book useful for small
as well as large data sets.

On many occasions we have helped other people analyze sets of discrete
multivariate data. In such consulting work we have found some of the material
in this book helpful in guiding the practitioner to suitable analyses. Of course.
several of the examples included here are drawn directly from our consulting
experiences.

Parts of several chapters have grown out of material used in different university
courses or sets of lectures we have given. Some of these courses and lectures stressed
the application of statistical methods and were aimed at biological, medical, or
social scientists with less preparation than a one-year course in statistics. Others
stressed the statistical theory at various graduate levels of mathematical and
statistical sophistication.

For the student we have included some exercise work involving both the
manipulation of formulas and the analysis of additional data sets. In the last
few years, certain examples have been analyzed repeatedly in the statistical
literature, gradually bringing us a better understanding of what various methods
accomplish. By making more examples of varied character readily available.
we hope this healthy tradition of reanalyzing old problems with new methods will
receive a substantial boost.

Finally, of course, we expect the book to provide a reference source for the
methods collected in it. Although we do not try to compete with the fine bibliog-
raphy provided by Lancaster [1969], some of the papers we cite have appeared
since the publication of that work.

[.4 Sketch of the Chapters
Although each chapter has its own introduction, we present here a brief description
of the contents and purposes of each chapter. We have organized the chapters
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into three logical groups of unequal size. The first group introduces the log-linear
model, presents the statistical theory underlying its use in the analysis of contin-
gency-table data, and illustrates the application of the theory to a wide variety
of substantive problems. The second group of chapters deals with approaches
and methods not relying directly on the log-linear model. The final pair of chapters
contains basic statistical results and theory used throughout the book.

Section 1 Log-Linear Models, Maximum Likelihood Estimation, and
Their Application

Chapter 2

With one exception, the example on the relation of survival of mothers to prenatal
care, this is a theoretical chapter. It is meant for the practitioner as well as the
theoretician, although they may read it from different points of view. The chapter
develops the notation and ideas for the log-linear model used so extensively in
this book. It begins with two-by-two (2 x 2) tables of counts and works up to
tables of four or more dimensions. The emphasis is, first, on describing structure
rather than sampling, second, on the relation of the log-linear model approach to
familiar techniques for testing independence in two-way contingency tables, and
third, on the generalization of these ideas to several dimensions. Fourth, the chapter
shows the variety of models possible in these higher dimensions.

Chapter 3 (Preparation for mos!t readers: Chapter 2)

Although from its title this chapter sounds like a theoretical one, its main emphasis
is on important practical devices for computing estimates required for the
analysis of multidimensional tables of counts. These devices include both how to
recognize when simple direct estimates for cells are and are not available, and
how to carry out iterative fitting when they are not. The chapter explains how to
count degrees of freedom, occasionally a trickier problem than many of us are
used to. All aspects of the analysis—models, estimates, calculation, degrees of
freedom, and interpretation-—are illustrated with concrete examples, drawn from
history, sociology. political science, public health, and medicine, and given in
enough detail that the practical reader should now have the main thrust of the
method;

Chapter 4 (Preparation.: Chapter 3)

Chapter 4 provides tools and approaches to the selection of models for fitting
multidimensional tables. While it includes some theory, this is the key chapter
for the reader who must actually deal with applications and choose models to
describe data.

First, it summarizes the important large sample results on chi square goodness-
of-fit statistics. (These matters are more fully treated in Chapter 14.) Second, it
explains how the partitioning of chi square quantities leads to tests of special
hypotheses and to the possibility of more refined inferences. Third, although
there is no “best” way to select a model, the chapter describes several different
approaches to selecting log-linear models for multidimensional tables, using
large-sample results and the partitioning method.
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Chapter 5 (Preparation: Chapter 3)
Cell counts can be zero either because of sampling variability even when observa-
tions can occur in a cell, or because constraints make the cell automatically zero
(for example, the losing football team does not score more than the winning team).
In addition, for some problems, certain cells are not expected to fit smoothly into a
simple model for the table of counts, so the counts for these cells, although available,
are set aside for special treatment. One danger is that the researcher may not
recognize that he is afflicted with an incomplete table.

This profusely illustrated chapter offers standard ways of handling such in-
complete tables and is oriented to problems of estimation, model selection,
counting of degrees of freedom, and applications.

Chapter 6 (Preparation.: Chapter 5)

This chapter deals with a special application: If, as sometimes happens, we have
several samplings or censuses, we may wish to estimate a total count. For example,
we may have several lists of voluntary organizations from the telephone book,
newspaper articles, and other sources. Aithough each list may be incompiete,
from the several lists we want to estimate the total number of voluntary organiza-
tions (including those on none of these lists). This chapter offers ways to solve such
multiple-census problems by treating the data sets as incomplete multidimensional
tables. The method is one generalization of the capture-recapture method of
estimation used in wildlife and other sampling operations.

Chapter 7
{Preparation: Chapter 3)
Since Markov chains depend on a relation between the results at one stage and
those at later stages, there are formal similarities with contingency tables.
Consequently, analysis of Markov chains using the log-linear model is an attractive
possibility, treated here along with other methods.

This is a practical chapter, containing illustrations which come from market
research and studies of political attitudes, language patterns (including bird songs},
number-guessing behavior, and interpersonal relations.

Chapter 8

(Preparation: Chapter 3 and some of Chapter 5)

Although square tables are discussed elsewhere, this chapter focuses on the
special questions of symmetry and marginal homogeneity. These problems arise
in panel studies when the same criteria are used at each point in time and in
psychological studies, as when both members of a pair are classified simultaneously
according to the same criteria. The chapter gives methods for assessing symmetry
and homogeneity, illustrated with practical examples. It also treats multidimen-
sional extensions of the notions of symmetry and marginal homogeneity, relating
them to the basic approach of this book using log-linear models.

Chapter 9

For practitioners, this chapter gives numerous suggestions and examples about
how to get started in building models for data. The attitude is that of exploratory
data analysis rather than confirmatory analysis. When models are fitted, the
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problem still remains of how to view the fit. What if it is too good? How bad
is too bad? Rough approximations may be just what is desired. The beginner
may wish to start reading the book with this chapter.

Sectionll  Related models and methods
Chapter 10
Although this book offers a systematic treatment of contingency tables through
the approach of log-linear models and maximum likelihood estimation, the reader
may want to know what alternative methods are available. This chapter offers
introductions to some of the more widely used of these methods and points the
reader to further literature.

Chapter 11

This chapter differs from the others in the book because it deals only with two-
way tables, and also because the main thrust of measuring association is to sum-
marize many parameters in one. The basic principles for the choice and use of
measures of association depend on the purposes of the user. The chapter also
treats a special case of association, referred to as ‘“‘agreement.” Because we view
interaction and association as due primarily to many different parameters, this
chapter presents a different outlook than does the rest of the book.

Chapter 12

In a contingency table of many dimensions, the number of cells is often high while
the average number of observations per cell in many practical problems is small,
and so many cells may have zero entries. We wish to estimate the probabilities
associated with the cells. Extra information about these probabilities may be
available from the general distribution of the counts or from the margins. Bayesian
approaches offer methods of estimating these probabilities, but they usually
leave to the user the problem of choosing the parameter of the prior distribution,
a job he may be ill equipped to do. Theoretical investigations can help the reader
choose by showing him some methods that will protect him from bad errors. This
chapter reviews the literature and provides new results, together with some
applications. The treatment deals with the case where the cells merely form a list,
and the case where the cells form a complete two-way table.

Section 111  Theoretical background

Chapter 13

In working with contingency tables, both the practitioner and the theorist face
certain standard sampling distributions repeatedly : the binomial, Poisson, multi-
nomial, hypergeometric, and negative binomial distributions, and some of their
generalizations. This chapter offers a ready source of reference for information
about these distributions.

Chapter 14

In discrete problems, exact calculations are notoriously difficult, especially when
the sample sizes are large. This difficulty makes the results of this chapter espe-
cially important, since asymptotic (large-sample) methods are so widely used in
this work.
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The mathematics of asymptotic methods useful to the theoretician is scattered
throughout the literature. For getting asymptotic distributions, mathematical
orders of magnitude play an important role. This chapter provides a convenient
short course in the devices and theorems about the O, o notation, for sequences
of real numbers and about the analogous O,, 0, notation, for random variables.
The treatment includes vector random variables. The material is illustrated with
examples and practice exercises, enabling the student to derive many of the
theoretical results in this book. Moreover, the devices discussed are useful in
every branch of theoretical statistics.

1.5 Computer Programs

As we have already noted, one general-purpose computer program can be used to
carry out most of the calculations described in this book. Many researchers work-
ing with multiway table data have prepared such programs to carry out estima-
tion using the method of iterative proportional fitting and to compute various
goodness-of-fit statistics. These programs are now available at a large number
of computer centers and research installations. We refer those who would like to
use programs which are not available at their institutions to the Fortran listings
in Bishop [1967, appendix I] and Haberman [1972, 1973b].

1.6 How to Proceed from Here

Readers of this book come to it with different backgrounds and different interests.
We have ordered Chapters 2 through 9 so that each chapter builds only on preced-
ing ones, with the exception that most of them use material from the two theoretical
background chapters (Chapters 13 and 14). Thus a good basic sequence consists
of Chapters 2 through 9. Nevertheless, readers may choose to work with chapters
in different orders.

Graduate students in theoretical statistics may choose to begin with a review
of the sampling distribution properties and large-sample theory in Chapters 13
and 14, then proceed to Chapters 2, 3, 4, 5,9, 10, 11, and 12. Chapters 6, 7, and 8
can be handled either after Chapter 5 or at the end of the indicated sequence.

Quantitative biological or social scientists interested in analyzing their own
data will most likely profit from a quick reading of Chapters 2 and 3, followed by
Chapter 9 (Sections 9.1-9.5) and Chapters 4 and 5. Then they might turn to
Chapter 7, 8, or 11, depending on their interests.

Other sequences of chapters come to mind. Figure 1.6-1 gives a schematic
representation of alternative orderings for different readers and an indication of
how the chapters are linked.






2 Structural Models for Counted Data

2.1 Introduction

As soon as a problem is clearly defined, its solution is often simple. In this chapter
we show how complex qualitative data may be described by a mathematical
model. Questions that the data were designed to answer may then be stated
precisely in terms of the parameters of the model.

In multivariate qualitative data each individual is described by a number of
attributes. All individuals with the same description are enumerated, and this
count is entered into a cell of the resulting contingency table. Descriptive models
with as many independent parameters as the table has cells are called “saturated.”
They are useful in reducing complexity only if the parameters can be readily
interpreted as representing “‘structural” features of the data, because most of the
questions of importance may be interpreted as being questions about the data
structure.

The complexity of the data is reflected by the number of parameters in the
model describing its structure. When the structure is simple, the model has few
parameters. Whenever the model has fewer parameters than the number of data
cells, we say that the model is “‘unsaturated.” For some unsaturated models we
can reduce the number of cells in the table without distorting the structure. Such
reduction we refer to as “‘collapsing™ and we give theorems defining those struc-
tures that are collapsible. Before proceeding to describe models for the simplest
four-cell table, we enlarge on this concept of structure and on the development and
uses of models.

211 Srructure
If every individual in the population under study can be classified as falling into
one and only one of ¢ categories, we say that the categories are mutually exclusive
and exhaustive. A randomly selected member of the population will fall into one
of the ¢ categories with probability p,, where {p,} is the vector of cell probabilities

{px} =(pl9p25'~~’pt) (21'1)
and

Here the cells are strung out into a line for purposes of indexing only ; their arrange-
ment and ordering does not refiect anything about the characteristics of individuals
falling into a particular cell. The p, reflect the relative frequency of each category in
the population.
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When the cells are defined in terms of the categories of two or more variables,
a structure relating to the nature of the data is imposed. The natural structure for
two variables is often a rectangular array with columns corresponding to the
categories of one variable and rows to categories of the second variable; three
variables create layers of two-way tables, and so on. As soon as this structure is
imposed, the position of the cells tells us something about the characteristics of
individuals falling into them : For instance, individuals in a specific cell have one
characteristic in common with individuals in all cells of the same row, and another
characteristic in common with all individuals in cells in the same column. A good
mathematical model should reflect this structure.

As soon as we consider more than one randomly selected individual we must
consider the sampling plan. If the second and all subsequent individuals are
sampled “with replacement,” that is, the first is replaced in the population before
the second is randomly drawn, and so on, then the vector of probabilities (2.1-1)
is unchanged for each individual Alternatively, the vector of probabilities is
unchanged if the population is infinitely large. In either of these circumstances, if
we take a simple random sample of size N, we obtain a sample of counts {x;} such
that

{xi} :(xlax27~"axt)9 (21'2)
where
in = N

The corresponding expected counts are {m;}, such that
{m} = (m,my,....m), (2.1-3)
where
Exy=m, fori=1,... 1
m; = Np,.

In Chapter 3 we deal with estimating the {m,} from the {x;} under a variety of
sampling schemes and for different models. In Chapter 13 we consider different
sampling distributions and the relationships between the {m;} and the {p;}. In
this chapter we are not concerned with the effects of sampling, but only with the
underlying data structure. Thus we are interested in models that specify relation-
ships among the cell probabilities {p,} or among the expected counts {m;}. Some
sampling schemes impose restrictions on the {n;}, and so we also discuss situations
where these constraints occur without considering how they arise. The constraints
occur in situations where we are in effect taking several samples, each drawn from
one segment of the population. We then have probabilities for each segment
summing to 1, but we cannot relate probabilities in different segments to the
population frequency in different segments unless we know the relative size of the
segments.

2.1.2 Models

The smallest rectangular table is based on four cells, and the saturated model
describing it has four independent parameters. In Section 2.2 we give a four-term
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model for this table that is linear in the logarithmic scale, and we give an interpreta-
tion of each of the four terms. In Section 2.3 we extend this four-term model to
larger two-dimensional tables by enlarging the number of parameters encompassed
by each term of the model.

Log-linear models are not new; they are implicit in the conventional y? test
for independence in two-way contingency tables. The notation of Birch [1963] is
convenient for such models, as the number of terms depends on the dimension
and the interdependencies between dimensions, rather than on the number of cells.
Each term encompasses as many parameters as are needed for the total number
of independent parameters in the saturated model to equal the number of cells in
the table. When the model is unsaturated, the reduction is generally achieved by
removing one or more terms completely, because the terms rather than the
parameters correspond to effects of interest. In Section 2.4 we show that an s-
dimensional table of any size is described by a model with 2° terms. Thus the
models reflect the structure imposed on the data, and the terms are closely related
to hypotheses of interest.

2.1.3  Uses of structural models

The interpretation of the terms of saturated models that fully specify an array
leads to interpretation of models with fewer terms. The investigator faced with
data of an unknown structure may wish to determine whether they are fitted well
by a particular unsaturated model, that is he may wish to test a particular hypothe-
sis. Alternatively, he may wish to obtain good estimates for some or all of the cells
and may obtain such estimates by fitting an unsaturated model. Using unsaturated
models to obtain stable cell estimates is akin to fitting an approximate response
curve to quantitative data; the investigator gains knowledge of important under-
lying trends by reducing the number of parameters to less than that required for
perfect fit. Thus comprehension is increased by focusing on the most important
structural features.

If the data can be described by models with few terms, it may be possible to con-
dense the data without either obscuring important structural features or intro-
ducing artifactitious effects. Such condensation is particularly pertinent when the
data are sparse relative to the magnitude of the array. In addition to focusing on
parameter and model interpretation, we look in each section of this chapter at the
problem of determining when such condensation is possible without violating
important features of the underlying structure.

In this chapter we do not discuss fitting models ; we discuss procedures that yield
maximum likelihood estimates in Chapter 3 and assessment of goodness of fit in
Chapter 4. The concern here is with such questions as:

1. What do we mean by “independence” and “‘interaction”?

2. Why is it necessary to look at more than two dimensions at a time?

3. How many variables should be retained in a model and which can safely be
removed?

2.2 Two Dimensions—The Fourfold Table
The simplest contingency table is based on four cells, and the categories depend
on two variables. The four cells are arranged in a 2 x 2 table whose two rows
correspond to the categorical variable 4 and whose two columns correspond to
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the second categorical variable B. We consider first the different constraints that
we may use to specify the cell probabilities, then the effect of rearranging the cells.
This leads to formulation of a model, the log-linear model, that we can readily
interpret in terms of the constraints and apply to any arrangement of the four cells.

We discuss features of the log-linear model for the 2 x 2 table in detail. Impor-
tant features that also apply to larger tables are:

1. Only one parameter of the model is changed when it is used to describe
expected cell counts m instead of probabilities p;

2. the model is suitable for a variety of sampling schemes ;

3. the ready interpretability of the terms of the model is not shared by models
that are linear in the arithmetic scale.

In Section 2.7 we give a geometric interpretation of the 2 x 2 table and show how
the parameters of the log-linear model are related to the structural features of a
three-dimensional probability simplex.

2.2.1 Possible constraints for one arrangement
Double subscripts refer to the position of the cells in our arrangement. The first
subscript gives the category number of variable 4, the second of variable B, and
the two-dimensional array is displayed as a grid with two rows and two columns :

B
1 2
I Dy Di2
A (2.2-1)
2 D2y D22

We consider first a simple random sample such that the cell probabilities sum to 1,
that is, we have the linear constraint

2 2
Y Xp=1 (2.2-2)

By displaying the cells as in expression (2.2-1), we introduce a structure to the
corresponding probabilities, and it is natural for us to examine the row and
column marginal totals :

2
Div = Z Dix i=12 (2.2-3)

2
D= Z Dr; Jj=12 (2.2-4)

These totals give the probabilities of an individual falling in categories i and j
of variables 4 and B, respectively. (Throughout this book, when we sum over a
subscript we replace that subscript by a ““+ *’.) At this point, we can expand our



Structural Models for Counted Data 13

tabular display (2.2-1) to include the marginal totals and the basic constraint
(2.2-2);

1 2 Totals

1} Py D12 Dy+

2| py D22 D2+ (2.2-5)

Totals | p., D+ 1

The marginal probabilities p,, and p,; are the unconditional probabilities of
belonging to category i of variable 4 and category j of variable B, respectively.
Each set of marginal probabilities must sum to 1. As we have only two categories,
once we know one row total, p,. , we also know the other row total, p,. , because
P2+ = 1 — py+, and similarly for column totals. Thus if we know_the values of
P+ and p ,, the two linear constraints on the marginal probabilities lead to a
complete definition of all the marginal probabilities. We need only one further
constraint involving the internal cells to specify completely the structural relation-
ships of the table.

We refer to the internal cells as “elementary” cells. The probability p;; is the
probability of an individual being in category i of variable 4 and category j of
variable B. Most questions of interest related to the fourfold table are concerned
with differences between such internal probabilities and the marginal probabili-
ties. A variety of functions of the probabilities are commonly used, and others can
readily be devised, that will produce the further constraint needed for complete
specification of the table. Commonty used are:

(1) the difference in column proportions

Py Pia,

Dy D+2 ’

(ii) the difference in row proportions

Piv P2y,

Dis P2+
(iif) the cross-product ratio

o= Dy1P22

Pi2Pay
A natural choice if we wish to continue to use linear constraints is:
(iv) the diagonal sum
Sg = P11 + P22

Finally, we can choose:
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(v) the ratio of an elementary cell probability to the product of its row and
column probabilities

Py
Pt+P+1

Other measures appear in Chapter 11. Specifying the value of any one of the five
statistics in this list is equivalent to specifying the remaining four, given p,, and
P+ ;. Such specification completely determines the values of the cell probabilities
{p:;}- The third function, a, has desirable properties not possessed by the others.
We consider its properties in detail because they lead us to the formulation of our
model for the fourfold table.

Properties of the cross-product ratio
Since the rows of the table correspond to one variable, 4, and the columns to a
second variable, B, it is natural for us to be interested in the relationship between
these underlying categorical variables. We first consider the behavior of the
statistics (i}(v) under independence. If the state of A4 is independent of the state of
B, then

Dij = Pi+D+;j i=12; j=12 (2.2-6)

but this relationship is not satisfied for all i and j if 4 and B are dependent.

As any of the functions, when combined with the marginal totals, completely
specify the table, they also measure dependence between the underlying variables.
For instance, the independence relationship (2.2-6) is equivalent to stating that
the proportional difference (1) or (ii) is 0, or that the measure (v) has the value 1.
The measure (iv) becomes a less attractive function of the marginal probabilities,
namely,

Sq=1~pyy — P + 2P Psy-

When we focus on the product relationship (2.2-6), it is reasonable for us to
choose the cross-product ratio instead of the linear functions. The cross-product
ratio «, like measure (v), attains the value 1 when the condition of independence
holds, and it has two properties not possessed by measure (v), or any of the other
measures:

1. «is invariant under the interchange of rows and columns;

2. a is invariant under row and column multiplications. That is, suppose we
multiply the probabilities in row 1 by r, > 0, those in row 2 by r, > 0, those
in column 1 by ¢; > 0, and those in column 2 by ¢, > 0. Then we get

o= Pi1P22  (r1€1D1)(r2€2P22) (2.2-7)

Pi2P21 (ri€2pi)(racipay)

This result holds regardless of whether we normalize so that the new cell
entries sum to 1. An important implication is that we obtain the same value
of o when we use either the cell probabilities or the expected counts in each cell.

Interpretation of cross-product ratio
The cross-product ratio « is also known as the “odds ratio.” For the first level of
variable A, the odds on being in the first level of variable B are p,,/p,,. and for
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the second level of variable 4 they are p,,/p,,. The cross-product ratio is the
ratio of these odds,

o= Pii/Pi2 = PuiP22
P2:1/P22  Pi2P2y

This definition is also invariant under interchange of the variables. It should not
be confused with another measure used by epidemiologists, the relative risk r,
defined as the ratio of the row proportion p;,/{p,; + p;,) to the corresponding
row proportion p,;/(p,; + P22). Thus we have

r = Pi1(P21 + P22) _ Pul2+
P2:i(Pis + Pi2)  PaiPi+

(2.2-8)

We can define r similarly in terms of column proportions, but then we obtain a
different value. The relative risk does not have the invariance properties possessed
by the relative odds, although its interpretation when dealing with the risk of
contracting disease in two population groups makes it a useful parameter.

The logarithm of the relative odds is also a linear contrast of the log-probabilities
of the four elementary cells, namely

loga =logp,; —logp;, — logp,, + logp,,, (2.2-9)

and when log « = 0 we have independence between variables 4 and B.

The cross-product ratio and bivariate distributions

As soon as we consider the cross-product ratio as a measure of departure from
independence, the question of its relationship to the correlation coefficient arises.
Mosteller {1968] takes bivariate normals with different selected values of p and
shows that the value of ¥ differs according to the breaking point chosen. Thus « is
not easily related to p for bivariate normals, but Plackett {1965] shows that it is
possible to construct a class of distributions where the value of « is unchanged by
the choice of breaking point.

2.2.2  Effect of rearranging the data

Suppose that the two underlying variables 4 and B for the 2 x 2 table actually
have the same categories and simply represent measurements on one variable at
two points in time. We can then refer to them as 4, and A4, . There are three dif-
ferent arrays that may be of interest:

1. the basic table

A,
1 2
1 D11 Di2
A, (2.2-10)
2| pa D22
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2. the table measuring changes from the first measurement to the second. This
table preserves the margins for the first variable:

Same Different

1 Dy Di2
A, (2.2-11)

2 D22 D2

3. the table measuring changes going back from the second measurement to
the first. This table preserves the margins for the second variable:

Same D1y D2z

(2.2-12)
Different | p,, Pi2

For each of these 2 x 2 tables we have a cross-product ratio. Taking tables
(2.2-10)+2.2-12) in order, these ratios are

Dy1P22
oy = 2L 2.2-13)
} Di2P2; (
DiiD2y
o, =, 2.2-14)
2 Di2P22 (
o, = Pubrz (2.2-15)
D22D2y

The reason for this ordering of the subscripts will become apparent shortly. For
the moment we note that these three expressions suggest a class of structural
models based on a4, «,, and &, , rather than on one of the cross products together
with the margins of one of the tables.

Taking logarithms of the {«;}, we get three linear contrasts

logas = logp,; — logp,, —logp,, + logp,,, (2.2-16)
log 2, = logp,; — log p;, + logp,; — logp,,, (2.2-17)
logoay = logp,; + logp,, — logp,, —logp,,. (2.2-18)
If we specify values for these three contrasts and recall that
Yri=1, (2.2-19)

we have completely defined the four cell probabilities. This formulation suggests
that we look for a model that is linear in the log scale.

2.2.3  The log-linear model
A simple way to construct a linear model in the natural logarithms of the cell
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probabilities is by analogy with analysis of variance (ANOVA) models. We write
logp” = u+ ul(i) + uz(” + ulZ(ij) j= 1, 2;j = 1, 2, (2.2'20)
where u is the grand mean of the logarithms of the probabilities :
u = 3(logpyy + logpy, + logpy + logp,,), (2.2-21)
u + u;; is the mean of the logarithms of the probabilities at level i of first variable:
U+ U = 3(log p;y + log p;3) =12, (2.2-22)
and similarly for the jth level of the second variable:
U+ Uy = 1(log pi; + logpy) j=1,2. (2.2-23)
Since u, ; and u,; represent deviations from the grand mean u,
ul(” + ul(z) = uZ(I) + u2(2) = 0 (2.2'24)
Similarly, u,,; represents a deviation from u + u;; + uy(,, so that
Upaany = “Upaa2) = Uiz = Ui22y- (2.2-25)

We note that the additive properties (2.2-24) and (2.2-25) imply that each u-term
has one absolute value for dichotomous variables. Thus we introduce no ambiguity
by writing, for instance, u; = 0 without specifying the second subscript,

If we define /;; = log p;;, then by analogy with ANOVA models we can write
the grand mean as

=t=y4 22-2
u 1 2 ( 6)
Similarly, the main effects are
i I
Uy = _5“ - l4+“, (2.2-27)
gy = 2t - Lo (2.2-28)
2(j) 2 4 M .

and the interaction term becomes
I |
ulz(ij) = l” - 7+ - _él + l4t"‘ (2-2'29)

We note that the main effects are functions of the marginal sums of the logarithms
but do not correspond to the marginal sums p,, and p, ; in the original scale.
We now consider properties of the log-linear model.

Relationship of u-terms to cross-product ratios
From equations (2.2-18) and (2.2-27) we have

Uy = slog p;; +logp;; — log p,; — log p,5)
=Lloga,. (2.2-30)
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Similarly, from expressions (2.2-17) and (2.2-28) we have

Uy = a{log pyy — log p;, + log py; — log p,5)
= lloga,, (2.2-31)
and from (2.2-16) and (2.2-29) we have

Uiy = slogp,, — log p;, — log P21 + log p,s)
= zloga,. (2.2-32)

Thus the main effects in the log-linear u-term model are directly related to the
two cross-product ratios described above, u; to «; and u, to «,. The choice of
subscripts for the «; now becomes apparent. We note that for u,;, the terms in p
appear with positive sign whenever variable 1 is at level 1, and similarly for u,;,
and variable 2 at level 1. For.u,,,, the positive sign appears whenever both
variables are on the same level. Thus the u-terms can be regarded as measures
of departure from independence for the three different data arrangements.

Effect of imposing constraints
To assess the effect on the u-terms of imposing constraints on the {p:;}, we need

to revert to the arithmetic scale.
We can rewrite the model (2.2-20) for cell (1, 1) as

logp,; =u+jloga, + Floga, + Llogas, (2.2-33)
and hence
Py = Adjohah, (2.2-34)

where log 4 = uand o = (&;)'/*fori = 1, 2, 3. Then the basic table can be rewritten
as

A,
1 2 Totals
Aol [ 1
i ’1“,1 alza’B 7 1, /10!’1(&'20(,3 + 7
4 x5 A2%3
I
) Aoh Aoy A (oc’z 2y
I ot V] a2 v
oo oo aj\my o
1 Aoy dh
Totals | Auy|afoly + —— A=+ =2 1
ooy as\ay o

Setting p; . = p,, = 1/2 implies that the {o;} must satisfy the relationship
ay’? — od? — ad? + (o 2p05) 2 = 0. (2.2-35)
If we set o) = 1, which is equivalent to setting u; = 0, the condition (2.2-35)

becomes
’ 1 4 1
oy — ;7- xA3 — d*’ = 0, (22—36)

72 3
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which is satisfied by either o} = 1 or oy = 1, or both. Equivalently, we must have
uy = 0 oru,, =0, or both.

This result also holds in larger tables ; constant marginal probabilities do not
imply that u, = 0 unless we also have u, = 0 or u;, = 0, or both. Consequently,
when we move from simple random sampling to sampling different segments of
the population independently, we cannot specify that a margin is fixed by placing
constraints on a single u-term.

Model describes probabilities or expected counts

So far we have dealt entirely with a table of probabilities that sum to 1. If we

consider instead a table of expected counts {m;;} that sum to a grand total N =
. Miy» We have m;; = Np;;, and hence

logm;; = log N + log p;;
= U + (Ui + Uz + Uzgp)s (2.2-37)

where #’ = u + log N. Thus for the single sample we can describe the structure
of the expected counts instead of the structure of the probabilities by changing
the value of u from the mean of the logarithms of the {p;} to the mean of the
logarithms of the {m;;}, and henceforth we denote the constant by u in both cases.
In other words, the equations (2.2-26)2.2-29) are applicable if we define l;;
log my; instead of I;; = log p;;.

It follows that « can be defined similarly as the cross-product ratio of expected
counts instead of probabilities.

Model applicable in varied sampling situations

So far we have considered taking a single sample of size N, with p;; the probability
ofanindividual falling into the cell (i, j). This is the simple random sampling scheme.
A fourfold table can also be generated by other sampling schemes. Suppose that
we take a sample of N, individuals from the first category of variable 4 and N,
from the second category, and then count how many fall into the different cate-
gories of variable B. Our table of expected counts becomes

B
1 2 Totals
1 myy My, N,
A
2 my msy, N, (2.2-38)
Totals my my, N

and we have
myy +my, = Ny,
myy +my, = N,,

N1+N2:N.
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Corresponding to this table, there is a table of probabilities Py the probability
of being in category j for sample i. Thus
NiFiy = m (2.2-39)
N2 Pjpy = myy,
for j = 1, 2. We write these probabilities with capital letters, as they are no longer
the probabilitiés giving the frequency of occurrence of the four types of individuals
in the population. Instead of the four probabilities summing to 1, we have
Prn + Pay =1, (2.2-40)
Py + Py = 1.
We have taken two independent samples from different segments of the population
and cannot get back to the population p;; unless we know the relative magnitude
of the two segments of the population.

Our log-linear model is still applicable to the table of expected counts (2.2-38),
but the restriction (2.2-35) derived for equal row margins applies, so the relative
magnitudes of the u-terms are constrained. In other sampling plans the restrictions
on the probabilities differ in other ways. For simplicity, in the rest of this chapter
we discuss log-linear models in terms of expected counts, not probabilities.

Before comparing the log-linear model with other models, we give an example
of sampling that gives a 2 x 2 table with a fixed margin.

Example 2.2-1 Sensitivity, specificity, and predictive value

The problem of evaluating a new laboratory procedure designed to detect the
presence of disease affords an example not only of sampling so that a 2 x 2 table
has a fixed margin, but also of rearranging four cells for three different purposes.

1. Natural arrangement for laboratory data
To determine how effectively the laboratory procedure identifies positives and
negatives, the investigator evaluates N, persons known to have the disease and
N, persons known to be free of the disease. The results are designed to estimate
the expected counts in array (2.2-41). In this array we no longer enclose every
elementary cell in a box, but the arrangement of cells is the same as in array
(2.2-10).

Laboratory Procedure

True State Disease No Disease Totals
Disease my my, N, (2.2-41)
No Disease my, m,, N,

A perfect laboratory procedure correctly identifies as diseased all those persons
who are truly diseased and none of those who are not diseased; this situation
corresponds to m,; = m;, = 0. Thus a; = m;,;m,,/m, m,, tells us whether
the laboratory procedure is of any value. Unless a, is large, the laboratory
procedure is abandoned.

2. Measuring sensitivity and specificity
When the evaluation of the laboratory procedure is described, laboratory results
indicating disease are considered positive, the others negative. The term “sensi-
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tivity” is used for the proportion of positive results that agree with the true state,
and the term “specificity” for the proportion of negative results that agree with

the true state. These are the proportions described by the rearranged array:

Laboratory Procedure

True State Correct Incorrect Totals
Disease my, my, N, (2.2-42)
No Disease my, ms;, N,
Now each row yields one of the proportions of interest :
e . my my,
sensitivity = Py = N, =1—Pyy=1- N
(2.2-43)
p e my, my
specificity = P, ;) = N = 1= Ppy=1- v

The relative magnitude of the sensitivity and specificity is measured by

o = my My, ‘

MyoMy,
Such laboratory procedures are often used on large populations to find diseased
persons. When a choice is to be made between two competitive procedures for
screening a population, the prevalence and nature of the disease determines which
characteristic, sensitivity or specificity, should be maximized.

3. Assessing predictive value
The third arrangement of the array does not preserve the fixed margins N, and N, :

Agrees with True State Laboratory Procedure

Disease No Disease
(2.2-44)
Yes mq, my,
No mzy mys

Unless the sample sizes N, and N, are proportional to the prevalence of the
disease in the population where the laboratory procedure is to be used as a
screening device, a, = mym,,/m, m,, does not measure the relative odds on
a correct prediction according to the outcome of the laboratory procedure.

To assess whether the cost of screening a population is worthwhile in terms of
the number of cases detected, the health official needs to know the positive
predictive value PV + and the negative predictive value PV —. To compute
predictive values we need to know the proportion D of diseased persons in the
population to be screened. Then we multiply the first row of the original table
(2.2-41) by D/N and the second row by (1 — D)/N, to obtain

Laboratory Procedure

True State . X
Disease No Disease

(2.2-45)
Disease DPy DP,,,
No Disease (1 — D)P;,, (1 — D)Py,,
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The cross-product ratio «; is the same in array (2.2-45) as in array (2.2-41).
Similarly, if we rearrange array (2.2-45) to correspond with array (2.2-42), we
obtain the same values for sensitivity and specificity. When we rearrange array
(2.2-45) to correspond with array (2.2-44), a difference occurs. We obtain

Agrees with True State Laboratory Procedure

Disease No Disease
Yes DP,, (1 — D)Py,, (2.2-46)
No (1 = D)P,;  DPy,

The cross product in array (2.2-46) differs from that in array (2.2-44) by the factor
D?/(1 — D)? and measures the relative odds in the population of having the disease
according to the results of the laboratory procedure. For the positive laboratory
results we have

PV+ = PPy,
(1 = D)Py (3, + DPyy,
1
- , 2.2-47
1+ 1-D _]Y_‘ Moy ( :
D N, my,
and for the negative laboratory results
PV— = ! (2.2-48)
B L. DN m,’ '
1—D N, my,

When the two predictive values are equal we have independence in array (2.2-46).
Thus we have shown that rearranging tables has practical applications. It is
helpful in assessing the relationships between predictive values, and between
sensitivity and specificity for particular disease prevalences, as discussed by
Vechio [1966]. (See exercises 1 and 2 in Section 2.6 for further details.)* Bl

224 Differences between log-linear and other models
Models other than the log-linear have been proposed for describing tables of
counts. We now discuss two contenders and show that the logit model can be
regarded as a different formulation of the log-linear model, but models that are
linear in the arithmetic scale have different advantages and disadvantages.

Logit models
Suppose that the row totals m,, and m,, are fixed and that we are interested
in the relative proportions in the rows. We have, as before, P, = m;/m;, for
i=12

Then the logit for the ith row is defined as

P m,
L, = ]og—-—(-L = log —= (2.2-49)
1 — Py m;;
From the saturated model
log(m”) =u+ um) -+ uz(j) + ulz(ij), (2.2‘50)

* The symbol BB marks the end of an example,
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we find that
L; = Upery = Ugzy T Upagn — Uiz
= 2“2(1) + 2“12(51),
and letting w = 2u,;, and w; g, = 2u;,4,,, We get
Ly =w+ wy, (2.2-51)

with wy;, + w;,, = 0. Thus we have transformed the log-linear model for the
expected cell counts into a linear model for the logits.

We can now compare the linear logit model with the linear model for the
one-way analysis of variance, because we can think of the row variable A as
being an independent variable and the column variable B as being a dependent
variable. As w;; measures the structural relationship between 4 and B (ie.,
because u,,;;, measures this relationship), we can speak of the effect of A on B.

We discuss other aspects of logits in Section 2.3.5, where we show that the
logit model is appropriate primarily for stratified samples. It is unduly restrictive
for a simple random sample, as it requires that one margin be fixed. In Chapter 10,
Section 10.4, we discuss uses that have been made of the logistic model for mixtures
of quantitative and qualitative variables.

Additive models
It is natural to explore the possibility of using a linear model in the cell probabil-
ities instead of their logarithms. Suppose we let

p;j =Hu + ﬁi + ’yj + ‘Q‘ij i= 1,2, J = 1, 2, (2.2'52)
with
Bi =y, =g, =g,.,;=0

Since the {p;;} must sum to 1, u = ;. By examining the marginal totals, we also
have

ﬁiz%(l’w“%) i=12,
V) = %(pﬂ. -4 j=12 (2.2-53)

Thus, unlike the u-terms, the ; and y; are directly interpretable in terms of the
marginal totals p;, and p. ;. This advantage brings with it the range restrictions

=B

HA

Py

(2.2-54)

-

. hll’- I,
A A
I

A
NI Sl NU

|

IA

The major problem comes in the interpretation of ¢,,, which we can write as
&y = #Pi1 + P22 — P12 — P2i)
= #4p;1 — 2p; s — 2p4, + 1) (2.2-55)

Setting &,, = 0 does not imply independence of the underlying variables unless
pi+ =3 or p,, =3, nor does setting p;; = p;.p,; imply that ¢;, takes on any
specific value.
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We have found that the cross-product ratio «, is a simple function of u,, and
has useful invariance properties. We cannot express a5 as a simple function of the
{e;;}, nor can we find a simple alternative function of the {¢;;} that has the invariance
properties. We conclude that the difficulty of relating the additive model to the
concept of independence makes it less attractive than the log-linear model.

2.3 Two Dimensions—The Rectangular Table

The log-linear model used to describe the structure of the 2 x 2 table is unaltered
in appearance when applied to larger two-way tables. The number and interpreta-
tion of parameters differ for larger tables. The applicability of the model to expected
cell counts or to probabilities and its suitability for a variety of sampling schemes
persist, as does the relationship to logit models. The rearrangement of cells
demonstrated for the 2 x 2 table is not as useful for interpreting parameters in
larger tables, except when the arrays, instead of being rectangular, take some other
shape such as triangular.

2.3.1 The log-linear model

Suppose the cells from a single sample of size N form a rectangular array with
I rows and J columns, corresponding to the I categories of variable 1 and J
categories of variable 2. We have already seen that the log-linear model describes
either probabilities or expected counts. As we wish to consider later a variety of
sampling schemes, we define the model in terms of expected counts. A given
sampling scheme places constraints on the expected counts, but for every scheme
we have

Y m; =N, (2.3-1)

%)
and define [;; = logm;fori=1,...,I,j=1,...,J.

The log-linear model is unchanged from the form used for the 2 x 2 table:

Ly =+ e + Uy + Uiy {2.3-2}

The number of parameters contained in each u-term is a function of I and J, but
the constraints are unaltered :

Z Uiy = Z Uy = Z Upaip = Z Uszgp = 0. (23-3)
i i i i

By analogy with analysis of variance, we define

-
1 = 2.3-4
overall mean, u 17 { )
- . . li + l+ +
main effect of variable 1, u,, = F 17 (2.3-5)
. . l l
main effect of variable 2, u,;, = —;J - ;—;, (2.3-6)

two-factor effect between variables,

L !
Upaapy = Iy — (71:1 + 7“) + 57 (2.3-7)
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Degrees of freedom

The constraints (2.3-3) reduce the number of independent parameters represented
by each u-term. Thus the value of u, , differs for each of the I categories of variable 1,
but the constraints reduce the number of independent parameters to I — 1.
Similarly, u,, is an I x J array of parameters that sum to zero across each row
and column, and so has (I — 1)(J — 1) independent values. To verify that the
total number of independent parameters equals the total number of elementary
cells, we add the contributions from each u-term. The numbers of parameters
for each term are listed under “‘degrees of freedom” because this is how. we view
parameters when we fit models to data in later chapters.

u-Term Degrees of Freedom

u 1
Uy I-1 (2.3-8)
u, J-1
C Uy, 1J-1—-J+1
Total 1J

The sum IJ of all parameters in the saturated model matches the number of
elementary cells (i, j).

Constructing a table

We can substantiate the claim that a log-linear model describes the structure of a
table by using a model to build a table. Table 2.3-1 helps us illustrate the process

Table 2.3-1 Construction of Artificial 2 x 3 Table

Cell e!l elig etlz euu gkl +tuzrurz m,j
1,1 60* 2* 6* 4* 48 2,880
2,1 60 /2 6 1/4 3/4 45
1,2 60 2 1/2* 5% 5 300
2,2 60 i/2 /2 /5 1/20 3
L3 60 2 1/3 1/20 1/30 2
2,3 60 /2 /3 20 10/3 200
Total 3,430

*Selected values.

fora2 x 3table. As there are six cells, we select values for six parameters (indicated
by an asterisk in the table), and the constraints enable us to derive the other
parameters from these six. For the main effect u; we put ¢*** = 2;thenitsreciprocal
is the value for ¢“'®, and the u;-tgrm is completely defined. The second main
effect u, has two degrees of freedom, so we select ¢2® = 6, €2 = 1/2, and derive
€*® as the reciprocal of their product. Similarly for u,, we select e*20t = 4,
derive e¥2¢1 = 1/4,andthenselect ¢*1202 = Sand derive theremaining parameters.
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Multiplying e*!, ¢*2, and e*!2 gives e*t**2* "2 For a simple example, we use
integers for the {m;;}, and we can get them by selecting e* = 60. The {m,;} are

given in the last column. If we wish to construct values for p;; instead of m;;, we

sum the values for ¢“* **2**12 and define e* as the reciprocal of this sum to ensure
that the {p;;} sum to 1. '

Extension of this construction process to larger tables follows the same pro-
cedure. Such dummy tables of known structure are used for checks of computing
procedures, empirical investigations of the effects of collapsing tables, and
theoretical investigations utilizing Monte Carlo methods.

2.3.2  Cross-product ratios and linear contrasts

When the number of categories per variable exceeds 2, we find that we can still
express each u-term as a function of cross-product ratios, or equivalently as a
linear constrast. We consider first increasing the number of categories for one
variable only.

The 2 x J table
With two rows and J columns, the log odds for any column j are

log(my;/my;) = 1; — Ly = 2uyy + Uiap)- (2.3-9)

If we let ,., denote the cross-product ratio for columns r and s, we have

log &g = log(mlr/m2r) - log(mls/m2.s‘)' (23'10)

For the first two columns,

log(ay.2) = AUy 511y — Ui2012)s (2.3-11)

and for the first and jth column,

log(2y.j) = 2uy 211y = Ur21p)- (2.3-12)

Taking the logarithm of the product of all J — 1 such a-terms yields
logloy. y.3- .0 &y.y) = 2(J — 1)“12(11) - 2(”12(12) + Uppqa + 0 uxz(u))
= 2Ju; 51 1y (2.3-13)

Thus each parameter of u,, is a function of J — 1 cross products. It is a matter
of rearrangement to obtain the linear contrast
J

1
Uz = 37 Z IOg(ax-j)
J

=2

J -1 1 g
= T(lu - 121) + '271_;2 (lzj - llj)' (2~3'14)
Alternatively, we can write
U LTUCT (23-15)
=2 \Ma My
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The contrast (2.3-14) could have been derived more directly from expression
(2.3-7). Using this more direct approach for the other terms, we have, from
expression (2.3-5),

Yoo Yy Uy, — 1)
= S - S = Z——— T (2.3-16)
or the corresponding relationship
1/2J
my;
e = —1) . (2.3-17)
IJI (mzj
The other main-effect term is similarly defined, from (2.3-6), as
V-1 Loy, + 1)
oy =gy ) = F S (2.3-18)
or can be written in product form
1/2J
oM = (f”_u’l’z}.) , (2.3-19)
j=2 \ My jMy;

with each term a rearrangement of the four cells used to define «;.;.

In any rectangular table we can use the definitions (2.3-4)+2.3-7) to express
parameters of subscripted u-terms as linear contrasts of the {I;;} or to give the
corresponding multiplicative form.

2.3.3  Effect of combining categories
As soon as a table has more than two categories per variable, the possibility of

amalgamating categories arises. We need to consider when we can combine
categories without changing the structure of the table.

The 2 x 3table

Consider taking a 2 x 2 table and subdividing the second category of the second
variable to give a 2 x 3 table. The new table has cell entries m;;, where

m;, = mj; + mg, (2.3-20)
m;; = mj; (2.3-21}

for i = 1,2, and is described by the new model
logmj; = u' + gy + U + Uizgy- (2.3-22)

Although cell (1, 1) is unchanged, the parameters in the new model will in general
differ from those in the original model. For instance, in the original table from
(2.3-15) we obtain

Ml) (2.3-23)

4“12(11) = IOg(mz "
1Mz

and in the expanded table
mr 2 mr ml
6ul 11y = IOgIZ(m,“) ( 22 23):] . (2.3-24)

’ 14
21 \Mi2My3
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Comparing expressions (2.3-23) and (2.3-24) shows us that in general u;, ;) #

uy 2(11)-
Putting all three odds ratios in the new table equal to one another, i.e., setting

myy _ mi, _ mi,
v T Ly T
mMyy  Mp; My
ives u] = 0, and we find that for the original table
12(11)

f t
My _ My +my3  my

= .
My, Moy + My My

Thus we also have u,,,;, = 0 and have shown that independence in the expanded
table implies independence in the condensed table. The converse does not hold:
a smaller table fitting the independence model can be derived from a larger table
with more complex structure, as we show in the following example.

Example 2.3-1 Condensing categories
Consider three tables:

Table A Table B Table C
4 2 6 4 8 4 1 7
6 3 9 6 |12 6 6 6

In table A the row odds m,;/m,; are constant for all j, so the table fits the inde-
pendence model. Pooling the last two columns gives table B, with the same con-
stant row odds. Thus both tables are fitted by the independence model. A new
partitioning of the second column of table B gives table C, and the row odds are
no longer constant. In other words, table C does not fit the independence model,
but in the condensed table B we have independence. Bl

The independent rectangular table

For any rectangular array, we can express the independence of rows and columns
in two equivalent forms:

n,,m,;
m;; = __Eil\_]__i!’
lij = U + ul(i) + uz(j). (23"26)

(2.3-25)

The independence model (2.3-26) is derived from the model (2.3-2) by putting
U;2i; = 0 for all i and j, or, more briefly, by putting u;, = 0. Independent tables
have special properties.

From model (2.3-26), the difference between the logarithms of any two cells in
the same column is

ll'j - lrj = Uy ™ Ugeye (2.3-27)



Structural Models for Counted Data 29

Changing from the log scale to the original scale, this yields

il QT T

= (2.3-28)

for all j. Thus the ratio of internal cells in a given column is the same as the ratio
of corresponding row sums. By symmetry, this is also true for row elements and
column sums. For tables described by the independence model (2.3-26), we have
the following conclusions

1. independence is not lost if we combine some of the categories of either
variable ;

2. the parameters of u; can be determined from the vector of row sums {m;, },
and similarly for u, from the column sums.

We have thus established that two-way tables with independent structures are
collapsible. We can combine one or more categories of either variable, and the
same model describes the structure of the reduced table. If we combine all the
categories of one variable, say variable 2, then we have a string of I cells, and from
these cells we can compute the parameters of u,. The values of u, that we
obtain from the reduced table are identical to those obtained, using expression
(2.3-20) for instance, from the full table. Conversely, if the structure is not inde-
pendent, combining categories gives a reduced table with parameter values that
differ from those of the parent table; the parameters of u,, may even become
zero, thus giving a reduced table of different structural form from the parent table.

Identifying collapsible structures in more than two dimensions is a useful tool
for handling large tables. When the structures are not collapsible, the analyst who
inspects only two-way tables of sums can be led to false conciusions about the
interaction patterns between the variables.

2.3.4 Different sampling schemes

When we constructed a table by specifying values of the parameters we found
that the size N was dependent on the value u selected for the overall mean. This
constraint is imposed by simple random sampling. When we have stratified
sampling, the size of the sample selected from each stratum is fixed. We can still
use model (2.3-2) to describe the structure of the table of expected counts, but
further constraints are imposed on the u-terms.

Consider I strata with N; observations in the ith stratum, where > ; N; = N. If
the J categories for each stratum are the same, putting

logmy; = I = v@ + v§), (2.3-29)

with };v4}; = O defines each stratum in terms of the log mean of the stratum
and deviations from it.

We now compare the expressions obtained from model (2.3-29) for average
values of the I{? with values obtained from the u-term model (2.3-2) applied to the
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whole table. Taking the mean of all cells gives

u=>y —. (2.3-30)

Using this relation, we obtain from the mean of the jth column
vl
uz(j) = Z Tj, (23'31)

13

from the mean of the ith row
Ui = @ — g (2.3-32)

and finally, from the expressions for single cells and relations (2.3-30)2.3-32),
Uraap = Vit — Yagy (2.3-33)

Thus we can relate the two-dimensional log-linear model (2.3-2) to the one-
dimensional analogue (2.3-29). The .only constraint on the two-dimensional model
introduced by stratification is that the magnitudes of the N, restrict the magnitudes
of the u + u .

2.3.5 The logit model
The logit formulation is equivalent to the log-linear model for describing the

structure of the 2 xJ table with one fixed margin {m, ;}. Thus we can write
m ;= N;. By definition, we have

logit(j) = log| ™8} = 1,, — 1, (2.3-34)
ms; J 2

J
2
and can write logit(j) = 2(u; 1, + Uy, Or equivalently,
logit(j) = w + wy;, (2.3-35)

where w = 2u, ;) and wy(; = 2ty -

When the sampling determines the J marginal totals N,, we have oniy J degrees
of freedom among the 2J cells, and this is adequately reflected by the two-term
model (2.3-35). For a single sample with only N fixed, model (2.3-35) does not
describe the structure of the full array because it gives no information about the
margins {m, ;}.

Although we most often use the logit model for stratified sample schemes where
each stratum has only two categories, we can also use it for the multiple-category
case by defining

my;
logit(ij) = log et
8 Eﬁ m;

fori=1,...,(I — 1). We can thus regard the logit model as a special case of the
more general log-linear model, suitable only for stratified sampling schemes. In
Section 10.4 we discuss useful extensions of the logit model for handling mixtures
of discrete and continuous variables.
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23.6 Irregular arrays

When rows and columns correspond to two variables it is sometimes impossible
to observe particular category combinations. If this logical impossibility occurs in
the (i, j) cell, we say that we have a structural zero and p;; = m;; = 0. We discuss
tables with structural zeros in Chapter 5 and show that we can use log-linear
models to describe the structure of the cells where m;; # 0. We refer to the array
of nonzero cells as an incomplete table.

In two dimensions, incomplete tables can often be arranged in a triangular
array. Triangular arrays arise commonly from

1. measurements on paired individuals where no other distinction is made
between members of each pair, e.g., measurements on two eyes of an indivi-
dual that are not distinguished as right eye and left eye but only sorted by the
measurement itself as better eye or worse eye;

2. paired measurements on a single individual, where the value of one measure-
ment sets bounds on the possible values of the second. Commonly, we first
assign each individual to a particular category of an ordered set, and any
subsequent assignment must place the individual in a higher category; e.g.,
individuals graded by severity of disease on admission to hospital are not
discharged alive until the disease grade has improved.

We can also create triangular tables by folding square tables along a diagonal if
this helps in our analysis. We discuss the usefulness of this device in Chapter 8.
Further discussion of incomplete tables is deferred to Chapters 5 and 8.

2.4 Models for Three-Dimensional Arrays

As the number of variables measured on each individual increases, the resulting
multidimensional contingency tables become more unwieldy. The investigator is
apt to give up on multiway tables and look instead at large numbers of two-way
tables derived by adding over the categories of all except two variables. In this
section we show for three-dimensional tables the dangers inherent in examining
only such tables of sums and advocate instead construction of models that describe
the full array. We discuss first the 2 x 2 x 2 table and then proceed to general
I x J x K rectangular tables, with the main focus on

1. interpreting each parameter of the saturated model;

2. interpreting unsaturated models as descriptions of hypotheses;

3. determining when the size of the table may be reduced without distorting the
structural relationships between variables of interest.

We extend the notation describing the cells of a two-dimensional array to
encompass multiway tables simply by adding more subscripts. The number of
subscripts normally matches the number of variables, but exceptions occur. It
may sometimes be convenient to split or combine the categories of a single
variable, while in other instances it may be useful to fold a two-dimensional array
so that it forms an irregular three-dimensional shape. We therefore define sub-
scripts to match the dimension of a particular arrangement of the cells. In three
dimensions, the probability of a count falling in cell (i, j, k) is p;;, and the expected
count is My, wherei=1,...,I;j=1,...,J; k=1,..., K.
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In complete three-dimensional arrays we have a rectangular parallelepiped of
size I x J x K containing IJK cells. The subscript “+ * denotes addition across
all cells with a common value for one or more subscripts. Thus m, y, = Y1_; ;.
the sum of all cells with a common value for j and k.

241 The?2 x 2 x 2table

When we take measurements on three dichotomous variables, we have eight pos-
sible combinations of outcome. We can arrange the eight cellsina 2 x 2 x 2 cube
with each dimension corresponding to one variable. For display in two dimen-
sions, we split the cube into two 2 x 2 arrays. If we make the split by dividing the
categories of the third variables we have:

First Category Second Category
of Variable 3 of Variable 3
Variable 2 Variable 2
1 2 1 2
i my, Mz mgq, LEPY)
Variable 1
2 m;qy W21 myy, LOYY)

We can now describe each 2 x 2 array by a separate log-linear model: for array
k, we have

L = o™ + o)y + o) + o, k=12, {2.4-1)
with all subscripted »-terms summing to zero across each subscript variable as
usual. We combine these models into a single linear expression by taking means
across the tables. Remembering that in this array K = 2, we have the foliowing
mean effects:

overall mean,
1
— (k)
u=-—>3 p®,
Ky
main effect of variable 1,

1
o = g 3t 242

main effect of variable 2,
1
— (k)
Uagy = 7 2, V5l
K%
interaction between variables 1 and 2,
i
— (k)
U265 = Z Uyaijp-
K4 g

Thus u,,, sometimes called the “partial association,” is the average interaction
between variables 1 and 2.
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The deviations from these means depend on the third variable and are defined
as follows:

main effect of variable 3,
k
Uygy = v —u,

interactions with variable 3,
sy = 05 = g, (2.4-3}
taagn = V3 — Uy

three-factor effect,

e ok
U230y = U(l%ﬁj) = Uyoip-
We can now write the single linear model for the whole 2 x 2 x 2 cube,

L = U+ uggy + gy + Usgy + Uizgy + Uiaay T Uaage T Yizsan- (244

The subscripted u-terms of equations (2.4-2) are derived by taking means of
u-terms that sum to zero within tables ; this derivation preserves the property that
subscripted terms sum to zero. The terms with subscript k are all deviations and
so also have this property. For instance,

ZuIZS(ijk) = Zu123(ijk) = Zu123(ijk) = 0. (2.4-5)
i 7 )

Consequently, we have one absolute value for the parameters of each u-term in
the 2 x 2 x 2 table. Thus each of the eight u-terms in the saturated model contri-
butes one degree of freedom, and the total number of degrees of freedom matches
the total number of cells as required.

We now consider interpretations of the parameters of model (2.4-4} which can
be extended to I x J x K tables of any size.

Interpretation of parameters and the hierarchy principle

a. Two-factor effects

By splitting the cube according to the categories of the third variable, we intro-
duced an apparent difference in the definitions of the two-factor effects that disap-
pears when we consider different partitions. We defined the two-factor effect u,,
as representing the interaction between variables 1 and 2 averaged over tables,
and it was defined solely in terms of v, ,. By partitioning the cube differently, we
get the same interpretation as an average for the other two-factor terms u,; and
u,5, instead of defining them as deviations as in (2.4-3). Conversely, the symmetry
permits us to define u,, as a deviation from the overall effect of a single variable,
similar to the definitions given for the other two-factor terms in (2.4-3). We can
also define two-factor effects as products of cross-product ratios. If we define

m,
a(k) - 11k 22k) (24"6)
My M2k

we can use expression (2.4-6) to get

1
Uy =g log(aMat2), (2.4-7)
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b. Three-factor effect

The three-dimensional model has one new feature that the two-dimensional model
did not have, namely, the three-factor effect u,,;. We derived u,, 5 as the difference
between the average value of u, , across tables and the particular value exhibited
by table k. The symmetry of this definition becomes apparent when we write u; 5,
in terms of cross-product ratios:

1 o™ 1 My Myy MypoM
Uiz = 3 log X5 = “log 111M221M122Ma12) (2.4-8)
8 & 8 My My Myy2My5,

All the cells whose subscripts sum to an odd number appear in the numerator
and those whose subscripts sum to an even number in the denominator. This
formulation is independent of the direction of partitioning; a-terms correspond-
ing to u, ; or u,; give the same ratio (2.4-8).

The three-factor effect is sometimes called the “‘second-order interaction.” It
measures the difference in the magnitude of the two-factor effect between tables for
any of the three partitions of the cube into two 2 x 2 tables. Such an interpreta-
tion of the meaning of the three-factor effect has the natural converse that if any
two-factor effect is constant between tables, then the three-factor effect is zero. In
particular, setting any two-factor effect equal to zero implies that the three-factor
effect is zero. This leads us to a definition of the hierarchy principle, but before we
can state this principle in general terms we need a more formal definition of the
relationships between u-terms.

c. Alternate interpretation of two-factor effects

When dealing with two-dimensional tables we showed how to interpret all the
subscripted u-terms in the log-linear model as functions of cross-product ratios.
In particular, for a 2 x 2 table we showed how these cross-product ratios arise
naturally from rearrangements of the table. For 2 x 2 x 2 tables we can also
show that all subscripted u-terms can be written as functions of ratios of cross-
product ratios, and there are rearrangements of tables such that each subscripted
u-term takes the form (2.4-8) and corresponds to the three-factor term for the
rearrangement.

d. Relationships between terms

Consider two u-terms, one with r subscripts and the other with s subscripts, where
r > s. We say that the terms are relatives if the r subscripts contain among them
all the s subscripts. Thus u,,, is a higher-order relative of all the other u-terms in
the three-dimensional model, and u, , is a higher-order relative of both u;, and u, .

¢. The hierarchy principle

The family of hierarchical models is defined as the family such that if any u-term
is set equal to zero, all its higher-order relatives must also be set equal to zero.
Conversely, if any u-term is not zero, its lower-order relatives must be present in
the log-linear model. Thus if u;, = 0, we must have u;,; = 0; also, if uy; is
present in the model, then u; and u, must be present also.

f. Linear contrasts
We showed for the 2 x 2 table that every u-term can be written as a linear contrast
of the logarithms of the four cells. By rearranging the cells of the table, all the
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subscripted terms can also be written as cross-product ratios. For the 2 x 2 x 2
table we can similarly write every u-term as a linear contrast of the eight cells, or
as a function of cross-product ratios.

Remembering that every u-term has one absolute value, in table 2.4-1 we assume
that each term is positive in cell (1, 1, 1). Thus the first row has all plus signs. We
can fill in the columns corresponding to each u-term so that each term sums to
zero over each of its subscripts. These columns give us the linear contrasts, for
instance,

Uipiy) = $iss + Loy — Loy — Lyg + Lz + Lo = ligs = bagy) (2.4-9)

This contrast has positive sign for all terms with subscripts i and j adding to an
even number and negative for the remaining terms.

Table 2.4-1 Sign of u-terms of Fully Saturated Model for Three
Dichotomous Variables

Cell U Uy ity iy 279 ty; tys Hyo3
11,1 + + + + + + +

2,11 + - + + - - + -

1,21 + + - + - + - -

2, 2.1 + - - + + - - +

11,2 + + + - + - - -

2,1,2 + - + - - + - +

1,2,2 + + - - - - + +

2,2,2 + - - - + + + -

24.2 Thel x J x K model

We derived model (2.4-4) for the cube of side 2 by averaging across 2 x 2 tables.
We can use a similar procedure for any three-dimensional array, namely, averaging
across K tables of size I x J. Expressions (2.4-1)-(2.4-3) are unaitered, and model
{2.4-4) is the appropriate saturated model for any rectangular array in three
dimensions.

When the sample is such that )., m;, = N, the only further constraints
are that each u-term sums to zero over each variable listed among its subscripts.
We then have the following degrees of freedom associated with each level of
u-terms:

Number in
Level Level Degrees of Freedom
1 overall mean 1
one-factorterms (I — 1) +(J -1+ (K — 1)
3 two-factor terms (J — 1)(J — ) + (I — 1)(K — 1) (2.4-10)
+J - 1)K -1

1 three-factor term (I — 1)(J' — I)(K — 1)

Total IJK

Thus the number of independent parameters corresponds to the number of
elementary cells.
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The interpretation of the individual u-terms is the same for any I x J x K
table as for the 2 x 2 x 2 table except that when a u-term has more than one
degree of freedom it is possible for some of its parameters to be zero while others
are large. When this occurs, we need to consider whether some categories can be
combined without violating the structure by introducing spurious interaction
effects or masking effects that are present. Sometimes we are interested in combin-
ing only two categories of a multicategory variable, sometimes in combining more
than two. In the extreme case we collapse the variable by combining all its
categories. In theorem 2.4-1 below we consider when we can collapse a variable
without violating the structure of the three-dimensional array. If the structure is
such that we can safely collapse a variable, then we can also combine any subset
of its categories without violating the structure.

Before turning to the problem of collapsing, we discuss briefly the effect of
sampling design in fixing parts of the structure. We also consider the interpreta-
tion of the set of hierarchical models. In any particular data set, our decisions
regarding the desirability of collapsing must be governed by what is meaningful
in terms of the sampling design and the interpretation-—as well as by the model
structure.

Constraints imposed by sampling design

When we take a simple random sample and arrange the counts in a three-
dimensional array. only the total sample size N is fixed. Stratified samples that
yield a three-dimensional array of counts usually fall into two main types, each
with a different structure of fixed subtotals:

(i} if one of the three variables, say variable i, determines the strata, then the
components of the one-dimensional array {m,, ,} are fixed, and we have
m,, = N;foralli,and ), N; = N;

(i) if two of the variables, say variables 1 and 2, are required to describe the
strata, then only the third variable, sometimes called the response variable,
is measured on each individual. This scheme fixes the two-dimensional array
{m;.}. and we have my;, = N, for all i, j, and 3, , N;; = N. We show in
Chapter 3 that only the hierarchical models that include u, , are appropriate
for this design.

These are the two types of design that arise most frequently, but more complex
designs can occur. For instance, it is possible to have more than one two-dimen-
sional array of sums fixed by the sampling plan, and it is only appropriate to use
a subset of the hierarchical models to describe them. We note that the saturated
model describes all such arrays, but the constraints on the {n;;} impose further
constraints on the u-terms.

For two-dimensional tables we showed that the parameters of the logit model
where one margin was fixed correspond to the relevant u-terms in the log-linear
model. We can also use logit models for either of the designs (i) and (ii), and again
the logit parameters correspond to the relevant u-terms in the log-linear model
(see exercise 4 in Section 2.6).
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Interpretation of models

In the following discussion of the interpretation of three-dimensional models, we
assume that the sampling scheme is such that all the models are meaningful. As
each subscripted u-term can be interpreted as measuring the deviations from
lower-order terms, removal of higher-order terms has the effect of simplifying the
structure. Starting with the most complex unsaturated model, we discuss each
of the models that conform to the hierarchy principle defined in Section 2.4.1.

a. Three-factor effect absent

Asu,,, measures the difference between two-factor effects attributable to the third
variable, putting u,,, = 0 enables us to describe a table with constant two-factor
effects. Thus the model

Lije = u + g + ty + Usgy + Uizip + Uiz T Uaag (24-11)

states that there is “‘partial association” between each pair of variables, to use the
terminology of Birch [1963].

In other chapters we fit such unsaturated models to observed data and compute
measures of goodness of fit. These measures indicate whether the model is an ade-
quate description of the structure of the population yielding the observed data. To
test the null hypothesis that there is no three-factor effect or ““second-order inter-
action™ we fit model (2.4-11). The measure of goodness of fit is our test statistic,
with (I — 1)(J — 1)(K — 1) degrees of freedom.

b. Three-factor and one two-factor effect absent
There are three versions of the model with the three-factor effect and one two-
factor effect missing. Selecting u,, as the absent two-factor effect gives

]ijk =y + ul(i) -+ uZ(j) -+ uyk) -+ u23(jk) -+ 1113(““. (24"12)

This model states that variables 1 and 2 are independent for every level of variable

1

3. but each is associated with variable 3. In other words, variables 1 and 2 are
conditionally independent, given the level of variable 3.
c. Three-factor and two two-factor effects absent

There are also three versions of the model with the three-factor effect and two
two-factor effects missing. Selecting

Uipz = Uy = U3 =0
gives
L =t 4+ Uy + tay + gy + Uzzm- (2.4-13)
Variable 1 is now completely independent of the other two variables; variables 2
and 3 are associated.

Later theorems show we can collapse any variable that is independent of all
other variables without affecting any of the remaining parameters of the subscripted
u-terms. For the simple model (2.4-13) we can prove this directly by writing

log(m, 3) = w + uyy + Uspy + Uzzg» (2.4-14)
where

w=u+ log(z e““”) (2.4-15)
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is a constant independent of any variable category. Equation (2.4-14) shows that
the table of sums {m, ;| has the same subscripted u-terms as the overall model
(2.4-13).

d. Three-factor and all two-factor effects absent
The model that represents complete independence of all three variables is

Lijg=u+ Uy + Uz T Usgy- (2.4-16)

In this model none of the two-dimensional faces {m;;. }, {m;, .}, or {m;,} exhibit
any interaction. Summing over two variables gives

My, = exp(u + ;) Y. expluy;y + Uz}
I

= exp(u + ) Y, exXpliiz(y) 3. exPlitz ) (24-17)
i k

and similarly for each of the other one-dimensional sums. Summing over all three
variables, we have for the total number of counts:

N = Z m, . = exp(u) Z exp(uy ) Z expluy(p) Z exp(Uspy)- (24-18)
i i i k
Combining the three variants of (2.4-17) with (2.4-18), we find

m;y = Mi++m;7£i‘m++k- (2.4-19)

e. Noncomprehensive models

Proceeding further with deletion of u~terms gives models that are independent of
one or more variables, which we call noncomprehensive models. Suppose we put
#; = 0. Then the model becomes

lijk = U b Uy Uy (2.4-20)
it is apparent that
m;;
My = “'I‘éi

and we have the same I x J array for all k. We can always sum over any variables
not included in the model and describe the condensed structure by a comprehen-
sive model that includes all the remaining variables in the resulting lower-
dimensional array.

f.  Nonhierarchical models
We defined the hierarchy principle in the Section 2.4.1. Most arrays can be
described by the set of hierarchical models. Exceptions do occur, but generally the
interpretation of nonhierarchical models is complex. In example 3.7-4 of Chapter 3
there is a 2 x 2 x 2 model with u,, = u,; = u,;; = 0, but u,,; # 0. We show
there that this model can be related to the concept of “synergism,” where a
response occurs when two factors are present together but not when either occurs
alone.

In larger tables with nonhierarchical structure a possible strategy is to partition
and look at smaller sections of data. If u;,5 # 0 but u,, = 0 when we partition
according to the categories of variable 3, then we have some tables with interaction
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between variables 1 and 2 in one direction and others with interaction in the
opposite direction. We can either consider the structure of each set of tables
separately or rearrange the cells to form new compound variables.

Reduction to two dimensions
We derived the three-dimensional model by averaging across a set of two-
dimensional tables, each relating to a category of the third variable. We found
that all the u-terms involving variables 1 and 2 were averages of the corresponding
terms in the two-way tables, as in expression (2.4-2), and all the u-terms involving
variable 3 were deviations from these averages, as in expression (2.4-3). We now
consider when we can obtain valid estimates of the two-factor terms u;,, %5,
and u,; from the two-way table of sums {m;;,}, {m;,,}, and {m,;} formed by
adding across such sets of two-way tables.

The rows of table 2.4-1 yield expressions for the sums of the ;;,. For example,
adding the first two rows gives

Lyg = 2(u + uyqy + Uz + Uzzn))s (2.4-21)
with no u-terms involving variable 1 remaining. These u-terms do not disappear,
however, when we sum m;; over variable 1:

My o= eXplu + Uy + Uzgy + Uz3n)

X Y eXPypy + Uiz + Uiaan + U2
7

= exp(terms independent of variable 1)

x Y exp(terms dependent on variable 1). (2.4-22)
i

Consequently, if we describe the table of sums by a saturated log-linear model

logm, ;= v+ vy, + Vs + Vasmyn (2.4-23)
we find that, in general,
Vasgny 7 Uasn-
If 0,36 = Uasgw for all j, k. then we say that in the three-dimensional table,
variable 1 is collapsible with respect to the two-factor effect u,;. We now prove
that variable 1 is only collapsible with respect to u,; if the I x J x K table is
described by an unsaturated model with u;,; = 0 and either u;, = 0 or u;; =0
or both.
THEOREM 2.4-1 In a rectangular three-dimensional table a variable is collapsible
with respect to the interaction between the other two variables if and only if it is
at least conditionally independent of one of the other two variables given the third.

Proof Withoutloss of generality we can consider the model with one interaction
absent. We choose the model with u,, = u;,; = 0, and so we have

b = u 4wy + g + Uz + Uiagy + oy (2.4-24)

We can write the logarithms of the marginal sums as
logm;. = u + uyg + Uy, + Ay (2.4-25)
logm,, = u + g + tsgy + e + A (2.4-26)

logm, = u+ uy + tygy + Upzg + A7, (2.4-27)
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where

A;; = log ;GXP(us(k) + Uz T u23(jk))) ,

A = log ZeXP(“zu') + “23<jk)))~ (2.4-28)
i

M = log ZGXP(“m) + u13(ik)))-

The subscripts on the terms A indicate which variables 4 depends on. For
m; ., and m, ; only one variable is involved, so we can also describe these sums
by a saturated four-term model. For instance, if we consider collapsing over
variable 2,

log(m;,,) = w + Wi + Wag + Wisan: (2.4-29)
We now compare (2.4-26) and (2.4-29). Summing over both i and k gives
A
w=u+Y -k (2.4-30)
— K
Summing over k only, we have
Win = Uy, {2.4-31)
and summing over i only gives
, A
Wiy = Usg + A — ) o (2.4-32)
k
From (2.4-30) through {2.4-32), we have
Wt Wi+ Wag = U+ Uy + Usgy + A (2.4-33)
and so from {2.4-26) and (2.4-29) we have
Wisary = Uy3amy- {2.4-34)
The analogous result for m,, , is
Wasgn = Y23y (2.4-35)

This proves that summing over either of the unrelated variables 1 or 2 gives a
table of sums that does not distort the two-factor effects present in the complete
array.

Proof of Converse We need only observe from expression (2.4-25) that
log m;;, has a term /;; dependent on both variables 1 and 2. The table of sums
{m;;,} thus exhibits a two-factor effect not present in the structural model for
the elementary cells. We conclude that summing over a variable associated with
both the other variables yields a table of sums that exhibits a different interaction
than that shown by its component tables.* ¥
* The symbol M marks the end of a proof.
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Notes on Theorem 2.4-1
From expression (2.4-31) we observe that collapsing over variable 2 when u,, =
uy,3 = 0 preserves the value of u; as well as the value of u,;. Contrastingly,
from (2.4-30) and (2.4-32) we find that u and u, are changed by collapsing. Thus if
a three-dimensional array is collapsed over a single variable (say variable 2),
those u-terms involving a specific remaining variable (say u;) are unchanged
if and only if the variable collapsed over is independent of the specific variable
(e, uy, = Q).

Clearly, if variable 2 is independent of variables 1 and 3 jointly, none of u;, u;,
and u, , is changed by collapsing over variable 2.

Theorem 2.4-1 in a weaker form is analogous to a result in the theory of partial
correlation. We recall a well-known formula from standard multivariate statistical
analysis regarding partial correlation coefficients:

Pi2 — P13P23
JA = pi A = pr)

Piz2.3 =

where p,,.5 is the partial correlation between variables 1 and 2, controlling for
variable 3,and p,,, p,;,and p, ; are the simple correlations. If p,; = 0or p,; =0,
then p,,.; is a scalar multiple of the p,,, and we can test the hypothesis p;,.; = 0
by testing for p,, = 0.

For three-dimensional contingency tables, theorem 2.4-1 says that the term u,,
in the three-dimensional log-linear model is the same as the u,,-term in the
log-linear model for the two-dimensional table {m;;,}, provided that u,; or
u,5 = 0 in the three-dimensional model.

Example 2.4-1 Collapsing a table

The data of table 2.4-2, analyzed by Bishop [1969], have been used for class
exercises at the Harvard School of Public Health, but the original source is
unfortunately lost. They relate to the survival of infants (variable 1) according to
the amount of prenatal care received by the mothers (variable 2). The amount of
care is classified as “more” or “less.” The mothers attend one of two clinics,
denoted here as 4 and B. Thus we have a three-dimensional array with the clinic
as the third variable.

Table 2.4-2 Three-Dimensional Array Relating Survival of Infants to Amount of
Prenatal Care Received in Two Clinics

Place where Amount of Infants’ Survival
Care Received Prenatal Care Died Survived Mortality Rate (%
Clinic A Less 3 176 1.7
More 4 293 1.4
Clinic B Less 17 197 79
More 2 23 8.0

Source: Bishop [1969].
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The table for mothers who attended clinic 4 has the cross-product ratio
(3293 _
(4)(176)
and that for mothers who attended clinic B,

1723

ey _ .,
(2)(197)

Both of these values are close to 1, and we conclude that u, , is very small. Thus

the data could reasonably be considered to be a sample from a population where

u,, = 0;in other words, survival is unrelated to amount of care.

Table 2.4-3 Two-Dimensional Array Relating Survival of Infants to Amount of
Prenatal Care; Array Obtained by Pooling Data from Two Clinics

Amount of Infants’ Survival
Prenatal Care Died Survived Mortality Rate (%)
Less 20 373 5.1
More 6 316 1.9

If we collapse over the third variable (clinic), we obtain table 2.4-3, and we have
the cross product
20)(316
Q0316 _,

@om 28
which does not reflect the magnitude of u,,. If we were to look only at this table
we would erroneously conclude that survival was related to the amount of care
received. Theorem 2.4-1 tells us that we cannot evaluate u,, from the collapsed
table because both u, ; and u,; are nonzero. NN

2.5 Models for Four or More Dimensions

We proceeded from two dimensions to three dimensions by writing a model for
each two-way table defined by the categories of the third variable. Similarly,
when we have a four-dimensional array we can write a model in w®-terms for
each three-way array defined by the L categories of the fourth variable. The
averages across three-way arrays give the corresponding u-terms for the overall
four-dimensional model, and the deviations from these averages give new terms
with subscripts that include variable 4, as shown in table 2.5-1. We can continue
this process for any number of dimensions, say s. The expected counts in ele-
mentary cells of a four-dimensional array have four subscripts i, j, k, 1, and in
general in s dimensions they have s subscripts. In going from two to three
dimensions we doubled the number of u-terms from 4 (ie., u, u,, u,. and u,,) to 8.
When we go to four dimensions another doubling brings the number of u-terms
to 16. In general, for s dimensions the log-linear model has 2° u-terms.

For the saturated s-dimensional model we have s single-factor u-terms, s — 1
of them from the first s — 1 dimensions and a term representing deviations from
the overall mean due to the last variable to be added. All possible combinations
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of two variables at a time give (§) two-factor terms. Proceeding thus we find that
in general the number of r-factor terms is ) for r = 0, ..., s if we define () as 1.

When all variables have only two categories, we can readily interpret the
parameters of the u-terms as functions of cross-product ratios involving four cells.
In larger tables this formulation becomes more difficult, but the interpretation of
unsaturated models is independent of the number of categories per variable.
Thus it is sufficient for us to consider the interpretation of parameters in the 2° table
and discuss models that are often encountered in any dimension. We follow with
a theorem defining in general terms when we can collapse multidimensional tables
to fewer dimensions and still assess the magnitude of u-terms of interest from
the condensed array.

Table 2.5-1 Relationship of Three-Dimensional w-terms to
Four-Dimensional u-terms inan I x J x K x L Array

u-terms
w-terms for Each of Average of Deviations from
Order L Three-Way Tables w-terms Average®
Mean w u Uy
Single-factor Wy, Wy, Wy Uy, Uy, Us Uy, Uag, Uzgy
Two-factor Wiz, Way, Wya Uyg,Ups, Hyg Uyzq,Hyzq, Uysg
Three-factor Wiaa %423 Uyy3q

% Note each deviation is one order higher than other terms on same line.

2.5.1 Parameters in the 2° table

The additive constraints on all subscripted u-terms ensure that the number of
independent parameters in the saturated model is the same as the total number
of elementary cells. For the 2° table each of the 2° u-terms has one absolute value,
and each of these can be expressed as a function of the log odds.

Suppose the array is split into 25~ 2 two-dimensional tables relating variables
1 and 2. The cross-product ratio in each of these 2 x 2 tables is «"), where

=1,...,272 and the tables are ordered so that the subscripts corresponding
to the third variable change before the subscripts corresponding to the fourth,
and so on. We can now define u,, and all higher-order relatives.

Two-factor terms
The two-factor term relating variables 1 and 2 is the average of the two-factor

effects in each table:

1
U, = Elog(ﬂ oc(”). (2.5-1)

Three-factor terms
The definition of the three-factor term u,,, varies according to the number of
dimensions. Using superscript notation, the definition given in expression (2.4-8)
for three dimensions becomes

e

Uyp3 = —Slog&‘m, (2.5-2)
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the ratio of cross-product ratios. In four dimensions u, ,, is the average of two such
three-dimensional terms:

d(l) AR
Uizy = E(log&m + IOg "a'(—‘())
1 D((I)D(B)
- Ig(w_a%“‘))' (2.5-3)

We can continue for further dimensions, and in general, for s dimensions

| T
i odd
Ujpy = §log Lﬁ-—a‘—” . (2.5-4)
jeven
The a-terms derived from tables corresponding to the first category of variable 3
are in the numerator and those corresponding to the second category in the
denominator.
Other three-factor terms u,,4, u,,5, ¢tc, are similarly defined by selecting
a-terms according to the category of the third variable.

Four-factor terms
In four dimensions the term u, ,;, measures differences of two three-factor terms
from their average ; thus, from (2.5-2) and (2.5-3),

1, o oWt
Uygsa = < log oo — —log > 2
1234 = 210835 T Tg OB L@@

i o Pl

This expression is a cross-product ratio of the {¢"}, themselves cross-product
ratios. In five dimensions two such terms are averaged to give

1 a(l)a(ﬂ')a(ﬁa(fﬁ)
Uypze = ?—)'2- logﬁﬁy&ﬁwl . (25-6)
In s dimensions the general form is
1 a(4r-— S)a(‘tr)
Uiz34 = ? IOg H ;(Zr_z)a(‘;,._ 1] (25-7)
¥

where the product is taken from r = 1 to r = 2°” % In the numerator the {a*}
are derived from those tables where the categories of variables 3 and 4 are the same,
while the remaining {«"} are in the denominator.

Higher-order terms

Hierarchical models require that if a term is not set equal to zero, none of its
lower-order relatives are set equal to zero. This requirement is reasonable when
we consider expressing u-terms as functions of cross-product ratios. By continuing
the process described previously, we can express any u-term involving variables
1 and 2 as a function of the {«"’}. Similarly, by partitioning the array in different
directions we can express all related terms as functions of a set of cross products.



Structural Models for Counted Data 45

Even within the set conforming to the hierarchical requirements we have a large
choice of models available. We consider in more detail only a few of the many
possibilities.

2.5.2  Uses and interpretation of models

We can divide the hierarchical models into two broad classes, those with all
two-factor effects present and those with at least one two-factor effect absent.

All two-factor effects present

The hypotheses most frequently encountered relate to the independence of
variables. Even conditional independence requires that at least one two-factor term
is absent. Thus models with all two-factor effects present are more likely to be
used not for hypothesis testing but for obtaining elementary cell estimates that
are more stable than the observed cell counts. Successively higher-order terms
can be regarded as deviations from the average value of related lower-order terms,
and so models with only the higher-order terms removed are useful in describing
the gross structure of an array. Such models describe general trends, and hence
can be regarded as “‘smoothing” devices.

In other chapters we show that these models are primarily used for

1. obtaining cell estimates for every elementary cell in a sparse array. In Chapter 3
we show that fitting unsaturated models gives estimates for elementary cells
that have a positive probability but a zero observed count.

2. detecting outliers. In some circumstances the detection of sporadic cells that
are unduly large may be of importance. For example, in some investigations
it may be desirable to determine what combination of variable categories
gives an excessive number of deaths. In Chapter 4 we describe how to detect
cells that show large deviations from a hierarchical model apptlied to the
whole array.

Hierarchical models with one two-factor effect absent
Restriction to the class of hierarchical models still permits many structures with
one two-factor effect absent and all others present.

If we put u,, =0, in five dimensions the hierarchy principle requires that
Uyo3s Uioas Uiass Uizzas Uyzass Uia35, and Uy ,5,5 are also set equal to zero. Thus
the total of 32 terms is reduced by one-fourth to 24. Those remaining fall into
three groups: Eight terms involve neither variable 1 nor variable 2, eight involve
variable 1 but not variable 2, and eight involve variable 2 but not variable 1.
These three groups appear in the first three columns of table 2.5-2, and the fourth
column gives u;, and its higher-order relatives. We define the sums of the four
groups as 4, B, C, and D. Thus we have

A=+ Uy + g + Us + Uzq + Uzs + Ugs + Uzgs, (2.5-8)

and similarly for the other columns. When u,, = 0, the model describing the
five-dimensional structure is

lijklm =A+ B+ C. (25-9)
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Table 2.5-2 Grouping Terms of Fully Saturated Five-Dimensional Model

Groups
A B C D
Includes Neither Includes Variable Includes Variable Includes Both
Row Variable 1 nor 2 1, but Not 2 2, but Not | Variables 1 and 2

1 u N U, Uy
2 Uy Uys Us3 Uiz
3 Uy Hia g Ugag
4 Us Uys lys Uyzs
5 L Hizg Uz34 Hiz34
6 Uys Uyas Uyss #1235
7 Uys Usas Haqs Uiaas
8 Uaas Hisas Upzas Uizzas

The sums obtained by adding over variable 1, over variable 2, and over both
variables are, respectively,

My jm = €Xp(A + C)ZGXP(B)e
M1 = €Xp(4 + B) ¥ exp(C) (2.5-10)
)
My 1 kim = €XP(A) Y exp(B) 3 exp(C),
i i

and hence we find

M = el i, (2.5-11)

My kim

This is a frequently encountered model. In subsequent chapters we show that
the relationship (2.5-11) between the expected elementary cell counts and the
sums of counts enables us to fit this model readily. When the array is split into
KLM two-way tables relating variables 1 and 2, the margins of each table are
members of {m, y;,} and {m;,,}, and the total in each table is a member of
{my gmi- Thus expression (2.5-11) describes independence in each table, and
we say that variables 1 and 2 are *‘conditionally independent.”

There are many other models with variables 1 and 2 conditionally independent.
Starting at the bottom of column B or C and moving up, any number of terms
can be set equal to zero to give a different hierarchical model. When terms in
the same row are removed from columns B and C, the term in column A4 of this
row can also be removed. These models all have fewer u-terms than model (2.5-9),
but some are more complex in that the expected counts in the elementary cells
cannot be derived from sets of sums as in expression (2.5-11). We give rules in
Chapter 3 for determining when such relationships exist.

Even within the set of hierarchical models, the hypothesis u,, = 0 is thus
consistent with a variety of structures. Consequently, it is never adequate to
describe a hypothesis only in terms of the absence of one u-term. The model
underlying the null hypothesis must be stated in full. The verbal interpretation
of many high-dimensional models becomes more cumbersome than useful, and
the simplest approach is to write out the log-linear model and examine which
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terms are included. One of the purposes of such inspection is to determine whether
the size of the array can be reduced by summing over some of the variables without
distorting the u-terms of interest.

2.5.3 Collapsing arrays

Theorem 2.4-1 deals with collapsing in three dimensions, and states that variable 3
is collapsible with respect to u,, if variable 3 is unrelated to either variable 1 or
variable 2 or both. Thus in three dimensions at least one two-factor term must be
absent for any collapsibility to exist. We now give a general theorem for collapsi-
bility in s dimensions, which indicates for a given model which u-terms remain
unchanged in the collapsed table. Following the statement of the theorem, we
discuss its implications and consider some examples of its application. We first
review the definition of collapsibility.

Definition of collapsibility

We say that the variables we sum over are collapsible with respect to specific
u-terms when the parameters of the specified u-terms in the original array are
identical to those of the same u-terms in the corresponding log-linear model for
the reduced array.

THEOREM 2.5-1  Suppose the variables in an s-dimensional array are divided into
three mutually exclusive groups. One group is collapsible with respect to the u-terms
involving a second group, but not with respect to the u-terms involving only the third
group, if and only if the first two groups are independent of each other (i.e., the
u-terms linking them are 0).

Proof We regard the three groups in the statement of this theorem as being
three compound variables. We then apply theorem 2.4-1 to these compound
variables, and the result follows. N

Implications of collapsibility theorems
Independence of two variables implies that the model describing the overall
structure has the two-factor term relating the variables and all its higher-order
relatives set equal to zero. If a variable is collapsible with respect to specific
u-terms, it may be removed by adding over all its categories, or condensed by
combining some of its categories, without changing these u-terms.

This definition has two important implications.

1. If all two-factor effects are present, collapsing any variable changes all the
u-terms,

2. if any variable is independent of all other variables, it may be removed by
summing over its categories without changing any u-terms.

Thus the practice of examining all two-way marginal tables of a complex data base
may be very misleading if any of the variables are interrelated. By contrast, the
dimensionality of any array may be safely reduced by collapsing over all completely
independent variables. The extent to which collapsing or condensing is permissible
is determined by the absence of two-factor effects in the structural model, provided
the model is hierarchical.
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Illustration of collapsing in five dimensions

Suppose we have a five-variable array and wish to know whether we can safely
sum over the fifth variable. If u;5 = 0, the hierarchy principle implies that all
higher-order relatives are also absent. Theorem 2.5-1 tells us that we can examine
the four-dimensional array of sums and obtain valid estimates of all the u-terms
involving variable 1, such as u,,, 4,53, and u;,54, but we cannot obtain estimates
of the terms that do not involve variable 1, such as u,, u,3, and u,,,.

Suppose now that we wish to know whether we can safely sum over the fourth
and fifth variables. Referring to table 2.5-2, we find that u;, = 0 and u;5 = 0
imply that all the entries in columns B and D from the third line downward are
zero. Theorem 2.5-1 tells us that the terms remaining in columns B and D are
unchanged by collapsing over Varlables 4 and 5, but the other terms in the first
two rows are altered.

2.5.4 Irregular tables

In this chapter we have considered the log-linear model as a useful description
of data structure and discussed its interpretation and properties. With the exception
of a brief discussion of a simple triangular table in Section 2.3.6, we have dealt
only with complete tables. Most of the interpretation and properties we discuss
are also applicable for incomplete arrays, but difficulties can arise, and elaboration
of these is deferred to Chapter 5.

Similarly, we defer examples of rearranging or partitioning a seemingly complete
table to form an incomplete array to Chapters 3, 6, and 8. We also defer special
interpretations, such as symmetry and marginal homogeneity, to other chapters.

2.6 Exercises
1. If we tried to assess the predictive value PV + of a test from (2.2-44) without
knowing the proportion of diseased persons in the population, we would
obtain the pseudovalue
My

PPV + = .
myy + My

Show that this is only equal to the true predictive value when D/(1 — D) =
N{/N,.
2. Remembering that Py, is sensitivity and P,,, is specificity, show

(i) for a disease prevalence D of 50% and sensitivity equal to specificity,
we have PV+ = P, = Py;);

(i) more generally, the positive predictive value is equal to the sensitivity when
D(1 = Pyyy) = (1 = D)(1 — Pyyy);

(ii1) if the positive predictive value is equal to the sensitivity, then the negative
predictive value is equal to the specificity.

3. Take a square table with four categories per variable, which is described by
the log-linear model with u;, = 0. Fold the table along the diagonal to obtain

a triangular table with expected counts mj; > where
mijzmij+mji i#j,

my; = my i=1,2734.
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Consider the cross product «, defined as
s 7
My,
- ! 7
my s,

and show that a necessary and sufficient condition for o = 1 is

mg, My,

Mye My,

Hence show that for an independent two-dimensional structure to exhibit
independence when folded, we must have homogeneous margins, i.c., m;, =
m,; forall i
4. Supposeina 2 x 3 x 3 array the two-dimensional array {m .} is fixed.
(i) Show that by dedning

logit(j, k) = log L&,

My
the no three-factor effect model can be written

logit(j, k) = w + Wy, + Wi,

(i) How many degrees of freedom are associated with each w-term? Show
that the sum for the three terms differs from JK by (J — 1)(K — 1),and compare
this difference with the three-dimensional equivalent.

(Answer: The fully saturated three-dimensional model has IJK parameters.
The no three-factor effect model differs by (I — 1)(J — 1)(K — 1), which is
equal to the logit difference when I = 2.)

5. In three dimensions, what structural models permit evaluating each of the
three two-factor effects from the corresponding two-dimensional table of sums?
(Answer : Models with three-factor effect and two two-factor effects absent.)

6. Ina 2 x 3 x 4 x 5 array, write down the most highly parametrized model
with variable 4 collapsible with respect to u,5.

(Answer : Anymodel with two-factor effect involving variable 4 and higher-order
relatives absent will do. We keep most parameters if we choose u;, = 0.)

7. In four dimensions, if we have a hierarchical model structure and we know
U4 = Up; = 0, can we assess any of the other two-factor effects from the
corresponding two-way tables of sums?

(Answer: No. If we sum over variable 1 from {m, ;,} we can assess #,, and uy,,
but we have w, different from u,;. As w,; # 0 we cannot collapse any further.)

2.7 Appendix: The Geometry of a2 x 2 Table

In this appendix we discuss structure ina 2 x 2 table in terms of the geometry of
the tetrahedron. In particular, we derive the loci of (i) all points corresponding to
tables whose rows and columns are independent, (ii) all points corresponding to
tables with a given degree of association as measured by the cross-product ratio,
(iii) all points corresponding to tables with a fixed set of marginal totals, and (iv)all
points corresponding to tables exhibiting symmetry (or marginal homogeneity).
The geometric ideas discussed here allow us to visualize the properties of the
various models discussed in Section 2.2 and are used explicitly in Chapters 11 and
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12. The geometric model can also be used to provide a general proof of the con-
vergence of iterative procedures used throughout this book (see Fienberg [1970a]).

2.7.1 The tetrahedron of reference

Suppose we have only two cells with probabilities p; and p,, where p; + p; = 1.
Any value of the {p;} may be represented in two dimensions by a straight line join-
ing the point (0, 1) on the y-axis to the point (1,0) on the x-axis, as we show in
figure 2.7-1a.

When we add another cell, so that our probabilities are p,, p,, and p;, with
P + py + p; = 1, we can represent any set of the {p;} in three dimensions by the
surface that joins the points (1,0, 0), (0, 1,0), and (0,0, 1). This surface is a 2-flat
(see figure 2.7-1b) and becomes an isosceles triangle when we draw it in two
dimensions (see figure 2.7-1c).

Analogously, four cells can be represented in three dimensions by a tetrahedron
with vertices (1,0,0,0), (0, 1,0, 0), (0,9, 1,0), and (0, 0, 0, 1). These points, labeled
A, A,, A, and A, in figure 2.7-2, represent extreme 2 x 2 tables of probabilities
with probability 1 in one cell and 0 in the others:

1 0 0 1 0 0 0 0
A1 = AZ == A3 = A4 =
0 0 0 0 1 0 0 1

The general point P == (p,{, P;,., P21 P22) Within the tetrahedron corresponds to
the genera! 2 x 2 table.

1,0

P, +P+ Py =

(1,0,0) (0,0,1)

{0, 1)
{a)} {b)

{0,1,0)

P1+P2+P3=1

{1,0,0) (0,0,1)
{c)

Figure 2.7-1 Triangles of reference for two and three cells. a. Two cells represented by a line in two
dimensions. b. Three cells represented by a surface in three dimensions. ¢. Three cells represented by a
surface in two dimensions.




Structural Models for Counted Data 51

2.7.2  Surface of independence
We can now define a surface in the tetrahedron that gives the locus of all tables
exhibiting independence, i.e., those tables for which «, = 1. (See (2.2-13).)
Wetakeanypoint T ontheline A A, , defined by adistance t suchthat1 = ¢t = 0.
By taking weighted averages of A, and A,, we obtain

t 1—1
T= (2.7-1)
0 0

We can similarly choose a point T’ on A;A, so that

TI

i

(2.7-2)

Any point I on the line TT’ within the tetrahedron corresponds to a second num-
ber s such that 1 = s = 0, and this point is derived as a weighted average of T
and T’, so we have

st s(1 — 1) s

=5 | Q=91 —1) | 1—s

t 11

The row and column marginal totals are independent, as required. By allowing s
and t to take on all possible values between 0 and 1, we can find all points which
correspond to tables whose rows and columns are independent. The lines TT’
defined by different values of ¢ (0 £t £ 1) lie on this surface of independence.
Alternatively, we could define the point S on A; A; with coordinates (s, 0,1 ~ s,0)
and S’ on A,A, with coordinates (0,s,0, 1 — s). Any point I’ on SS” would also
have coordinates given by expression (2.7-3). Thus the lines SS’ defined by dif-
ferent values of s (0 = s = 1) also lie on the surface of independence. This surface
is completely determined by either family of lines (see figure 2.7-3). The surface of
independence is a section of a hyperbolic paraboloid, and its saddle point is at the
center of the tetrahedron, C = (4, 4,4, 4). The hyperbolic paraboloid is a doubly
ruled surface, since its surface contains two families of straight lines or ““rulings.”
The tables corresponding to points on any one of the lines TT” have the same
column margins (totals), while the tables corresponding to points on any one of
the lines SS” have the same row margins.
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A,=(0,0,0,1)

T (0,0,1,1-t)

A=(100,0)
T=(t,1-1,00) -'

A,=(0,1,0,0)

A3=(0,0,1,0)

Figure 2.7-2 Tetrahedron of reference. Reproduced from Fienberg and Gilbert [1970].

2.7.3  The surface of constant association
To derive the surface with constant cross-product ratio a5, we choose the point T
as before on the line joining A, to A,. On the line joining A; to A, we choose
another point T*, where

T* = (2.7-4)
r* 1 —*

and

t t*
PR PR

2.7-5)

Any point I* on the line TT™* is again a weighted average of T and T*, where the
weights are s and 1 — 5. Thus we have

st s(1 — 1) s
I*

I

(2.7-6)
(1 — s)e* 1 =901 —1% 1-s3

Expression (2.7-6) gives the cross-product ratio o, for any s such that 1 =2 s = 0.
We note that the column totals are t* + s(t — t*) and 1 — t* — s(t — ¢*) and so
vary with s. Thus the lines TT* which generate the surface of constant association
are not the loci of points corresponding to tables with constant column totals as
were the lines TT’. The surface of constant a intersects the surface of independence
along the two edges A, A, and A;A, of the tetrahedron (see figurc 2.7-4). We can
similarly generate another surface of constant a, by choosing points S on A, A,
and S* on A,A,. The surfaces of constant «, are sections of hyperboloids of one
sheet and are again doubly ruled surfaces.
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Agq

Az

Figure 2.7-3  Surface of independence defined by family of lines TT’. Reproduced from Fienberg and
Gilbert {1970].

We previously showed that «; was a function of u,,, and that by rearranging
the cells of the fourfold table we could derive «, as a function of u, and «, as a
function of u, . It follows that by choosing points on different pairs of edges of the
tetrahedron we can generate surfaces for constant values of «; and «, and so for
constant values of 4, and u,. The lines TT* and SS* are the intersections of the
surface of constant «; with surfaces of constant «, and «,, respectively.

2.7.4 Line of constant margins
A table with fixed margins r and 1 — ¢ for rows and s and ! — s for columns can
be written as the point P,, where

st + a (1—st—a t
P, = 2.7-7)
s(1—1t) —a 1-50-0+a 1—1

s 1—s

for any a that gives nonnegative probabilities. To determine the locus of P, we
find the limiting values of a that give zero cell entries:

a, = —st,
a, = (1 — s,
: (2.7-8)
a3 = S(l - t),
ag = —(1 = s)(1 — 1),
and obtain the corresponding points PV, P P®), and P™, for each of which
different conditions must be satisfied by s and 1. The coordinates and restrictions
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on the P? are

PY =(0,t,5,1—5—1) s+t =1,
P2 =(,0,s—1t1—5) s =t

(2.7-9)
P® =(s,t —501~—1) =

PY=G+t—1,1—-s51-10) s+t21.

If s and ¢ are such that the conditions for P and P® are satisfied, P!’ is a point
on the surface A,A;A, of the tetrahedron, and P® is a point on the surface
A,A;A,. We choose a point W on the line P®VP® corresponding to a distance w,
where 1 =2 w = 0, ie.,

wt (1 —wx t
W= (2.7-10)
s — wi 1 —s—1t+ wt 1—1t

Then we may easily verify that P(® and P are also on the line defined by W for
varying values of w. W lies on the line of constant margins, and we can confirm
that it goes through the surface of independence by puttingw = s.

Fienberg and Gilbert [1970] show that the line of constant margins is orthogonal
to A;A, and A,A; and is parallel to the line connecting the mid-points of A A,
and A,A;. Hence the line of constant margins is not perpendicular to the surface
of independence unless the marginal totals all equal 1/2.

When we have homogeneous margins we put s = ¢ and derive the locus of the
point W* (for varying w and 1), where

wt (1 —wi 3
W* =
(1 — wx I—2t+wt 1—1
t 11—t
Ag
A, A3
Az

Figure 2.7-4 Surface of constant «{e = 3) defined by family of lines TT*. Reproduced from Fienberg
and Gilbert [1970].
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All tables exhibiting marginal homogeneity correspond to points on the inter-
section of the tetrahedron with the plane through A, A, and the midpoint of A, A, .

For further details on geometric interpretations, we refer the reader to Fienberg
[1968] and Fienberg and Gilbert [1970].






3 Maximum Likelihood Estimates for Complete Tables

3.1 Introduction

Models that are linear in the logarithmic scale can describe the structure of multi-
dimensional contingency tables. In Chapter 2 we showed the advantages of such
models and described the uses of a special class of models, called hierarchical. In
this chapter we discuss how to get maximum likelihood estimates of the cell
counts expected for these hierarchical models.

Both the sampling scheme and the interrelationships between the variables
determine the structure of tables. So in Section 3.2 we briefly review the most
common forms of sampling that give rise to contingency tables; further features
of these sampling distributions are discussed in Chapter 13. In Section 3.3 we
derive, for each of these distributions, the sufficient statistics for estimating the
parameters of hierarchical models.

The sufficient statistics for log-linear models have two desirable attributes:
they are easy to obtain, and they readily yield the expected cell counts. The inter-
mediate step of computing the model parameters, which in turn are used to
obtain cell estimates, is unnecessary. For some models the cell estimates are explicit
closed functions of the sufficient statistics, while for others we need an iterative
procedure. In Section 3.4 we give simple rules for distinguishing between the two
kinds of models and for obtaining explicit closed-form estimates, when this is
possible. In Section 3.5 we describe an iterative procedure for obtaining estimates ;
this procedure is necessary when direct estimates do not exist and always yields
the desired cell estimates. The computing algorithm has a long history, and
examples of the use for which it was originally developed are given in Section 3.6.

Sometimes it is advantageous to rearrange the data before fitting a model. We
give examples in Section 3.7 of rearranging, relabeling, and partitioning. Finally,
in Section 3.8 we give rules and formulas for deriving degrees of freedom.

The ordering of sections follows the procedural steps taken when analyzing
data. Chapters 4 and 9 contain a full discussion of the next step, assessing goodness
of fit. In this chapter, to complete our examples we use either the Pearson chi
square statistic X2, defined as

(0 - Ey

2 _
X = E

all cells

where O stands for observed cell count and E for the maximum likelihood (ML)
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estimate in each cell, or minus twice the log-likelihood ratio

G*=-230 log(%)

270 log(%),

which is also distributed, under the null hypothesis, as a central y*> with appro-
priate degrees of freedom.

Although the scope of this chapter is confined to maximum likelihood estima-
tion (MLE) and complete tables, we generalize results to cover tables of any
dimension. In all sections the development is parallel, first the results for low-
dimensional tables, then the generalization. Generalization requires notation that
is not dependent on dimension. We now give reasons for choosing maximum
likelihood estimation, our definition of completeness, and a description of both
the individually subscripted and the generalized notation.

3.1.1 Maximum likelihood estimation

As he was for so many statistical concepts, R. A. Fisher was the first to study and
establish optimum properties of estimates obtained by maximizing the likelihood
function, using criteria such as consistency and efficiency (involving asymptotic
variances) in large samples. Neyman [1949] pointed out that these large-sample
criteria were also satisfied by other estimates. He defined a class of best asymp-
totically normal (BAN) estimates, all having the same asymptotic properties as
the maximum likelihood estimates. More recently Rao [1961, 1962] proposed a
concept of second-order efficiency for judging the performance of an estimate. He
showed that for a multinomial distribution, maximum likelihood estimation is the
only BAN method with an optimum second-order efficiency, under regularity
conditions of the sort satisfied in log-linear models.

Maximum likelihood estimates (MLEs) are thus satisfactory on theoretical
grounds. We show in this chapter that they also have some important practical
advantages:

1. The MLE:s for log-linear models are relatively easy to compute (having closed-
form expressions in some cases);

2. the MLEs satisfy certain intuitive marginal constraints not intrinsic to other
methods of estimation;

3. the method of maximum likelihood can be applied directly to multinomial
data with several observed cell values of zero, and almost always produces
nonzero estimates for such cells (an extremely valuable property in small
samples).

These properties notwithstanding, alternative methods of estimation are some-
times useful and perhaps more appropriate. In Chapter 10, we discuss other
estimates and show that most BAN estimates typically lead to the same conclu-
sions we obtain by maximizing the likelihood.

3.1.2 Completeness
A complete table has a nonzero probability of a count occurring in every cell of
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a rectangular parallelepiped. For example, in an I x J two-way array with
observed cell counts {x;;}, the standard test for ““association” in the body of the
table begins by obtaining expected cell estimates {/f1;;} under the model of inde-
pendence between the two variables. For this model,

_ (row total)(column total)

i grand total

_ (x; ) (x4 ;)

Xy

A

» (3.1-1)
where

Xi =inja x+j=inj) X4 =2xij-
o i i,j

The summations extend from 