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Preface

This is a book on data analysis with a specific focus on the practice of
predictive modeling. The term predictive modeling may stir associations such
as machine learning, pattern recognition, and data mining. Indeed, these as-
sociations are appropriate and the methods implied by these terms are an
integral piece of the predictive modeling process. But predictive modeling
encompasses much more than the tools and techniques for uncovering pat-
terns within data. The practice of predictive modeling defines the process of
developing a model in a way that we can understand and quantify the model’s
prediction accuracy on future, yet-to-be-seen data. The entire process is the
focus of this book.

We intend this work to be a practitioner’s guide to the predictive mod-
eling process and a place where one can come to learn about the approach
and to gain intuition about the many commonly used and modern, powerful
models. A host of statistical and mathematical techniques are discussed, but
our motivation in almost every case is to describe the techniques in a way
that helps develop intuition for its strengths and weaknesses instead of its
mathematical genesis and underpinnings. For the most part we avoid complex
equations, although there are a few necessary exceptions. For more theoret-
ical treatments of predictive modeling, we suggest Hastie et al. (2008) and
Bishop (2006). For this text, the reader should have some knowledge of basic
statistics, including variance, correlation, simple linear regression, and basic
hypothesis testing (e.g. p-values and test statistics).

The predictive modeling process is inherently hands-on. But during our re-
search for this work we found that many articles and texts prevent the reader
from reproducing the results either because the data were not freely avail-
able or because the software was inaccessible or only available for purchase.
Buckheit and Donoho (1995) provide a relevant critique of the traditional
scholarly veil:

An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual
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scholarship is the complete software development environment and the com-
plete set of instructions which generated the figures.

Therefore, it was our goal to be as hands-on as possible, enabling the readers
to reproduce the results within reasonable precision as well as being able to
naturally extend the predictive modeling approach to their own data. Fur-
thermore, we use the R language (Ihaka and Gentleman 1996; R Development
Core Team 2010), a freely accessible software for statistical and mathematical
calculations, for all stages of the predictive modeling process. Almost all of
the example data sets are available in R packages. The AppliedPredictiveMod-
eling R package contains many of the data sets used here as well as R scripts
to reproduce the analyses in each chapter.

We selected R as the computational engine of this text for several reasons.
First R is freely available (although commercial versions exist) for multiple op-
erating systems. Second, it is released under the General Public License (Free
Software Foundation June 2007), which outlines how the program can be re-
distributed. Under this structure anyone is free to examine and modify the
source code. Because of this open-source nature, dozens of predictive models
have already been implemented through freely available packages. Moreover
R contains extensive, powerful capabilities for the overall predictive modeling
process. Readers not familiar with R can find numerous tutorials online. We
also provide an introduction and start-up guide for R in the Appendix.

There are a few topics that we didn’t have time and/or space to add, most
notably: generalized additive models, ensembles of different models, network
models, time series models, and a few others.

There is also a web site for the book:

http://appliedpredictivemodeling.com/

that will contain relevant information.
This work would not have been possible without the help and men-

toring from many individuals, including: Walter H. Carter, Jim Garrett,
Chris Gennings, Paul Harms, Chris Keefer, William Klinger, Daijin Ko, Rich
Moore, David Neuhouser, David Potter, David Pyne, William Rayens, Arnold
Stromberg, and Thomas Vidmar. We would also like to thank Ross Quinlan
for his help with Cubist and C5.0 and vetting our descriptions of the two. At
Springer, we would like to thank Marc Strauss and Hannah Bracken as well as
the reviewers: Vini Bonato, Thomas Miller, Ross Quinlan, Eric Siegel, Stan
Young, and an anonymous reviewer. Lastly, we would like to thank our fam-
ilies for their support: Miranda Kuhn, Stefan Kuhn, Bobby Kuhn, Robert
Kuhn, Karen Kuhn, and Mary Ann Kuhn; Warren and Kay Johnson; and
Valerie and Truman Johnson.

Groton, CT, USA Max Kuhn
Saline, MI, USA Kjell Johnson
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Chapter 2

A Short Tour of the Predictive Modeling
Process

Before diving in to the formal components of model building, we present a
simple example that illustrates the broad concepts of model building. Specif-
ically, the following example demonstrates the concepts of data “spending,”
building candidate models, and selecting the optimal model.

2.1 Case Study: Predicting Fuel Economy

The fueleconomy.gov web site, run by the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy and the U.S. Environmen-
tal Protection Agency, lists different estimates of fuel economy for passenger
cars and trucks. For each vehicle, various characteristics are recorded such
as the engine displacement or number of cylinders. Along with these values,
laboratory measurements are made for the city and highway miles per gallon
(MPG) of the car.

In practice, we would build a model on as many vehicle characteristics as
possible in order to find the most predictive model. However, this introductory
illustration will focus high-level concepts of model building by using a single
predictor, engine displacement (the volume inside the engine cylinders), and
a single response, unadjusted highway MPG for 2010–2011 model year cars.

The first step in any model building process is to understand the data,
which can most easily be done through a graph. Since we have just one
predictor and one response, these data can be visualized with a scatter plot
(Fig. 2.1). This figure shows the relationship between engine displacement
and fuel economy. The “2010 model year” panel contains all the 2010 data
while the other panel shows the data only for new 2011 vehicles. Clearly,
as engine displacement increases, the fuel efficiency drops regardless of year.
The relationship is somewhat linear but does exhibit some curvature towards
the extreme ends of the displacement axis.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 2,
© Springer Science+Business Media New York 2013

19

fueleconomy.gov


20 2 A Short Tour of the Predictive Modeling Process

Engine Displacement

F
ue

l E
ffi

ci
en

cy
 (

M
P

G
)

20

30

40

50

60

70

2 4 6 8

2010 Model Year

2 4 6 8

2011 Model Year

Fig. 2.1: The relationship between engine displacement and fuel efficiency of
all 2010 model year vehicles and new 2011 car lines

If we had more than one predictor, we would need to further understand
characteristics of the predictors and the relationships among the predictors.
These characteristics may suggest important and necessary pre-processing
steps that must be taken prior to building a model (Chap. 3).

After first understanding the data, the next step is to build and evaluate
a model on the data. A standard approach is to take a random sample of
the data for model building and use the rest to understand model perfor-
mance. However, suppose we want to predict the MPG for a new car line.
In this situation, models can be created using the 2010 data (containing
1,107 vehicles) and tested on the 245 new 2011 cars. The common terminol-
ogy would be that the 2010 data are used as the model “training set” and the
2011 values are the “test” or “validation” set.

Now that we have defined the data used for model building and evaluation,
we should decide how to measure performance of the model. For regression
problems where we try to predict a numeric value, the residuals are important
sources of information. Residuals are computed as the observed value minus
the predicted value (i.e., yi − ŷi). When predicting numeric values, the root
mean squared error (RMSE) is commonly used to evaluate models. Described
in more detail in Chap. 7, RMSE is interpreted as how far, on average, the
residuals are from zero.

At this point, the modeler will try various techniques to mathematically
define the relationship between the predictor and outcome. To do this, the
training set is used to estimate the various values needed by the model equa-
tions. The test set will be used only when a few strong candidate models
have been finalized (repeatedly using the test set in the model build process
negates its utility as a final arbitrator of the models).

Suppose a linear regression model was created where the predicted MPG
is a basic slope and intercept model. Using the training data, we estimate the
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Fig. 2.2: Quality of fit diagnostics for the linear regression model. The training
set data and its associated predictions are used to understand how well the
model works

intercept to be 50.6 and the slope to be −4.5 MPG/liters using the method of
least squares (Sect. 6.2). The model fit is shown in Fig. 2.2 for the training set
data.1 The left-hand panel shows the training set data with a linear model fit
defined by the estimated slope and intercept. The right-hand panel plots the
observed and predicted MPG. These plots demonstrate that this model misses
some of the patterns in the data, such as under-predicting fuel efficiency when
the displacement is less than 2 L or above 6L.

When working with the training set, one must be careful not to simply
evaluate model performance using the same data used to build the model.
If we simply re-predict the training set data, there is the potential to pro-
duce overly optimistic estimates of how well the model works, especially if
the model is highly adaptable. An alternative approach for quantifying how
well the model operates is to use resampling, where different subversions of
the training data set are used to fit the model. Resampling techniques are
discussed in Chap. 4. For these data, we used a form of resampling called
10-fold cross-validation to estimate the model RMSE to be 4.6 MPG.

Looking at Fig. 2.2, it is conceivable that the problem might be solved
by introducing some nonlinearity in the model. There are many ways to
do this. The most basic approach is to supplement the previous linear re-
gression model with additional complexity. Adding a squared term for en-
gine displacement would mean estimating an additional slope parameter
associated with the square of the predictor. In doing this, the model equation
changes to

1 One of our graduate professors once said “the only way to be comfortable with your
data is to never look at it.”
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Fig. 2.3: Quality of fit diagnostics for the quadratic regression model (using
the training set)

efficiency = 63.2− 11.9× displacement + 0.94× displacement2

This is referred to as a quadratic model since it includes a squared term; the
model fit is shown in Fig. 2.3. Unquestionably, the addition of the quadratic
term improves the model fit. The RMSE is now estimated to be 4.2 MPG
using cross-validation. One issue with quadratic models is that they can per-
form poorly on the extremes of the predictor. In Fig. 2.3, there may be a
hint of this for the vehicles with very high displacement values. The model
appears to be bending upwards unrealistically. Predicting new vehicles with
large displacement values may produce significantly inaccurate results.

Chapters 6–8 discuss many other techniques for creating sophisticated
relationships between the predictors and outcome. One such approach is
the multivariate adaptive regression spline (MARS) model (Friedman 1991).
When used with a single predictor, MARS can fit separate linear regression
lines for different ranges of engine displacement. The slopes and intercepts
are estimated for this model, as well as the number and size of the separate
regions for the linear models. Unlike the linear regression models, this tech-
nique has a tuning parameter which cannot be directly estimated from the
data. There is no analytical equation that can be used to determine how many
segments should be used to model the data. While the MARS model has in-
ternal algorithms for making this determination, the user can try different
values and use resampling to determine the appropriate value. Once the value
is found, a final MARS model would be fit using all the training set data and
used for prediction.
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Fig. 2.4: The cross-validation profile for the MARS tuning parameter
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Fig. 2.5: Quality of fit diagnostics for the MARS model (using the training
set). The MARS model creates several linear regression fits with change points
at 2.3, 3.5, and 4.3 L

For a single predictor, MARS can allow for up to five model terms (similar
to the previous slopes and intercepts). Using cross-validation, we evaluated
four candidate values for this tuning parameter to create the resampling
profile which is shown in Fig. 2.4. The lowest RMSE value is associated with
four terms, although the scale of change in the RMSE values indicates that
there is some insensitivity to this tuning parameter. The RMSE associated
with the optimal model was 4.2 MPG. After fitting the final MARS model
with four terms, the training set fit is shown in Fig. 2.5 where several linear
segments were predicted.
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Fig. 2.6: The test set data and with model fits for two models

Based on these three models, the quadratic regression and MARS models
were evaluated on the test set. Figure 2.6 shows these results. Both models fit
very similarly. The test set RMSE values for the quadratic model was 4.72
MPG and the MARS model was 4.69 MPG. Based on this, either model
would be appropriate for the prediction of new car lines.

2.2 Themes

There are several aspects of the model building process that are worth dis-
cussing further, especially for those who are new to predictive modeling.

Data Splitting

Although discussed in the next chapter, how we allocate data to certain
tasks (e.g., model building, evaluating performance) is an important aspect
of modeling. For this example, the primary interest is to predict the fuel
economy of new vehicles, which is not the same population as the data used
to build the model. This means that, to some degree, we are testing how
well the model extrapolates to a different population. If we were interested in
predicting from the same population of vehicles (i.e., interpolation), taking
a simple random sample of the data would be more appropriate. How the
training and test sets are determined should reflect how the model will be
applied.
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How much data should be allocated to the training and test sets? It gener-
ally depends on the situation. If the pool of data is small, the data splitting
decisions can be critical. A small test would have limited utility as a judge
of performance. In this case, a sole reliance on resampling techniques (i.e.,
no test set) might be more effective. Large data sets reduce the criticality of
these decisions.

Predictor Data

This example has revolved around one of many predictors: the engine dis-
placement. The original data contain many other factors, such as the number
of cylinders, the type of transmission, and the manufacturer. An earnest at-
tempt to predict the fuel economy would examine as many predictors as
possible to improve performance. Using more predictors, it is likely that the
RMSE for the new model cars can be driven down further. Some investi-
gation into the data can also help. For example, none of the models were
effective at predicting fuel economy when the engine displacement was small.
Inclusion of predictors that target these types of vehicles would help improve
performance.

An aspect of modeling that was not discussed here was feature selection:
the process of determining the minimum set of relevant predictors needed by
the model. This common task is discussed in Chap. 19.

Estimating Performance

Before using the test set, two techniques were employed to determine the
effectiveness of the model. First, quantitative assessments of statistics (i.e.,
the RMSE) using resampling help the user understand how each technique
would perform on new data. The other tool was to create simple visualizations
of a model, such as plotting the observed and predicted values, to discover
areas of the data where the model does particularly good or bad. This type
of qualitative information is critical for improving models and is lost when
the model is gauged only on summary statistics.

Evaluating Several Models

For these data, three different models were evaluated. It is our experience
that some modeling practitioners have a favorite model that is relied on
indiscriminately. The “No Free Lunch”Theorem (Wolpert 1996) argues that,
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without having substantive information about the modeling problem, there
is no single model that will always do better than any other model. Because
of this, a strong case can be made to try a wide variety of techniques, then
determine which model to focus on. In our example, a simple plot of the
data shows that there is a nonlinear relationship between the outcome and
the predictor. Given this knowledge, we might exclude linear models from
consideration, but there is still a wide variety of techniques to evaluate. One
might say that “model X is always the best performing model” but, for these
data, a simple quadratic model is extremely competitive.

Model Selection

At some point in the process, a specific model must be chosen. This example
demonstrated two types of model selection. First, we chose some models over
others: the linear regression model did not fit well and was dropped. In this
case, we chose between models. There was also a second type of model selection
shown. For MARS, the tuning parameter was chosen using cross-validation.
This was also model selection where we decided on the type of MARS model
to use. In this case, we did the selection within different MARS models.

In either case, we relied on cross-validation and the test set to produce
quantitative assessments of the models to help us make the choice. Because
we focused on a single predictor, which will not often be the case, we also
made visualizations of the model fit to help inform us. At the end of the pro-
cess, the MARS and quadratic models appear to give equivalent performance.
However, knowing that the quadratic model might not do well for vehicles
with very large displacements, our intuition might tell us to favor the MARS
model. One goal of this book is to help the user gain intuition regarding the
strengths and weakness of different models to make informed decisions.

2.3 Summary

At face value, model building appears straightforward: pick a modeling tech-
nique, plug in data, and generate a prediction. While this approach will gener-
ate a predictive model, it will most likely not generate a reliable, trustworthy
model for predicting new samples. To get this type of model, we must first
understand the data and the objective of the modeling. Upon understand-
ing the data and objectives, we then pre-process and split the data. Only
after these steps do we finally proceed to building, evaluating, and selecting
models.



Chapter 3

Data Pre-processing

Data pre-processing techniques generally refer to the addition, deletion, or
transformation of training set data. Although this text is primarily concerned
with modeling techniques, data preparation can make or break a model’s
predictive ability. Different models have different sensitivities to the type of
predictors in the model; how the predictors enter the model is also important.
Transformations of the data to reduce the impact of data skewness or outliers
can lead to significant improvements in performance. Feature extraction, dis-
cussed in Sect. 3.3, is one empirical technique for creating surrogate variables
that are combinations of multiple predictors. Additionally, simpler strategies
such as removing predictors based on their lack of information content can
also be effective.

The need for data pre-processing is determined by the type of model being
used. Some procedures, such as tree-based models, are notably insensitive to
the characteristics of the predictor data. Others, like linear regression, are
not. In this chapter, a wide array of possible methodologies are discussed. For
modeling techniques described in subsequent chapters, we will also discuss
which, if any, pre-processing techniques can be useful.

This chapter outlines approaches to unsupervised data processing: the out-
come variable is not considered by the pre-processing techniques. In other
chapters, supervised methods, where the outcome is utilized to pre-process
the data, are also discussed. For example, partial least squares (PLS) models
are essentially supervised versions of principal component analysis (PCA).
We also describe strategies for removing predictors without considering how
those variables might be related to the outcome. Chapter 19 discusses tech-
niques for finding subsets of predictors that optimize the ability of the model
to predict the response.

How the predictors are encoded, called feature engineering, can have a
significant impact on model performance. For example, using combinations
of predictors can sometimes be more effective than using the individual values:
the ratio of two predictors may be more effective than using two independent
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predictors. Often the most effective encoding of the data is informed by the
modeler’s understanding of the problem and thus is not derived from any
mathematical technique.

There are usually several different methods for encoding predictor data.
For example, in Chaps. 12 through 15, an illustrative data set is described
for predicting the success of academic grants. One piece of information in
the data is the submission date of the grant. This date can be represented in
myriad ways:

• The number of days since a reference date
• Isolating the month, year, and day of the week as separate predictors
• The numeric day of the year (ignoring the calendar year)
• Whether the date was within the school year (as opposed to holiday or

summer sessions)

The “correct” feature engineering depends on several factors. First, some en-
codings may be optimal for some models and poor for others. For example,
tree-based models will partition the data into two or more bins. Theoretically,
if the month were important, the tree would split the numeric day of the year
accordingly. Also, in some models, multiple encodings of the same data may
cause problems. As will be illustrated several times in later chapters, some
models contain built-in feature selection, meaning that the model will only
include predictors that help maximize accuracy. In these cases, the model can
pick and choose which representation of the data is best.

The relationship between the predictor and the outcome is a second factor.
For example, if there were a seasonal component to these data, and it appears
that there is, then the numeric day of the year would be best. Also, if some
months showed higher success rates than others, then the encoding based on
the month is preferable.

As with many questions of statistics, the answer to “which feature engi-
neering methods are the best?” is that it depends. Specifically, it depends on
the model being used and the true relationship with the outcome. A broad
discussion regarding how the data were encoded for our analyses is given in
Sect. 12.1.

Prior to delving into specific techniques, an illustrative data set that is
used throughout the chapter is introduced.

3.1 Case Study: Cell Segmentation in High-Content
Screening

Medical researchers often seek to understand the effects of medicines or dis-
eases on the size, shape, development status, and number of cells in a living
organism or plant. To do this, experts can examine the target serum or tis-
sue under a microscope and manually assess the desired cell characteristics.
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This work is tedious and requires expert knowledge of the cell type and
characteristics.

Another way to measure the cell characteristics from these kinds of samples
is by using high-content screening (Giuliano et al. 1997). Briefly, a sample
is first dyed with a substance that will bind to the desired characteristic of
the cells. For example, if a researcher wants to quantify the size or shape of
cell nuclei, then a stain can be applied to the sample that attaches to the
cells’ DNA. The cells can be fixed in a substance that preserves the nature
state of the cell. The sample is then interrogated by an instrument (such as a
confocal microscope) where the dye deflects light and the detectors quantify
the degree of scattering for that specific wavelength. If multiple characteristics
of the cells are desired, then multiple dyes and multiple light frequencies can
be used simultaneously. The light scattering measurements are then processed
through imaging software to quantify the desired cell characteristics.

Using an automated, high-throughput approach to assess samples’ cell
characteristics can sometimes produce misleading results. Hill et al. (2007)
describe a research project that used high-content screening to measure sev-
eral aspects of cells. They observed that the imaging software used to deter-
mine the location and shape of the cell had difficulty segmenting cells (i.e.,
defining cells’ boundaries). Consider Fig. 3.1, which depicts several example
cells from this study. In these images, the bright green boundaries identify
the cell nucleus, while the blue boundaries define the cell perimeter. Clearly
some cells are well segmented, while others are not. Cells that are poorly
segmented appear to be damaged, when in reality they are not. If cell size,
shape, and/or quantity are the endpoints of interest in a study, then it is
important that the instrument and imaging software can correctly segment
cells.

For this research, Hill et al. (2007) assembled a data set consisting of 2,019
cells. Of these cells, 1,300 were judged to be poorly segmented (PS) and 719
were well segmented (WS); 1,009 cells were reserved for the training set.1

For a particular type of cell, the researchers used different stains that
would be visible to different optical channels. Channel one was associated
with the cell body and can be used to determine the cell perimeter, area,
and other qualities. Channel two interrogated the cell nucleus by staining the
nuclear DNA (shown in blue shading in Fig. 3.1). Channels three and four
were stained to detect actin and tubulin, respectively. These are two types
of filaments that transverse the cells in scaffolds and are part of the cell’s
cytoskeleton. For all cells, 116 features (e.g., cell area, spot fiber count) were
measured and were used to predict the segmentation quality of cells.2

1 The individual data points can be found on the journal web site or in the R Applied-
PredictiveModeling package. See the Computing section at the end of this chapter.
2 The original authors included several “status” features that are binary representa-
tions of other features in the data set. We excluded these from the analysis in this
chapter.



30 3 Data Pre-processing

Fig. 3.1: An image showing cell segmentation from Hill et al. (2007). The red
boxes [panels (d) and (e)] show poorly segmented cells while the cells in the
blue boxes are examples of proper segmentation

This chapter will use the training set samples identified by the original
authors to demonstrate data pre-processing techniques.

3.2 Data Transformations for Individual Predictors

Transformations of predictor variables may be needed for several reasons.
Some modeling techniques may have strict requirements, such as the predic-
tors having a common scale. In other cases, creating a good model may be
difficult due to specific characteristics of the data (e.g., outliers). Here we
discuss centering, scaling, and skewness transformations.

Centering and Scaling

The most straightforward and common data transformation is to center scale
the predictor variables. To center a predictor variable, the average predictor
value is subtracted from all the values. As a result of centering, the predictor
has a zero mean. Similarly, to scale the data, each value of the predictor
variable is divided by its standard deviation. Scaling the data coerce the
values to have a common standard deviation of one. These manipulations are
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generally used to improve the numerical stability of some calculations. Some
models, such as PLS (Sects. 6.3 and 12.4), benefit from the predictors being
on a common scale. The only real downside to these transformations is a loss
of interpretability of the individual values since the data are no longer in the
original units.

Transformations to Resolve Skewness

Another common reason for transformations is to remove distributional skew-
ness. An un-skewed distribution is one that is roughly symmetric. This means
that the probability of falling on either side of the distribution’s mean is
roughly equal. A right-skewed distribution has a large number of points on
the left side of the distribution (smaller values) than on the right side (larger
values). For example, the cell segmentation data contain a predictor that
measures the standard deviation of the intensity of the pixels in the actin
filaments. In the natural units, the data exhibit a strong right skewness;
there is a greater concentration of data points at relatively small values and
small number of large values. Figure 3.2 shows a histogram of the data in the
natural units (left panel).

A general rule of thumb to consider is that skewed data whose ratio of the
highest value to the lowest value is greater than 20 have significant skewness.
Also, the skewness statistic can be used as a diagnostic. If the predictor
distribution is roughly symmetric, the skewness values will be close to zero. As
the distribution becomes more right skewed, the skewness statistic becomes
larger. Similarly, as the distribution becomes more left skewed, the value
becomes negative. The formula for the sample skewness statistic is

skewness =

∑
(xi − x)3

(n− 1)v3/2

where v =

∑
(xi − x)2

(n− 1)
,

where x is the predictor variable, n is the number of values, and x is the
sample mean of the predictor. For the actin filament data shown in Fig. 3.2,
the skewness statistic was calculated to be 2.39 while the ratio to the largest
and smallest value was 870.

Replacing the data with the log, square root, or inverse may help to remove
the skew. For the data in Fig. 3.2, the right panel shows the distribution of the
data once a log transformation has been applied. After the transformation,
the distribution is not entirely symmetric but these data are better behaved
than when they were in the natural units.



32 3 Data Pre-processing

Natural Units

C
ou

nt

0

100

200

300

400

0 200 400 600 800
Log Units

0

50

100

150

200

250

0 2 4 6

Fig. 3.2: Left: a histogram of the standard deviation of the intensity of the
pixels in actin filaments. This predictor has a strong right skewness with a
concentration of points with low values. For this variable, the ratio of the
smallest to largest value is 870 and a skewness value of 2.39. Right: the
same data after a log transformation. The skewness value for the logged data
was −0.4

Alternatively, statistical methods can be used to empirically identify an
appropriate transformation. Box and Cox (1964) propose a family of trans-
formations3 that are indexed by a parameter, denoted as λ:

x∗ =

{
xλ−1

λ if λ �= 0

log(x) if λ = 0

In addition to the log transformation, this family can identify square trans-
formation (λ = 2), square root (λ = 0.5), inverse (λ = −1), and others
in-between. Using the training data, λ can be estimated. Box and Cox (1964)
show how to use maximum likelihood estimation to determine the transfor-
mation parameter. This procedure would be applied independently to each
predictor data that contain values greater than zero.

For the segmentation data, 69 predictors were not transformed due to
zero or negative values and 3 predictors had λ estimates within 1 ± 0.02,
so no transformation was applied. The remaining 44 predictors had val-
ues estimated between −2 and 2. For example, the predictor data shown
in Fig. 3.2 have an estimated transformation value of 0.1, indicating the log

3 Some readers familiar with Box and Cox (1964) will know that this transformation
was developed for outcome data while Box and Tidwell (1962) describe similar meth-
ods for transforming a set of predictors in a linear model. Our experience is that the
Box–Cox transformation is more straightforward, less prone to numerical issues, and
just as effective for transforming individual predictor variables.
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Fig. 3.3: Left: a histogram of the cell perimeter predictor. Right: the same
data after a Box–Cox transformation with λ estimated to be −1.1

transformation is reasonable. Another predictor, the estimated cell perimeter,
had a λ estimate of −1.1. For these data, the original and transformed values
are shown in Fig. 3.3.

3.3 Data Transformations for Multiple Predictors

These transformations act on groups of predictors, typically the entire set
under consideration. Of primary importance are methods to resolve outliers
and reduce the dimension of the data.

Transformations to Resolve Outliers

We will generally define outliers as samples that are exceptionally far from
the mainstream of the data. Under certain assumptions, there are formal sta-
tistical definitions of an outlier. Even with a thorough understanding of the
data, outliers can be hard to define. However, we can often identify an un-
usual value by looking at a figure. When one or more samples are suspected
to be outliers, the first step is to make sure that the values are scientifically
valid (e.g., positive blood pressure) and that no data recording errors have
occurred. Great care should be taken not to hastily remove or change val-
ues, especially if the sample size is small. With small sample sizes, apparent
outliers might be a result of a skewed distribution where there are not yet
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enough data to see the skewness. Also, the outlying data may be an indica-
tion of a special part of the population under study that is just starting to be
sampled. Depending on how the data were collected, a“cluster”of valid points
that reside outside the mainstream of the data might belong to a different
population than the other samples.4

There are several predictive models that are resistant to outliers. Tree-
based classification models create splits of the training data and the predic-
tion equation is a set of logical statements such as “if predictor A is greater
than X , predict the class to be Y ,” so the outlier does not usually have
an exceptional influence on the model. Also, support vector machines for
classification generally disregard a portion of the training set samples when
creating a prediction equation. The excluded samples may be far away from
the decision boundary and outside of the data mainstream.

If a model is considered to be sensitive to outliers, one data transformation
that can minimize the problem is the spatial sign (Serneels et al. 2006). This
procedure projects the predictor values onto a multidimensional sphere. This
has the effect of making all the samples the same distance from the center of
the sphere. Mathematically, each sample is divided by its squared norm:

x∗
ij =

xij
∑P

j=1 x
2
ij

.

Since the denominator is intended to measure the squared distance to the
center of the predictor’s distribution, it is important to center and scale the
predictor data prior to using this transformation. Note that, unlike centering
or scaling, this manipulation of the predictors transforms them as a group.
Removing predictor variables after applying the spatial sign transformation
may be problematic.

Figure 3.4 shows another data set with two correlated predictors. In these
data, at least eight samples cluster away from the majority of other data.
These data points are likely a valid, but poorly sampled subpopulation of the
data. The modeler would investigate why these points are different; perhaps
they represent a group of interest, such as highly profitable customers. The
spatial sign transformation is shown on the right-hand panel where all the
data points are projected to be a common distance away from the origin.
The outliers still reside in the Northwest section of the distribution but are
contracted inwards. This mitigates the effect of the samples on model training.

4 Section 20.5 discusses model extrapolation—where the model predicts samples out-
side of the mainstream of the training data. Another concept is the applicability
domain of the model, which is the population of samples that can be effectively pre-
dicted by the model.
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Right: When the original data are transformed, the results bring the outliers
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Data Reduction and Feature Extraction

Data reduction techniques are another class of predictor transformations.
These methods reduce the data by generating a smaller set of predictors that
seek to capture a majority of the information in the original variables. In
this way, fewer variables can be used that provide reasonable fidelity to the
original data. For most data reduction techniques, the new predictors are
functions of the original predictors; therefore, all the original predictors are
still needed to create the surrogate variables. This class of methods is often
called signal extraction or feature extraction techniques.

PCA is a commonly used data reduction technique (Abdi and Williams
2010). This method seeks to find linear combinations of the predictors, known
as principal components (PCs), which capture the most possible variance. The
first PC is defined as the linear combination of the predictors that captures
the most variability of all possible linear combinations. Then, subsequent PCs
are derived such that these linear combinations capture the most remaining
variability while also being uncorrelated with all previous PCs. Mathemati-
cally, the jth PC can be written as:

PCj = (aj1 ×Predictor 1) + (aj2 × Predictor 2) + · · ·+ (ajP × Predictor P ).

P is the number of predictors. The coefficients aj1, aj2,. . . , ajP are called com-
ponent weights and help us understand which predictors are most important
to each PC.
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Fig. 3.5: An example of the principal component transformation for the cell
segmentation data. The shapes and colors indicate which cells were poorly
segmented or well segmented

To illustrate PCA, consider the data in Fig. 3.5. This set contains a subset
of two correlated predictors, average pixel intensity of channel 1 and entropy
of intensity values in the cell (a measure of cell shape), and a categorical
response. Given the high correlation between the predictors (0.93), we could
infer that average pixel intensity and entropy of intensity values measure
redundant information about the cells and that either predictor or a linear
combination of these predictors could be used in place of the original pre-
dictors. In this example, two PCs can be derived (right plot in Fig. 3.5); this
transformation represents a rotation of the data about the axis of greatest
variation. The first PC summarizes 97% of the original variability, while the
second summarizes 3%. Hence, it is reasonable to use only the first PC for
modeling since it accounts for the majority of information in the data.

The primary advantage of PCA, and the reason that it has retained its
popularity as a data reduction method, is that it creates components that are
uncorrelated. As mentioned earlier in this chapter, some predictive models
prefer predictors to be uncorrelated (or at least low correlation) in order
to find solutions and to improve the model’s numerical stability. PCA pre-
processing creates new predictors with desirable characteristics for these kinds
of models.

While PCA delivers new predictors with desirable characteristics, it must
be used with understanding and care. Notably, practitioners must under-
stand that PCA seeks predictor-set variation without regard to any further
understanding of the predictors (i.e., measurement scales or distributions)
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or to knowledge of the modeling objectives (i.e., response variable). Hence,
without proper guidance, PCA can generate components that summarize
characteristics of the data that are irrelevant to the underlying structure of
the data and also to the ultimate modeling objective.

Because PCA seeks linear combinations of predictors that maximize
variability, it will naturally first be drawn to summarizing predictors that
have more variation. If the original predictors are on measurement scales that
differ in orders of magnitude [consider demographic predictors such as income
level (in dollars) and height (in feet)], then the first few components will fo-
cus on summarizing the higher magnitude predictors (e.g., income), while
latter components will summarize lower variance predictors (e.g., height).
This means that the PC weights will be larger for the higher variability pre-
dictors on the first few components. In addition, it means that PCA will be
focusing its efforts on identifying the data structure based on measurement
scales rather than based on the important relationships within the data for
the current problem.

For most data sets, predictors are on different scales. In addition, predic-
tors may have skewed distributions. Hence, to help PCA avoid summarizing
distributional differences and predictor scale information, it is best to first
transform skewed predictors (Sect. 3.2) and then center and scale the predic-
tors prior to performing PCA. Centering and scaling enables PCA to find the
underlying relationships in the data without being influenced by the original
measurement scales.

The second caveat of PCA is that it does not consider the modeling objec-
tive or response variable when summarizing variability. Because PCA is blind
to the response, it is an unsupervised technique. If the predictive relationship
between the predictors and response is not connected to the predictors’ vari-
ability, then the derived PCs will not provide a suitable relationship with the
response. In this case, a supervised technique, like PLS (Sects. 6.3 and 12.4),
will derive components while simultaneously considering the corresponding
response.

Once we have decided on the appropriate transformations of the predictor
variables, we can then apply PCA. For data sets with many predictor vari-
ables, we must decide how many components to retain. A heuristic approach
for determining the number of components to retain is to create a scree plot,
which contains the ordered component number (x-axis) and the amount of
summarized variability (y-axis) (Fig. 3.6). For most data sets, the first few
PCs will summarize a majority of the variability, and the plot will show a
steep descent; variation will then taper off for the remaining components.
Generally, the component number prior to the tapering off of variation is the
maximal component that is retained. In Fig. 3.6, the variation tapers off at
component 5. Using this rule of thumb, four PCs would be retained. In an
automated model building process, the optimal number of components can
be determined by cross-validation (see Sect. 4.4).
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Fig. 3.6: A “scree plot” where the percentage of the total variance explained
by each component is shown

Visually examining the principal components is a critical step for assessing
data quality and gaining intuition for the problem. To do this, the first few
principal components can be plotted against each other and the plot symbols
can be colored by relevant characteristics, such as the class labels. If PCA
has captured a sufficient amount of information in the data, this type of plot
can demonstrate clusters of samples or outliers that may prompt a closer ex-
amination of the individual data points. For classification problems, the PCA
plot can show potential separation of classes (if there is a separation). This
can set the initial expectations of the modeler; if there is little clustering of
the classes, the plot of the principal component values will show a significant
overlap of the points for each class. Care should be taken when plotting the
components; the scale of the components tend to become smaller as they
account for less and less variation in the data. For example, in Fig. 3.5, the
values of component one range from −3.7 to 3.4 while the component two
ranges from −1 to 1.1. If the axes are displayed on separate scales, there is
the potential to over-interpret any patterns that might be seen for compo-
nents that account for small amounts of variation. See Geladi, Manley, and
Lestander (2003) for other examples of this issue.

PCA was applied to the entire set of segmentation data predictors. As
previously demonstrated, there are some predictors with significant skewness.
Since skewed predictors can have an impact on PCA, there were 44 variables
that were transformed using the Box–Cox procedure previously described.
After the transformations, the predictors were centered and scaled prior to
conducting PCA.

Figure 3.6 shows the percentage of the total variation in the data which was
accounted for by each component. Notice that the percentages decrease as
more components are added. The first three components accounted for 14%,
12.6%, and 9.4% of the total variance, respectively. After four components,
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Fig. 3.7: A plot of the first three principal components for the cell segmenta-
tion data, colored by cell type

there is a sharp decline in the percentage of variation being explained, al-
though these four components describe only 42.4% of the information in the
data set.

Figure 3.7 shows a scatter plot matrix for the first three principal compo-
nents. The points are colored by class (segmentation quality). Since the per-
centages of variation explained are not large for the first three components, it
is important not to over-interpret the resulting image. From this plot, there
appears to be some separation between the classes when plotting the first and
second components. However, the distribution of the well-segmented cells is
roughly contained within the distribution of the poorly identified cells. One
conclusion to infer from this image is that the cell types are not easily sepa-
rated. However, this does not mean that other models, especially those which
can accommodate highly nonlinear relationships, will reach the same conclu-
sion. Also, while there are some cells in the data that are not completely
within the data mainstream, there are no blatant outliers.

Another exploratory use of PCA is characterizing which predictors are as-
sociated with each component. Recall that each component is a linear com-
bination of the predictors and the coefficient for each predictor is called the
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Fig. 3.8: A plot of the loadings of the first three principal components for the
cell segmentation data, colored by optical channel. Recall that channel one
was associated with the cell body, channel two with the cell nucleus, channel
three with actin, and channel four with tubulin

loading. Loadings close to zero indicate that the predictor variable did not
contribute much to that component. Figure 3.8 shows the loadings for the
first three components in the cell segmentation data. Each point corresponds
to a predictor variable and is colored by the optical channel used in the ex-
periment. For the first principal component, the loadings for the first channel
(associated with the cell body) are on the extremes. This indicates that cell
body characteristics have the largest effect on the first principal component
and by extension the predictor values. Also note that the majority of the load-
ings for the third channel (measuring actin and tubulin) are closer to zero
for the first component. Conversely, the third principal component is mostly
associated with the third channel while the cell body channel plays a minor
role here. Even though the cell body measurements account for more varia-
tion in the data, this does not imply that these variables will be associated
with predicting the segmentation quality.
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3.4 Dealing with Missing Values

In many cases, some predictors have no values for a given sample. These
missing data could be structurally missing, such as the number of children a
man has given birth to. In other cases, the value cannot or was not determined
at the time of model building.

It is important to understand why the values are missing. First and fore-
most, it is important to know if the pattern of missing data is related to
the outcome. This is called “informative missingness” since the missing data
pattern is instructional on its own. Informative missingness can induce sig-
nificant bias in the model. In the introductory chapter, a short example was
given regarding predicting a patient’s response to a drug. Suppose the drug
was extremely ineffective or had significant side effects. The patient may be
likely to miss doctor visits or to drop out of the study. In this case, there
clearly is a relationship between the probability of missing values and the
treatment. Customer ratings can often have informative missingness; people
are more compelled to rate products when they have strong opinions (good
or bad). In this case, the data are more likely to be polarized by having few
values in the middle of the rating scale. In the Netflix Prize machine learning
competition to predict which movies people will like based on their previous
ratings, the “Napoleon Dynamite Effect” confounded many of the contestants
because people who did rate the movie Napoleon Dynamite either loved or
hated it.

Missing data should not be confused with censored data where the exact
value is missing but something is known about its value. For example, a
company that rents movie disks by mail may use the duration that a customer
has kept a movie in their models. If a customer has not yet returned a movie,
we do not know the actual time span, only that it is as least as long as the
current duration. Censored data can also be common when using laboratory
measurements. Some assays cannot measure below their limit of detection.
In such cases, we know that the value is smaller than the limit but was not
precisely measured.

Are censored data treated differently than missing data? When building
traditional statistical models focused on interpretation or inference, the cen-
soring is usually taken into account in a formal manner by making assump-
tions about the censoring mechanism. For predictive models, it is more com-
mon to treat these data as simple missing data or use the censored value as
the observed value. For example, when a sample has a value below the limit
of detection, the actual limit can be used in place of the real value. For this
situation, it is also common to use a random number between zero and the
limit of detection.

In our experience, missing values are more often related to predictor vari-
ables than the sample. Because of this, amount of missing data may be con-
centrated in a subset of predictors rather than occurring randomly across all
the predictors. In some cases, the percentage of missing data is substantial
enough to remove this predictor from subsequent modeling activities.
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There are cases where the missing values might be concentrated in specific
samples. For large data sets, removal of samples based on missing values is
not a problem, assuming that the missingness is not informative. In smaller
data sets, there is a steep price in removing samples; some of the alternative
approaches described below may be more appropriate.

If we do not remove the missing data, there are two general approaches.
First, a few predictive models, especially tree-based techniques, can specifi-
cally account for missing data. These are discussed further in Chap. 8.

Alternatively, missing data can be imputed. In this case, we can use in-
formation in the training set predictors to, in essence, estimate the values
of other predictors. This amounts to a predictive model within a predictive
model.

Imputation has been extensively studied in the statistical literature, but
in the context of generating correct hypothesis testing procedures in the pres-
ence of missing data. This is a separate problem; for predictive models we
are concerned about accuracy of the predictions rather than making valid
inferences. There is a small literature on imputation for predictive models.
Saar-Tsechansky and Provost (2007b) examine the issue of missing values
and delve into how specific models deal with the issue. Jerez et al. (2010)
also look at a wide variety of imputation methods for a specific data set.

As previously mentioned, imputation is just another layer of modeling
where we try to estimate values of the predictor variables based on other
predictor variables. The most relevant scheme for accomplishing this is to
use the training set to built an imputation model for each predictor in the
data set. Prior to model training or the prediction of new samples, missing
values are filled in using imputation. Note that this extra layer of models adds
uncertainty. If we are using resampling to select tuning parameter values or
to estimate performance, the imputation should be incorporated within the
resampling. This will increase the computational time for building models,
but it will also provide honest estimates of model performance.

If the number of predictors affected by missing values is small, an ex-
ploratory analysis of the relationships between the predictors is a good idea.
For example, visualizations or methods like PCA can be used to determine if
there are strong relationships between the predictors. If a variable with miss-
ing values is highly correlated with another predictor that has few missing
values, a focused model can often be effective for imputation (see the example
below).

One popular technique for imputation is a K-nearest neighbor model.
A new sample is imputed by finding the samples in the training set “closest”
to it and averages these nearby points to fill in the value. Troyanskaya et al.
(2001) examine this approach for high-dimensional data with small sample
sizes. One advantage of this approach is that the imputed data are confined
to be within the range of the training set values. One disadvantage is that the
entire training set is required every time a missing value needs to be imputed.
Also, the number of neighbors is a tuning parameter, as is the method for de-
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Fig. 3.9: After simulating 50 missing test set values at random for the cell
perimeter data, two different imputation models were built with the training
set and applied to the missing test set values. This plot shows the centered
and scaled values before and after imputation

termining“closeness”of two points. However, Troyanskaya et al. (2001) found
the nearest neighbor approach to be fairly robust to the tuning parameters,
as well as the amount of missing data.

In Sect. 3.2, a predictor that measures the cell perimeter was used to illus-
trate skewness (see Fig. 3.3). As an illustration, a 5-nearest neighbor model
was created using the training set values. In the test set, missing values were
randomly induced in 50 test set cell perimeter values and then imputed us-
ing the model. Figure 3.9 shows a scatter plot of the samples set to missing.
The left-hand panel shows the results of the 5-nearest neighbor approach.
This imputation model does a good job predicting the absent samples; the
correlation between the real and imputed values is 0.91.

Alternatively, a simpler approach can be used to impute the cell perime-
ter. The cell fiber length, another predictor associated with cell size, has a
very high correlation (0.99) with the cell perimeter data. We can create a
simple linear regression model using these data to predict the missing values.
These results are in the right-hand panel of Fig. 3.9. For this approach, the
correlation between the real and imputed values is 0.85.

3.5 Removing Predictors

There are potential advantages to removing predictors prior to modeling.
First, fewer predictors means decreased computational time and complexity.
Second, if two predictors are highly correlated, this implies that they are
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measuring the same underlying information. Removing one should not com-
promise the performance of the model and might lead to a more parsimonious
and interpretable model. Third, some models can be crippled by predictors
with degenerate distributions. In these cases, there can be a significant im-
provement in model performance and/or stability without the problematic
variables.

Consider a predictor variable that has a single unique value; we refer to
this type of data as a zero variance predictor. For some models, such an un-
informative variable may have little effect on the calculations. A tree-based
model (Sects. 8.1 and 14.1) is impervious to this type of predictor since it
would never be used in a split. However, a model such as linear regression
would find these data problematic and is likely to cause an error in the com-
putations. In either case, these data have no information and can easily be
discarded. Similarly, some predictors might have only a handful of unique
values that occur with very low frequencies. These “near-zero variance pre-
dictors”may have a single value for the vast majority of the samples.

Consider a text mining application where keyword counts are collected
for a large set of documents. After filtering out commonly used “stop words,”
such as the and of, predictor variables can be created for interesting keywords.
Suppose a keyword occurs in a small group of documents but is otherwise
unused. A hypothetical distribution of such a word count distribution is given
in Table 3.1. Of the 531 documents that were searched, there were only four
unique counts. The majority of the documents (523) do not have the key-
word; while six documents have two occurrences, one document has three
and another has six occurrences. Since 98% of the data have values of zero,
a minority of documents might have an undue influence on the model. Also,
if any resampling is used (Sect. 4.4), there is a strong possibility that one of
the resampled data sets (Sect. 4.4) will only contain documents without the
keyword, so this predictor would only have one unique value.

How can the user diagnose this mode of problematic data? First, the num-
ber of unique points in the data must be small relative to the number of
samples. In the document example, there were 531 documents in the data
set, but only four unique values, so the percentage of unique values is 0.8%.
A small percentage of unique values is, in itself, not a cause for concern as
many “dummy variables” (Sect. 3.6 below) generated from categorical pre-
dictors would fit this description. The problem occurs when the frequency
of these unique values is severely disproportionate. The ratio of the most
common frequency to the second most common reflects the imbalance in
the frequencies. Most of the documents in the data set (n = 523) do not
have the keyword. After this, the most frequent case is documents with two
occurrences (n = 6). The ratio of these frequencies, 523/6 = 87, is rather
high and is indicative of a strong imbalance.

Given this, a rule of thumb for detecting near-zero variance predictors is:
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Table 3.1: A predictor describing the number of documents where a keyword
occurred

#Documents

Occurrences: 0 523
Occurrences: 2 6
Occurrences: 3 1
Occurrences: 6 1

• The fraction of unique values over the sample size is low (say 10%).
• The ratio of the frequency of the most prevalent value to the frequency of

the second most prevalent value is large (say around 20).

If both of these criteria are true and the model in question is susceptible to
this type of predictor, it may be advantageous to remove the variable from
the model.

Between-Predictor Correlations

Collinearity is the technical term for the situation where a pair of pre-
dictor variables have a substantial correlation with each other. It is also
possible to have relationships between multiple predictors at once (called
multicollinearity).

For example, the cell segmentation data have a number of predictors that
reflect the size of the cell. There are measurements of the cell perimeter,
width, and length as well as other, more complex calculations. There are also
features that measure cell morphology (i.e., shape), such as the roughness of
the cell.

Figure 3.10 shows a correlation matrix of the training set. Each pairwise
correlation is computed from the training data and colored according to its
magnitude. This visualization is symmetric: the top and bottom diagonals
show identical information. Dark blue colors indicate strong positive corre-
lations, dark red is used for strong negative correlations, and white implies
no empirical relationship between the predictors. In this figure, the predictor
variables have been grouped using a clustering technique (Everitt et al. 2011)
so that collinear groups of predictors are adjacent to one another. Looking
along the diagonal, there are blocks of strong positive correlations that indi-
cate “clusters” of collinearity. Near the center of the diagonal is a large block
of predictors from the first channel. These predictors are related to cell size,
such as the width and length of the cell.

When the data set consists of too many predictors to examine visually,
techniques such as PCA can be used to characterize the magnitude of the
problem. For example, if the first principal component accounts for a large
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Fig. 3.10: A visualization of the cell segmentation correlation matrix. The
order of the variables is based on a clustering algorithm

percentage of the variance, this implies that there is at least one group of pre-
dictors that represent the same information. For example, Fig. 3.6 indicates
that the first 3–4 components have relative contributions to the total vari-
ance. This would indicate that there are at least 3–4 significant relationships
between the predictors. The PCA loadings can be used to understand which
predictors are associated with each component to tease out this relationships.

In general, there are good reasons to avoid data with highly correlated
predictors. First, redundant predictors frequently add more complexity to the
model than information they provide to the model. In situations where ob-
taining the predictor data is costly (either in time or money), fewer variables
is obviously better. While this argument is mostly philosophical, there are
mathematical disadvantages to having correlated predictor data. Using highly
correlated predictors in techniques like linear regression can result in highly
unstable models, numerical errors, and degraded predictive performance.
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Classical regression analysis has several tools to diagnose multicollinearity
for linear regression. Since collinear predictors can impact the variance of
parameter estimates in this model, a statistic called the variance inflation
factor (VIF) can be used to identify predictors that are impacted (Myers
1994). Beyond linear regression, this method may be inadequate for several
reasons: it was developed for linear models, it requires more samples than
predictor variables, and, while it does identify collinear predictors, it does
not determine which should be removed to resolve the problem.

A less theoretical, more heuristic approach to dealing with this issue is
to remove the minimum number of predictors to ensure that all pairwise
correlations are below a certain threshold. While this method only identify
collinearities in two dimensions, it can have a significantly positive effect on
the performance of some models.

The algorithm is as follows:

1. Calculate the correlation matrix of the predictors.
2. Determine the two predictors associated with the largest absolute pairwise

correlation (call them predictors A and B).
3. Determine the average correlation between A and the other variables.

Do the same for predictor B.
4. If A has a larger average correlation, remove it; otherwise, remove predic-

tor B.
5. Repeat Steps 2–4 until no absolute correlations are above the threshold.

The idea is to first remove the predictors that have the most correlated rela-
tionships.

Suppose we wanted to use a model that is particularly sensitive to between-
predictor correlations, we might apply a threshold of 0.75. This means that we
want to eliminate the minimum number of predictors to achieve all pairwise
correlations less than 0.75. For the segmentation data, this algorithm would
suggest removing 43 predictors.

As previously mentioned, feature extraction methods (e.g., principal com-
ponents) are another technique for mitigating the effect of strong correlations
between predictors. However, these techniques make the connection between
the predictors and the outcome more complex. Additionally, since signal ex-
traction methods are usually unsupervised, there is no guarantee that the
resulting surrogate predictors have any relationship with the outcome.

3.6 Adding Predictors

When a predictor is categorical, such as gender or race, it is common to
decompose the predictor into a set of more specific variables. For example,
the credit scoring data discussed in Sect. 4.5 contains a predictor based on
how much money was in the applicant’s savings account. These data were
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Table 3.2: A categorical predictor with five distinct groups from the credit
scoring case study. The values are the amount in the savings account (in
Deutsche Marks)

Dummy variables
Value n <100 100–500 500–1,000 >1, 000 Unknown

<100 DM 103 1 0 0 0 0
100–500 DM 603 0 1 0 0 0
500–1,000 DM 48 0 0 1 0 0
>1,000 DM 63 0 0 0 1 0
Unknown 183 0 0 0 0 1

encoded into several groups, including a group for“unknown.”Table 3.2 shows
the values of this predictor and the number of applicants falling into each bin.

To use these data in models, the categories are re-encoded into smaller bits
of information called “dummy variables.” Usually, each category get its own
dummy variable that is a zero/one indicator for that group. Table 3.2 shows
the possible dummy variables for these data. Only four dummy variables are
needed here; once you know the value of four of the dummy variables, the fifth
can be inferred. However, the decision to include all of the dummy variables
can depend on the choice of the model. Models that include an intercept term,
such as simple linear regression (Sect. 6.2), would have numerical issues if
each dummy variable was included in the model. The reason is that, for each
sample, these variables all add up to one and this would provide the same
information as the intercept. If the model is insensitive to this type of issue,
using the complete set of dummy variables would help improve interpretation
of the model.

Many of the models described in this text automatically generate highly
complex, nonlinear relationships between the predictors and the outcome.
More simplistic models do not unless the user manually specifies which pre-
dictors should be nonlinear and in what way. For example, logistic regression
is a well-known classification model that, by default, generates linear classi-
fication boundaries. Figure 3.11 shows another illustrative example with two
predictors and two classes. The left-hand panel shows the basic logistic re-
gression classification boundaries when the predictors are added in the usual
(linear) manner. The right-hand panel shows a logistic model with the basic
linear terms and an additional term with the square of predictor B. Since
logistic regression is a well-characterized and stable model, using this model
with some additional nonlinear terms may be preferable to highly complex
techniques (which may overfit).

Additionally, Forina et al. (2009) demonstrate one technique for augment-
ing the prediction data with addition of complex combinations of the data.
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Fig. 3.11: Classification boundaries from two logistic regression models. The
left panel has linear terms for the two predictors while the right panel has an
additional quadratic term for predictor B. This model is discussed in more
detail in Chap. 12

For classification models, they calculate the “class centroids,” which are the
centers of the predictor data for each class. Then for each predictor, the dis-
tance to each class centroid can be calculated and these distances can be
added to the model.

3.7 Binning Predictors

While there are recommended techniques for pre-processing data, there are
also methods to avoid. One common approach to simplifying a data set is
to take a numeric predictor and pre-categorize or “bin” it into two or more
groups prior to data analysis. For example, Bone et al. (1992) define a set
of clinical symptoms to diagnose Systemic Inflammatory Response Syndrome
(SIRS). SIRS can occur after a person is subjected to some sort of physical
trauma (e.g., car crash). A simplified version of the clinical criteria for SIRS
are:

• Temperature less than 36 ◦C or greater than 38 ◦C.
• Heart rate greater than 90 beats per minute.
• Respiratory rate greater than 20 breaths per minute.
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• White blood cell count less than 4,000 cells/mm3 or greater than 12,000
cells/mm3.

A person who shows two or more of these criteria would be diagnosed as
having SIRS.

The perceived advantages to this approach are:

• The ability to make seemingly simple statements, either for sake of having
a simple decision rule (as in the SIRS example) or the belief that there
will be a simple interpretation of the model.

• The modeler does not have to know the exact relationship between the
predictors and the outcome.

• A higher response rate for survey questions where the choices are binned.
For example, asking the date of a person’s last tetanus shot is likely to
have fewer responses than asking for a range (e.g., in the last 2 years, in
the last 4 years).

There are many issues with the manual binning of continuous data. First,
there can be a significant loss of performance in the model. Many of the mod-
eling techniques discussed in this text are very good at determining complex
relationships between the predictors and outcomes. Manually binning the
predictors limits this potential. Second, there is a loss of precision in the pre-
dictions when the predictors are categorized. For example, if there are two
binned predictors, only four combinations exist in the data set, so only sim-
ple predictions can be made. Third, research has shown (Austin and Brunner
2004) that categorizing predictors can lead to a high rate of false positives
(i.e., noise predictors determined to be informative).

Unfortunately, the predictive models that are most powerful are usually
the least interpretable. The bottom line is that the perceived improvement in
interpretability gained by manual categorization is usually offset by a signifi-
cant loss in performance. Since this book is concerned with predictive models
(where interpretation is not the primary goal), loss of performance should
be avoided. In fact, in some cases it may be unethical to arbitrarily catego-
rize predictors. For example, there is a great deal of research on predicting
aspects of disease (e.g., response to treatment, screening patients). If a med-
ical diagnostic is used for such important determinations, patients desire the
most accurate prediction possible. As long as complex models are properly
validated, it may be improper to use a model that is built for interpretation
rather than predictive performance.

Note that the argument here is related to the manual categorization of
predictors prior to model building. There are several models, such as clas-
sification/regression trees and multivariate adaptive regression splines, that
estimate cut points in the process of model building. The difference between
these methodologies and manual binning is that the models use all the predic-
tors to derive bins based on a single objective (such as maximizing accuracy).
They evaluate many variables simultaneously and are usually based on sta-
tistically sound methodologies.
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3.8 Computing

This section uses data from the AppliedPredictiveModeling package and
functions from the caret, corrplot, e1071, and lattice packages.

There are two locations where relevant R code can be found:

• The chapters directory of the AppliedPredictiveModeling package contains
specific code to reproduce the specific models used in the chapter. This is
intended to allow the reader to see exactly how the models used here were
created.

• Many chapters in this book contain sections at the end of the chapter that
detail how of the computations can be performed in R more generally. For
example, there are individual functions that correspond to the data pre-
processing methods shown in this chapter. While the computing section
provides these details, the individual functions might not be used directly
in practice. For example, when using the train function, the pre-processing
steps are specified in a single argument and the individual functions are
not utilized. These sections do relate to the models created in each chapter,
but as discussion points for the functions.

As such, the Computing sections in each chapter explains how to generally
do the computations while the code in the chapters directory of the Ap-
pliedPredictiveModeling package is the best source for the calculations for the
specific models in each chapter.

As discussed in Appendix B, there are a few useful R functions that can be
used to find existing functions or classes of interest. The function apropos will
search any loaded R packages for a given term. For example, to find functions
for creating a confusion matrix within the currently loaded packages:

> apropos("confusion")

[1] "confusionMatrix" "confusionMatrix.train"

To find such a function in any package, the RSiteSearch function can help.
Running the command:

> RSiteSearch("confusion", restrict = "functions")

will search online to find matches and will open a web browser to display the
results.

The raw segmentation data set is contained in the AppliedPredictiveMod-
eling package.5 To load the data set into R:

> library(AppliedPredictiveModeling)

> data(segmentationOriginal)

There were fields that identified each cell (called Cell) and a factor vector
that indicated which cells were well segmented (Class). The variable Case

5 A preprocessed version of these data can also be found in the caret package and is
used in later chapters.
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indicated which cells were originally used for the training and test sets. The
analysis in this chapter focused on the training set samples, so the data are
filtered for these cells:

> segData <- subset(segmentationOriginal, Case == "Train")

The Class and Cell fields will be saved into separate vectors, then removed
from the main object:

> cellID <- segData$Cell

> class <- segData$Class

> case <- segData$Case

> # Now remove the columns

> segData <- segData[, -(1:3)]

The original data contained several “status” columns which were binary ver-
sions of the predictors. To remove these, we find the column names containing
"Status" and remove them:

> statusColNum <- grep("Status", names(segData))

> statusColNum

[1] 2 4 9 10 11 12 14 16 20 21 22 26 27 28 30 32 34
[18] 36 38 40 43 44 46 48 51 52 55 56 59 60 63 64 68 69
[35] 70 72 73 74 76 78 80 82 84 86 88 92 93 94 97 98 103
[52] 104 105 106 110 111 112 114

> segData <- segData[, -statusColNum]

Transformations

As previously discussed, some features exhibited significantly skewness. The
skewness function in the e1071 package calculates the sample skewness statis-
tic for each predictor:

> library(e1071)

> # For one predictor:

> skewness(segData$AngleCh1)

[1] -0.0243
> # Since all the predictors are numeric columns, the apply function can

> # be used to compute the skewness across columns.

> skewValues <- apply(segData, 2, skewness)

> head(skewValues)

AngleCh1 AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4
-0.0243 3.5251 2.9592 0.8482 2.2023 1.9005

Using these values as a guide, the variables can be prioritized for visualizing
the distribution. The basic R function hist or the histogram function in the
lattice can be used to assess the shape of the distribution.

To determine which type of transformation should be used, the MASS
package contains the boxcox function. Although this function estimates λ, it
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does not create the transformed variable(s). A caret function, BoxCoxTrans,
can find the appropriate transformation and apply them to the new data:

> library(caret)

> Ch1AreaTrans <- BoxCoxTrans(segData$AreaCh1)

> Ch1AreaTrans

Box-Cox Transformation

1009 data points used to estimate Lambda

Input data summary:
Min. 1st Qu. Median Mean 3rd Qu. Max.
150 194 256 325 376 2190

Largest/Smallest: 14.6
Sample Skewness: 3.53

Estimated Lambda: -0.9
> # The original data

> head(segData$AreaCh1)

[1] 819 431 298 256 258 358
> # After transformation

> predict(Ch1AreaTrans, head(segData$AreaCh1))

[1] 1.1085 1.1064 1.1045 1.1036 1.1036 1.1055
> (819^(-.9) - 1)/(-.9)

[1] 1.1085

Another caret function, preProcess, applies this transformation to a set of
predictors. This function is discussed below. The base R function prcomp can
be used for PCA. In the code below, the data are centered and scaled prior
to PCA.

> pcaObject <- prcomp(segData,

+ center = TRUE, scale. = TRUE)

> # Calculate the cumulative percentage of variance which each component

> # accounts for.

> percentVariance <- pcaObject$sd^2/sum(pcaObject$sd^2)*100

> percentVariance[1:3]

[1] 20.9 17.0 11.9

The transformed values are stored in pcaObject as a sub-object called x:

> head(pcaObject$x[, 1:5])

PC1 PC2 PC3 PC4 PC5
2 5.099 4.551 -0.0335 -2.64 1.278
3 -0.255 1.198 -1.0206 -3.73 0.999
4 1.293 -1.864 -1.2511 -2.41 -1.491
12 -1.465 -1.566 0.4696 -3.39 -0.330
15 -0.876 -1.279 -1.3379 -3.52 0.394
16 -0.862 -0.329 -0.1555 -2.21 1.473
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The another sub-object called rotation stores the variable loadings, where
rows correspond to predictor variables and columns are associated with the
components:

> head(pcaObject$rotation[, 1:3])

PC1 PC2 PC3
AngleCh1 0.00121 -0.0128 0.00682
AreaCh1 0.22917 0.1606 0.08981
AvgIntenCh1 -0.10271 0.1797 0.06770
AvgIntenCh2 -0.15483 0.1638 0.07353
AvgIntenCh3 -0.05804 0.1120 -0.18547
AvgIntenCh4 -0.11734 0.2104 -0.10506

The caret package class spatialSign contains functionality for the spatial sign
transformation. Although we will not apply this technique to these data, the
basic syntax would be spatialSign(segData).

Also, these data do not have missing values for imputation. To impute
missing values, the impute package has a function, impute.knn, that uses K-
nearest neighbors to estimate the missing data. The previously mentioned
preProcess function applies imputation methods based on K-nearest neigh-
bors or bagged trees.

To administer a series of transformations to multiple data sets, the caret
class preProcess has the ability to transform, center, scale, or impute values,
as well as apply the spatial sign transformation and feature extraction. The
function calculates the required quantities for the transformation. After call-
ing the preProcess function, the predict method applies the results to a set
of data. For example, to Box–Cox transform, center, and scale the data, then
execute PCA for signal extraction, the syntax would be:

> trans <- preProcess(segData,

+ method = c("BoxCox", "center", "scale", "pca"))

> trans

Call:
preProcess.default(x = segData, method = c("BoxCox", "center",
"scale", "pca"))

Created from 1009 samples and 58 variables
Pre-processing: Box-Cox transformation, centered, scaled,
principal component signal extraction

Lambda estimates for Box-Cox transformation:
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-2.00 -0.50 -0.10 0.05 0.30 2.00 11

PCA needed 19 components to capture 95 percent of the variance
> # Apply the transformations:

> transformed <- predict(trans, segData)

> # These values are different than the previous PCA components since

> # they were transformed prior to PCA

> head(transformed[, 1:5])
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PC1 PC2 PC3 PC4 PC5
2 1.568 6.291 -0.333 -3.06 -1.342
3 -0.666 2.046 -1.442 -4.70 -1.742
4 3.750 -0.392 -0.669 -4.02 1.793
12 0.377 -2.190 1.438 -5.33 -0.407
15 1.064 -1.465 -0.990 -5.63 -0.865
16 -0.380 0.217 0.439 -2.07 -1.936

The order in which the possible transformation are applied is transformation,
centering, scaling, imputation, feature extraction, and then spatial sign.

Many of the modeling functions have options to center and scale prior
to modeling. For example, when using the train function (discussed in later
chapters), there is an option to use preProcess prior to modeling within the
resampling iterations.

Filtering

To filter for near-zero variance predictors, the caret package function nearZero

Var will return the column numbers of any predictors that fulfill the conditions
outlined in Sect. 3.5. For the cell segmentation data, there are no problematic
predictors:

> nearZeroVar(segData)

integer(0)
> # When predictors should be removed, a vector of integers is

> # returned that indicates which columns should be removed.

Similarly, to filter on between-predictor correlations, the cor function can
calculate the correlations between predictor variables:

> correlations <- cor(segData)

> dim(correlations)

[1] 58 58
> correlations[1:4, 1:4]

AngleCh1 AreaCh1 AvgIntenCh1 AvgIntenCh2
AngleCh1 1.00000 -0.00263 -0.0430 -0.0194
AreaCh1 -0.00263 1.00000 -0.0253 -0.1533
AvgIntenCh1 -0.04301 -0.02530 1.0000 0.5252
AvgIntenCh2 -0.01945 -0.15330 0.5252 1.0000

To visually examine the correlation structure of the data, the corrplot pack-
age contains an excellent function of the same name. The function has many
options including one that will reorder the variables in a way that reveals
clusters of highly correlated predictors. The following command was used to
produce Fig. 3.10:

> library(corrplot)

> corrplot(correlations, order = "hclust")
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The size and color of the points are associated with the strength of correlation
between two predictor variables.

To filter based on correlations, the findCorrelation function will apply the
algorithm in Sect. 3.5. For a given threshold of pairwise correlations, the func-
tion returns column numbers denoting the predictors that are recommended
for deletion:

> highCorr <- findCorrelation(correlations, cutoff = .75)

> length(highCorr)

[1] 33
> head(highCorr)

[1] 23 40 43 36 7 15
> filteredSegData <- segData[, -highCorr]

There are also several functions in the subselect package that can accomplish
the same goal.

Creating Dummy Variables

Several methods exist for creating dummy variables based on a particular
model. Section 4.9 discusses different methods for specifying how the predic-
tors enter into the model. One approach, the formula method, allows great
flexibility to create the model function. Using formulas in model functions pa-
rameterizes the predictors such that not all categories have dummy variables.
This approach will be shown in greater detail for linear regression.

As previously mentioned, there are occasions when a complete set of
dummy variables is useful. For example, the splits in a tree-based model
are more interpretable when the dummy variables encode all the information
for that predictor. We recommend using the full set if dummy variables when
working with tree-based models.

To illustrate the code, we will take a subset of the cars data set in the
caret package. For 2005, Kelly Blue Book resale data for 804 GM cars were
collected (Kuiper 2008). The object of the model was to predict the price of
the car based on known characteristics. This demonstration will focus on the
price, mileage, and car type (e.g., sedan) for a subset of vehicles:

> head(carSubset)

Price Mileage Type
214 19981 24323 sedan
299 21757 1853 sedan
460 15047 12305 sedan
728 15327 4318 sedan
162 20628 20770 sedan
718 16714 26328 sedan

> levels(carSubset$Type)

[1] "convertible" "coupe" "hatchback" "sedan" "wagon"
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To model the price as a function of mileage and type of car, we can use
the function dummyVars to determine encodings for the predictors. Suppose
our first model assumes that the price can be modeled as a simple additive
function of the mileage and type:

> simpleMod <- dummyVars(~Mileage + Type,

+ data = carSubset,

+ ## Remove the variable name from the

+ ## column name

+ levelsOnly = TRUE)

> simpleMod

Dummy Variable Object

Formula: ~Mileage + Type
2 variables, 1 factors
Factor variable names will be removed

To generate the dummy variables for the training set or any new samples,
the predict method is used in conjunction with the dummyVars object:

> predict(simpleMod, head(carSubset))

Mileage convertible coupe hatchback sedan wagon
214 24323 0 0 0 1 0
299 1853 0 0 0 1 0
460 12305 0 0 0 1 0
728 4318 0 0 0 1 0
162 20770 0 0 0 1 0
718 26328 0 0 0 1 0

The type field was expanded into five variables for five factor levels. The
model is simple because it assumes that effect of the mileage is the same for
every type of car. To fit a more advance model, we could assume that there
is a joint effect of mileage and car type. This type of effect is referred to as
an interaction. In the model formula, a colon between factors indicates that
an interaction should be generated. For these data, this adds another five
predictors to the data frame:

> withInteraction <- dummyVars(~Mileage + Type + Mileage:Type,

+ data = carSubset,

+ levelsOnly = TRUE)

> withInteraction

Dummy Variable Object

Formula: ~Mileage + Type + Mileage:Type
2 variables, 1 factors
Factor variable names will be removed

> predict(withInteraction, head(carSubset))

Mileage convertible coupe hatchback sedan wagon Mileage:convertible
214 24323 0 0 0 1 0 0
299 1853 0 0 0 1 0 0
460 12305 0 0 0 1 0 0
728 4318 0 0 0 1 0 0
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162 20770 0 0 0 1 0 0
718 26328 0 0 0 1 0 0

Mileage:coupe Mileage:hatchback Mileage:sedan Mileage:wagon
214 0 0 24323 0
299 0 0 1853 0
460 0 0 12305 0
728 0 0 4318 0
162 0 0 20770 0
718 0 0 26328 0

Exercises

3.1. The UC Irvine Machine Learning Repository6 contains a data set related
to glass identification. The data consist of 214 glass samples labeled as one
of seven class categories. There are nine predictors, including the refractive
index and percentages of eight elements: Na, Mg, Al, Si, K, Ca, Ba, and Fe.

The data can be accessed via:

> library(mlbench)

> data(Glass)

> str(Glass)

'data.frame': 214 obs. of 10 variables:
$ RI : num 1.52 1.52 1.52 1.52 1.52 ...
$ Na : num 13.6 13.9 13.5 13.2 13.3 ...
$ Mg : num 4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
$ Al : num 1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
$ Si : num 71.8 72.7 73 72.6 73.1 ...
$ K : num 0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
$ Ca : num 8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
$ Ba : num 0 0 0 0 0 0 0 0 0 0 ...
$ Fe : num 0 0 0 0 0 0.26 0 0 0 0.11 ...
$ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...

(a) Using visualizations, explore the predictor variables to understand their
distributions as well as the relationships between predictors.

(b) Do there appear to be any outliers in the data? Are any predictors skewed?
(c) Are there any relevant transformations of one or more predictors that

might improve the classification model?

3.2. The soybean data can also be found at the UC Irvine Machine Learning
Repository. Data were collected to predict disease in 683 soybeans. The 35
predictors are mostly categorical and include information on the environmen-
tal conditions (e.g., temperature, precipitation) and plant conditions (e.g., left
spots, mold growth). The outcome labels consist of 19 distinct classes.

6 http://archive.ics.uci.edu/ml/index.html.

http://archive.ics.uci.edu/ml/index.html
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The data can be loaded via:

> library(mlbench)

> data(Soybean)

> ## See ?Soybean for details

(a) Investigate the frequency distributions for the categorical predictors. Are
any of the distributions degenerate in the ways discussed earlier in this
chapter?

(b) Roughly 18% of the data are missing. Are there particular predictors that
are more likely to be missing? Is the pattern of missing data related to
the classes?

(c) Develop a strategy for handling missing data, either by eliminating
predictors or imputation.

3.3. Chapter 5 introduces Quantitative Structure-Activity Relationship
(QSAR) modeling where the characteristics of a chemical compound are used
to predict other chemical properties. The caret package contains a QSAR
data set from Mente and Lombardo (2005). Here, the ability of a chemical
to permeate the blood-brain barrier was experimentally determined for 208
compounds. 134 descriptors were measured for each compound.

(a) Start R and use these commands to load the data:

> library(caret)

> data(BloodBrain)

> # use ?BloodBrain to see more details

The numeric outcome is contained in the vector logBBB while the predic-
tors are in the data frame bbbDescr.

(b) Do any of the individual predictors have degenerate distributions?
(c) Generally speaking, are there strong relationships between the predic-

tor data? If so, how could correlations in the predictor set be reduced?
Does this have a dramatic effect on the number of predictors available for
modeling?



Chapter 4

Over-Fitting and Model Tuning

Many modern classification and regression models are highly adaptable; they
are capable of modeling complex relationships. However, they can very easily
overemphasize patterns that are not reproducible. Without a methodological
approach to evaluating models, the modeler will not know about the problem
until the next set of samples are predicted.

Over-fitting has been discussed in the fields of forecasting (Clark 2004),
medical research (Simon et al. 2003; Steyerberg 2010), chemometrics (Gowen
et al. 2010; Hawkins 2004; Defernez and Kemsley 1997), meteorology (Hsieh
and Tang 1998), finance (Dwyer 2005), and marital research (Heyman and
Slep 2001) to name a few. These references illustrate that over-fitting is a
concern for any predictive model regardless of field of research. The aim of this
chapter is to explain and illustrate key principles of laying a foundation onto
which trustworthy models can be built and subsequently used for prediction.
More specifically, we will describe strategies that enable us to have confidence
that the model we build will predict new samples with a similar degree of
accuracy on the set of data for which the model was evaluated. Without this
confidence, the model’s predictions are useless.

On a practical note, all model building efforts are constrained by the exist-
ing data. For many problems, the data may have a limited number of samples,
may be of less-than-desirable quality, and/or may be unrepresentative of fu-
ture samples. While there are ways to build predictive models on small data
sets, which we will describe in this chapter, we will assume that data quality
is sufficient and that it is representative of the entire sample population.

Working under these assumptions, we must use the data at hand to find
the best predictive model. Almost all predictive modeling techniques have
tuning parameters that enable the model to flex to find the structure in
the data. Hence, we must use the existing data to identify settings for the
model’s parameters that yield the best and most realistic predictive perfor-
mance (known as model tuning). Traditionally, this has been achieved by
splitting the existing data into training and test sets. The training set is used
to build and tune the model and the test set is used to estimate the model’s
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predictive performance. Modern approaches to model building split the data
into multiple training and testing sets, which have been shown to often find
more optimal tuning parameters and give a more accurate representation of
the model’s predictive performance.

To begin this chapter we will illustrate the concept of over-fitting through
an easily visualized example. To avoid over-fitting, we propose a general
model building approach that encompasses model tuning and model evalua-
tion with the ultimate goal of finding the reproducible structure in the data.
This approach entails splitting existing data into distinct sets for the purposes
of tuning model parameters and evaluating model performance. The choice
of data splitting method depends on characteristics of the existing data such
as its size and structure. In Sect. 4.4, we define and explain the most versa-
tile data splitting techniques and explore the advantages and disadvantages
of each. Finally, we end the chapter with a computing section that provides
code for implementing the general model building strategy.

4.1 The Problem of Over-Fitting

There now exist many techniques that can learn the structure of a set of data
so well that when the model is applied to the data on which the model was
built, it correctly predicts every sample. In addition to learning the general
patterns in the data, the model has also learned the characteristics of each
sample’s unique noise. This type of model is said to be over-fit and will usually
have poor accuracy when predicting a new sample. To illustrate over-fitting
and other concepts in this chapter, consider the simple classification example
in Fig. 4.1 that has two predictor variables (i.e., independent variables). These
data contain 208 samples that are designated either as “Class 1” or “Class 2.”
The classes are fairly balanced; there are 111 samples in the first class and 97
in the second. Furthermore, there is a significant overlap between the classes
which is often the case for most applied modeling problems.

One objective for a data set such as this would be to develop a model to
classify new samples. In this two-dimensional example, the classification mod-
els or rules can be represented by boundary lines. Figure 4.2 shows example
class boundaries from two distinct classification models. The lines envelop the
area where each model predicts the data to be the second class (blue squares).
The left-hand panel (“Model #1”) shows a boundary that is complex and at-
tempts to encircle every possible data point. The pattern in this panel is not
likely to generalize to new data. The right-hand panel shows an alternative
model fit where the boundary is fairly smooth and does not overextend itself
to correctly classify every data point in the training set.

To gauge how well the model is classifying samples, one might use the
training set. In doing so, the estimated error rate for the model in the left-
hand panel would be overly optimistic. Estimating the utility of a model
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Fig. 4.1: An example of classification data that is used throughout the chapter
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Fig. 4.2: An example of a training set with two classes and two predictors.
The panels show two different classification models and their associated class
boundaries
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by re-predicting the training set is referred to apparent performance of the
model (e.g., the apparent error rate). In two dimensions, it is not difficult to
visualize that one model is over-fitting, but most modeling problems are in
much higher dimensions. In these situations, it is very important to have a
tool for characterizing how much a model is over-fitting the training data.

4.2 Model Tuning

Many models have important parameters which cannot be directly estimated
from the data. For example, in the K-nearest neighbor classification model,
a new sample is predicted based on the K-closest data points in the training
set. An illustration of a 5-nearest neighbor model is shown in Fig. 4.3. Here,
two new samples (denoted by the solid dot and filled triangle) are being
predicted. One sample (•) is near a mixture of the two classes; three of the
five neighbors indicate that the sample should be predicted as the first class.
The other sample (�) has all five points indicating the second class should
be predicted. The question remains as to how many neighbors should be
used. A choice of too few neighbors may over-fit the individual points of the
training set while too many neighbors may not be sensitive enough to yield
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Fig. 4.3: The K-nearest neighbor classification model. Two new points, sym-
bolized by filled triangle and solid dot, are predicted using the training set
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reasonable performance. This type of model parameter is referred to as a
tuning parameter because there is no analytical formula available to calculate
an appropriate value.

Several models discussed in this text have at least one tuning parameter.
Since many of these parameters control the complexity of the model, poor
choices for the values can result in over-fitting. Figure 4.2 illustrates this
point. A support vector machine (Sect. 13.4) was used to generate the class
boundaries in each panel. One of the tuning parameters for this model sets
the price for misclassified samples in the training set and is generally referred
to as the “cost” parameter. When the cost is large, the model will go to great
lengths to correctly label every point (as in the left panel) while smaller
values produce models that are not as aggressive. The class boundary in
the left panel was created by manually setting the cost parameter to a very
high number. In the right panel, the cost value was determined using cross-
validation (Sect. 4.4).

There are different approaches to searching for the best parameters. A gen-
eral approach that can be applied to almost any model is to define a set of
candidate values, generate reliable estimates of model utility across the can-
didates values, then choose the optimal settings. A flowchart of this process
is shown in Fig. 4.4.

Once a candidate set of parameter values has been selected, then we must
obtain trustworthy estimates of model performance. The performance on the
hold-out samples is then aggregated into a performance profile which is then
used to determine the final tuning parameters. We then build a final model
with all of the training data using the selected tuning parameters. Using
the K-nearest neighbor example to illustrate the procedure of Fig. 4.4, the
candidate set might include all odd values of K between 1 and 9 (odd values
are used in the two-class situation to avoid ties). The training data would then
be resampled and evaluated many times for each tuning parameter value.
These results would then be aggregated to find the optimal value of K.

The procedure defined in Fig. 4.4 uses a set of candidate models that are
defined by the tuning parameters. Other approaches such as genetic algo-
rithms (Mitchell 1998) or simplex search methods (Olsson and Nelson 1975)
can also find optimal tuning parameters. These procedures algorithmically
determine appropriate values for tuning parameters and iterate until they ar-
rive at parameter settings with optimal performance. These techniques tend
to evaluate a large number of candidate models and can be superior to a
defined set of tuning parameters when model performance can be efficiently
calculated. Cohen et al. (2005) provides a comparison of search routines for
tuning a support vector machine model.

A more difficult problem is obtaining trustworthy estimates of model per-
formance for these candidate models. As previously discussed, the apparent
error rate can produce extremely optimistic performance estimates. A bet-
ter approach is to test the model on samples that were not used for training.
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Define a set of candidate
values for tuning

parameter(s)

For each candidate set:

Resample
Data

Fit
Model

Predict
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Aggregate the resampling
into a performance profile

Determine the final
tuning parameters

Using the final tuning
parameters, refit the
model with the entire

training set

Fig. 4.4: A schematic of the parameter tuning process. An example of a
candidate set of tuning parameter values for K-nearest neighbors might be
odd numbers between 1 and 9. For each of these values, the data would be
resampled multiple times to assess model performance for each value

Evaluating the model on a test set is the obvious choice, but, to get reasonable
precision of the performance values, the size of the test set may need to be
large.

An alternate approach to evaluating a model on a single test set is to
resample the training set. This process uses several modified versions of the
training set to build multiple models and then uses statistical methods to
provide honest estimates of model performance (i.e., not overly optimistic).
Section 4.4 illustrates several resampling techniques, and Sect. 4.6 discusses
approaches to choose the final parameters using the resampling results.
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4.3 Data Splitting

Now that we have outlined the general procedure for finding optimal tuning
parameters, we turn to discussing the heart of the process: data splitting.
A few of the common steps in model building are:

• Pre-processing the predictor data
• Estimating model parameters
• Selecting predictors for the model
• Evaluating model performance
• Fine tuning class prediction rules (via ROC curves, etc.)

Given a fixed amount of data, the modeler must decide how to “spend” their
data points to accommodate these activities.

One of the first decisions to make when modeling is to decide which samples
will be used to evaluate performance. Ideally, the model should be evaluated
on samples that were not used to build or fine-tune the model, so that they
provide an unbiased sense of model effectiveness. When a large amount of
data is at hand, a set of samples can be set aside to evaluate the final model.
The “training”data set is the general term for the samples used to create the
model, while the “test”or“validation”data set is used to qualify performance.

However, when the number of samples is not large, a strong case can
be made that a test set should be avoided because every sample may be
needed for model building. Additionally, the size of the test set may not
have sufficient power or precision to make reasonable judgements. Several
researchers (Molinaro 2005; Martin and Hirschberg 1996; Hawkins et al. 2003)
show that validation using a single test set can be a poor choice. Hawkins
et al. (2003) concisely summarize this point:“holdout samples of tolerable size
[. . . ] do not match the cross-validation itself for reliability in assessing model
fit and are hard to motivate.” Resampling methods, such as cross-validation,
can be used to produce appropriate estimates of model performance using the
training set. These are discussed in length in Sect. 4.4. Although resampling
techniques can be misapplied, such as the example shown in Ambroise and
McLachlan (2002), they often produce performance estimates superior to a
single test set because they evaluate many alternate versions of the data.

If a test set is deemed necessary, there are several methods for splitting
the samples. Nonrandom approaches to splitting the data are sometimes
appropriate. For example,

• If a model was being used to predict patient outcomes, the model may be
created using certain patient sets (e.g., from the same clinical site or disease
stage), and then tested on a different sample population to understand how
well the model generalizes.

• In chemical modeling for drug discovery, new“chemical space”is constantly
being explored. We are most interested in accurate predictions in the chem-
ical space that is currently being investigated rather than the space that
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was evaluated years prior. The same could be said for spam filtering; it
is more important for the model to catch the new spamming techniques
rather than prior spamming schemes.

However, in most cases, there is the desire to make the training and test sets
as homogeneous as possible. Random sampling methods can be used to create
similar data sets.

The simplest way to split the data into a training and test set is to take a
simple random sample. This does not control for any of the data attributes,
such as the percentage of data in the classes. When one class has a dispro-
portionately small frequency compared to the others, there is a chance that
the distribution of the outcomes may be substantially different between the
training and test sets.

To account for the outcome when splitting the data, stratified random
sampling applies random sampling within subgroups (such as the classes).
In this way, there is a higher likelihood that the outcome distributions will
match. When the outcome is a number, a similar strategy can be used; the
numeric values are broken into similar groups (e.g., low, medium, and high)
and the randomization is executed within these groups.

Alternatively, the data can be split on the basis of the predictor values.
Willett (1999) and Clark (1997) propose data splitting based on maximum
dissimilarity sampling. Dissimilarity between two samples can be measured
in a number of ways. The simplest method is to use the distance between
the predictor values for two samples. If the distance is small, the points are
in close proximity. Larger distances between points are indicative of dissim-
ilarity. To use dissimilarity as a tool for data splitting, suppose the test set
is initialized with a single sample. The dissimilarity between this initial sam-
ple and the unallocated samples can be calculated. The unallocated sample
that is most dissimilar would then be added to the test set. To allocate more
samples to the test set, a method is needed to determine the dissimilarities
between groups of points (i.e., the two in the test set and the unallocated
points). One approach is to use the average or minimum of the dissimilari-
ties. For example, to measure the dissimilarities between the two samples in
the test set and a single unallocated point, we can determine the two dissim-
ilarities and average them. The third point added to the test set would be
chosen as having the maximum average dissimilarity to the existing set. This
process would continue until the targeted test set size is achieved.

Figure 4.5 illustrates this process for the example classification data. Dis-
similarity sampling was conducted separately within each class. First, a sam-
ple within each class was chosen to start the process (designated as � and
• in the figure). The dissimilarity of the initial sample to the unallocated
samples within the class was computed and the most dissimilar point was
added to the test set. For the first class, the most dissimilar point was in the
extreme Southwest of the initial sample. On the second round, the dissimilar-
ities were aggregated using the minimum (as opposed to the average). Again,
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Fig. 4.5: An example of maximum dissimilarity sampling to create a test set.
After choosing an initial sample within a class, 14 more samples were added

for the first class, the chosen point was far in the Northeast of the predictor
space. As the sampling proceeds, samples were selected on the periphery of
the data then work inward.

Martin et al. (2012) compares different methods of splitting data, including
random sampling, dissimilarity sampling, and other methods.

4.4 Resampling Techniques

Generally, resampling techniques for estimating model performance operate
similarly: a subset of samples are used to fit a model and the remaining sam-
ples are used to estimate the efficacy of the model. This process is repeated
multiple times and the results are aggregated and summarized. The differ-
ences in techniques usually center around the method in which subsamples
are chosen. We will consider the main flavors of resampling in the next few
subsections.

k-Fold Cross-Validation

The samples are randomly partitioned into k sets of roughly equal size. A
model is fit using the all samples except the first subset (called the first
fold). The held-out samples are predicted by this model and used to estimate
performance measures. The first subset is returned to the training set and
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procedure repeats with the second subset held out, and so on. The k resam-
pled estimates of performance are summarized (usually with the mean and
standard error) and used to understand the relationship between the tuning
parameter(s) and model utility. The cross-validation process with k = 3 is
depicted in Fig. 4.6.

A slight variant of this method is to select the k partitions in a way that
makes the folds balanced with respect to the outcome (Kohavi 1995). Strati-
fied random sampling, previously discussed in Sect. 4.3, creates balance with
respect to the outcome.

Another version, leave-one-out cross-validation (LOOCV), is the special
case where k is the number of samples. In this case, since only one sam-
ple is held-out at a time, the final performance is calculated from the k in-
dividual held-out predictions. Additionally, repeated k-fold cross-validation
replicates the procedure in Fig. 4.6 multiple times. For example, if 10-fold
cross-validation was repeated five times, 50 different held-out sets would be
used to estimate model efficacy.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets
larger, the difference in size between the training set and the resampling
subsets gets smaller. As this difference decreases, the bias of the technique
becomes smaller (i.e., the bias is smaller for k = 10 than k = 5). In this
context, the bias is the difference between the estimated and true values of
performance.

Another important aspect of a resampling technique is the uncertainty
(i.e., variance or noise). An unbiased method may be estimating the correct
value (e.g., the true theoretical performance) but may pay a high price in
uncertainty. This means that repeating the resampling procedure may pro-
duce a very different value (but done enough times, it will estimate the true
value). k-fold cross-validation generally has high variance compared to other
methods and, for this reason, might not be attractive. It should be said that
for large training sets, the potential issues with variance and bias become
negligible.

From a practical viewpoint, larger values of k are more computationally
burdensome. In the extreme, LOOCV is most computationally taxing because
it requires as many model fits as data points and each model fit uses a subset
that is nearly the same size of the training set. Molinaro (2005) found that
leave-one-out and k =10-fold cross-validation yielded similar results, indicat-
ing that k = 10 is more attractive from the perspective of computational
efficiency. Also, small values of k, say 2 or 3, have high bias but are very
computationally efficient. However, the bias that comes with small values of
k is about the same as the bias produced by the bootstrap (see below), but
with much larger variance.

Research (Molinaro 2005; Kim 2009) indicates that repeating k-fold cross-
validation can be used to effectively increase the precision of the estimates
while still maintaining a small bias.
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Fig. 4.6: A schematic of threefold cross-validation. Twelve training set sam-
ples are represented as symbols and are allocated to three groups. These
groups are left out in turn as models are fit. Performance estimates, such as
the error rate orR2 are calculated from each set of held-out samples. The aver-
age of the three performance estimates would be the cross-validation estimate
of model performance. In practice, the number of samples in the held-out sub-
sets can vary but are roughly equal size

Generalized Cross-Validation

For linear regression models, there is a formula for approximating the leave-
one-out error rate. The generalized cross-validation (GCV) statistic (Golub
et al. 1979) does not require iterative refitting of the model to different data
subsets. The formula for this statistic is the ith training set outcome

GCV =
1

n

n∑

i=1

(
yi − ŷi
1− df/n

)2

,

where yi is the ith in the training set set outcome, ŷi is the model prediction
of that outcome, and df is the degrees of freedom of the model. The degrees
of freedom are an accounting of how many parameters are estimated by the
model and, by extension, a measure of complexity for linear regressionmodels.
Based on this equation, two models with the same sums of square errors (the
numerator) would have different GCV values if the complexities of the models
were different.

Repeated Training/Test Splits

Repeated training/test splits is also known as “leave-group-out cross-
validation” or “Monte Carlo cross-validation.” This technique simply creates
multiple splits of the data into modeling and prediction sets (see Fig. 4.7).
The proportion of the data going into each subset is controlled by the prac-
titioner as is the number of repetitions. As previously discussed, the bias
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Fig. 4.7: A schematic of B repeated training and test set partitions. Twelve
training set samples are represented as symbols and are allocated to B subsets
that are 2/3 of the original training set. One difference between this procedure
and k-fold cross-validation are that samples can be represented in multiple
held-out subsets. Also, the number of repetitions is usually larger than in
k-fold cross-validation

of the resampling technique decreases as the amount of data in the subset
approaches the amount in the modeling set. A good rule of thumb is about
75–80%. Higher proportions are a good idea if the number of repetitions
is large.

The number of repetitions is important. Increasing the number of subsets
has the effect of decreasing the uncertainty of the performance estimates.
For example, to get a gross estimate of model performance, 25 repetitions will
be adequate if the user is willing to accept some instability in the resulting
values. However, to get stable estimates of performance, it is suggested to
choose a larger number of repetitions (say 50–200). This is also a function
of the proportion of samples being randomly allocated to the prediction set;
the larger the percentage, the more repetitions are needed to reduce the
uncertainty in the performance estimates.

The Bootstrap

A bootstrap sample is a random sample of the data taken with replace-
ment (Efron and Tibshirani 1986). This means that, after a data point is
selected for the subset, it is still available for further selection. The bootstrap
sample is the same size as the original data set. As a result, some samples
will be represented multiple times in the bootstrap sample while others will
not be selected at all. The samples not selected are usually referred to as the
“out-of-bag” samples. For a given iteration of bootstrap resampling, a model
is built on the selected samples and is used to predict the out-of-bag samples
(Fig. 4.8).

In general, bootstrap error rates tend to have less uncertainty than k-fold
cross-validation (Efron 1983). However, on average, 63.2% of the data points
the bootstrap sample are represented at least once, so this technique has bias
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Fig. 4.8: A schematic of bootstrap resampling. Twelve training set samples
are represented as symbols and are allocated to B subsets. Each subset is
the same size as the original and can contain multiple instances of the same
data point. Samples not selected by the bootstrap are predicted and used to
estimate model performance

similar to k-fold cross-validation when k ≈ 2. If the training set size is small,
this bias may be problematic, but will decrease as the training set sample
size becomes larger.

A few modifications of the simple bootstrap procedure have been devised
to eliminate this bias. The “632 method” (Efron 1983) addresses this issue by
creating a performance estimate that is a combination of the simple boot-
strap estimate and the estimate from re-predicting the training set (e.g., the
apparent error rate). For example, if a classification model was characterized
by its error rate, the 632 method would use

(0.632× simple bootstrap estimate) + (0.368× apparent error rate).

The modified bootstrap estimate reduces the bias, but can be unstable with
small samples sizes. This estimate can also result in unduly optimistic results
when the model severely over-fits the data, since the apparent error rate will
be close to zero. Efron and Tibshirani (1997) discuss another technique, called
the “632+ method,” for adjusting the bootstrap estimates.

4.5 Case Study: Credit Scoring

A straightforward application of predictive models is credit scoring. Existing
data can be used to create a model to predict the probability that applicants
have good credit. This information can be used to quantify the risk to the
lender.

The German credit data set is a popular tool for benchmarking machine
learning algorithms. It contains 1,000 samples that have been given labels
of good and bad credit. In the data set, 70% were rated as having good
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credit. As discussed in Sect. 11.2, when evaluating the accuracy of a model,
the baseline accuracy rate to beat would be 70% (which we could achieve by
simply predicting all samples to have good credit).

Along with these outcomes, data were collected related to credit history,
employment, account status, and so on. Some predictors are numeric, such as
the loan amount. However, most of the predictors are categorical in nature,
such as the purpose of the loan, gender, or marital status. The categorical
predictors were converted to “dummy variables” that related to a single cat-
egory. For example, the applicant’s residence information was categorized as
either “rent,”“own,” or “free housing.” This predictor would be converted to
three yes/no bits of information for each category. For example, one predic-
tor would have a value of one if the applicant rented and is zero otherwise.
Creation of dummy variables is discussed at length in Sect. 3.6. In all, there
were 41 predictors used to model the credit status of an individual.

We will use these data to demonstrate the process of tuning models us-
ing resampling, as defined in Fig. 4.4. For illustration, we took a stratified
random sample of 800 customers to use for training models. The remaining
samples will be used as a test set to verify performance when a final model is
determined. Section 11.2 will discuss the results of the test set in more detail.

4.6 Choosing Final Tuning Parameters

Once model performance has been quantified across sets of tuning parame-
ters, there are several philosophies on how to choose the final settings. The
simplest approach is to pick the settings associated with the numerically best
performance estimates.

For the credit scoring example, a nonlinear support vector machine model1

was evaluated over cost values ranging from 2−2 to 27. Each model was eval-
uated using five repeats of 10-fold cross-validation. Figure 4.9 and Table 4.1
show the accuracy profile across the candidate values of the cost parameter.
For each model, cross-validation generated 50 different estimates of the accu-
racy; the solid points in Fig. 4.9 are the average of these estimates. The bars
reflect the average plus/minus two-standard errors of the mean. The pro-
file shows an increase in accuracy until the cost value is one. Models with
cost values between 1 and 16 are relatively constant; after which, the accu-
racy decreases (likely due to over-fitting). The numerically optimal value of
the cost parameter is 8, with a corresponding accuracy rate of 75%. Notice
that the apparent accuracy rate, determined by re-predicting the training set
samples, indicates that the model improves as the cost is increased, although
more complex models over-fit the training set.

1 This model uses a radial basis function kernel, defined in Sect. 13.4. Although not
explored here, we used the analytical approach discussed later for determining the
kernel parameter and fixed this value for all resampling techniques.
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Fig. 4.9: The performance profile of a radial basis function support vec-
tor machine for the credit scoring example over different values of the cost
parameter. The vertical lines indicate ± two-standard errors of the accuracy

In general, it may be a good idea to favor simpler models over more
complex ones and choosing the tuning parameters based on the numerically
optimal value may lead to models that are overly complicated. Other schemes
for choosing less complex models should be investigated as they might lead
to simpler models that provide acceptable performance (relative to the nu-
merically optimal settings).

The“one-standard error”method for choosing simpler models finds the nu-
merically optimal value and its corresponding standard error and then seeks
the simplest model whose performance is within a single standard error of
the numerically best value. This procedure originated with classification and
regression trees (Breiman et al. (1984) and Sects. 8.1 and 14.1). In Fig. 4.10,
the standard error of the accuracy values when the cost is 8 is about 0.7%.
This technique would find the simplest tuning parameter settings associated
with accuracy no less than 74.3% (75%–0.7%). This procedure would choose
a value of 2 for the cost parameter.

Another approach is to choose a simpler model that is within a certain
tolerance of the numerically best value. The percent decrease in performance
could be quantified by (X −O)/O where X is the performance value and O
is the numerically optimal value. For example, in Fig. 4.9, the best accuracy
value across the profile was 75%. If a 4% loss in accuracy was acceptable as
a trade-off for a simpler model, accuracy values greater than 71.2% would
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Table 4.1: Repeated cross-validation accuracy results for the support vector
machine model

Resampled accuracy (%)
Cost Mean Std. error % Tolerance

0.25 70.0 0.0 −6.67
0.50 71.3 0.2 −4.90
1.00 74.0 0.5 −1.33
2.00 74.5 0.7 −0.63
4.00 74.1 0.7 −1.20
8.00 75.0 0.7 0.00
16.00 74.9 0.8 −0.13
32.00 72.5 0.7 −3.40
64.00 72.0 0.8 −4.07

128.00 72.0 0.8 −4.07

The one-standard error rule would select the simplest model with accuracy no less
than 74.3% (75%–0.7%). This corresponds to a cost value of 2. The “pick-the-best”
solution is shown in bold

be acceptable. For the profile in Fig. 4.9, a cost value of 1 would be chosen
using this approach.

As an illustration, additional resampling methods were applied to the same
data: repeated 10-fold cross-validation, LOOCV, the bootstrap (with and
without the 632 adjustment), and repeated training/test splits (with 20%
held-out). The latter two methods used 50 resamples to estimate performance.

The results are shown in Fig. 4.10. A common pattern within the cross-
validation methods is seen where accuracy peaks at cost values between 4
and 16 and stays roughly constant within this window.

In each case, performance rapidly increases with the cost value and then,
after the peak, decreases at a slower rate as over-fitting begins to occur.
The cross-validation techniques estimate the accuracy to be between 74.5%
and 76.6%. Compared to the other methods, the simple bootstrap is slightly
pessimistic, estimating the accuracy to be 74.2% while the 632 rule appears
to overcompensate for the bias and estimates the accuracy to be 82.3%.
Note that the standard error bands of the simple 10-fold cross-validation
technique are larger than the other methods, mostly because the standard
error is a function of the number of resamples used (10 versus the 50 used by
the bootstrap or repeated splitting).

The computational times varied considerably. The fastest was 10-fold
cross-validation, which clocked in at 0.82min. Repeated cross-validation, the
bootstrap, and repeated training-test splits fit the same number of models
and, on average, took about 5-fold more time to finish. LOOCV, which fits
as many models as there are samples in the training set, took 86-fold longer
and should only be considered when the number of samples is very small.
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Fig. 4.10: The performance profile of nonlinear support vector machine over
different values of the cost parameter for the credit scoring example using
several different resampling procedures. The vertical lines indicate ± two-
standard errors of the accuracy

4.7 Data Splitting Recommendations

As previously discussed, there is a strong technical case to be made against
a single, independent test set:

• A test set is a single evaluation of the model and has limited ability to
characterize the uncertainty in the results.



78 4 Over-Fitting and Model Tuning

• Proportionally large test sets divide the data in a way that increases bias
in the performance estimates.

• With small sample sizes:

– The model may need every possible data point to adequately determine
model values.

– The uncertainty of the test set can be considerably large to the point
where different test sets may produce very different results.

• Resampling methods can produce reasonable predictions of how well the
model will perform on future samples.

No resampling method is uniformly better than another; the choice should
be made while considering several factors. If the samples size is small, we
recommend repeated 10-fold cross-validation for several reasons: the bias and
variance properties are good and, given the sample size, the computational
costs are not large. If the goal is to choose between models, as opposed to
getting the best indicator of performance, a strong case can be made for
using one of the bootstrap procedures since these have very low variance.
For large sample sizes, the differences between resampling methods become
less pronounced, and computational efficiency increases in importance. Here,
simple 10-fold cross-validation should provide acceptable variance, low bias,
and is relatively quick to compute.

Varma and Simon (2006) and Boulesteix and Strobl (2009) note that there
is a potential bias that can occur when estimating model performance during
parameter tuning. Suppose that the final model is chosen to correspond to the
tuning parameter value associated with the smallest error rate. This error rate
has the potential to be optimistic since it is a random quantity that is chosen
from a potentially large set of tuning parameters. Their research is focused on
scenarios with a small number of samples and a large number of predictors,
which exacerbates the problem. However, for moderately large training sets,
our experience is that this bias is small. In later sections, comparisons are
made between resampled estimates of performance and those derived from a
test set. For these particular data sets, the optimization bias is insubstantial.

4.8 Choosing Between Models

Once the settings for the tuning parameters have been determined for each
model, the question remains: how do we choose between multiple models?
Again, this largely depends on the characteristics of the data and the type
of questions being answered. However, predicting which model is most fit
for purpose can be difficult. Given this, we suggest the following scheme for
finalizing the type of model:
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1. Start with several models that are the least interpretable and most flexible,
such as boosted trees or support vector machines. Across many problem
domains, these models have a high likelihood of producing the empirically
optimum results (i.e., most accurate).

2. Investigate simpler models that are less opaque (e.g., not complete black
boxes), such as multivariate adaptive regression splines (MARS), partial
least squares, generalized additive models, or näıve Bayes models.

3. Consider using the simplest model that reasonably approximates the per-
formance of the more complex methods.

Using this methodology, the modeler can discover the “performance ceiling”
for the data set before settling on a model. In many cases, a range of models
will be equivalent in terms of performance so the practitioner can weight the
benefits of different methodologies (e.g., computational complexity, easy of
prediction, interpretability). For example, a nonlinear support vector machine
or random forest model might have superior accuracy, but the complexity
and scope of the prediction equation may prohibit exporting the prediction
equation to a production system. However, if a more interpretable model,
such as a MARS model, yielded similar accuracy, the implementation of the
prediction equation would be trivial and would also have superior execution
time.

Consider the credit scoring support vector machine classification model
that was characterized using resampling in Sect. 4.6. Using repeated 10-fold
cross-validation, the accuracy for this model was estimated to be 75% with
most of the resampling results between 66% and 82%.

Logistic regression (Sect. 12.2) is a more simplistic technique than the non-
linear support vector machine model for estimating a classification boundary.
It has no tuning parameters and its prediction equation is simple and easy to
implement using most software. Using the same cross-validation scheme, the
estimated accuracy for this model was 74.9% with most of the resampling
results between 66% and 82%.

The same 50 resamples were used to evaluate each model. Figure 4.11 uses
box plots to illustrate the distribution of the resampled accuracy estimates.
Clearly, there is no performance loss by using a more straightforward model
for these data.

Hothorn et al. (2005) and Eugster et al. (2008) describe statistical methods
for comparing methodologies based on resampling results. Since the accura-
cies were measured using identically resampled data sets, statistical methods
for paired comparisons can be used to determine if the differences between
models are statistically significant. A paired t-test can be used to evaluate
the hypothesis that the models have equivalent accuracies (on average) or,
analogously, that the mean difference in accuracy for the resampled data sets
is zero. For these two models, the average difference in model accuracy was
0.1%, with the logistic regression supplying the better results. The 95% con-
fidence interval for this difference was (−1.2%, 1%), indicating that there
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Accuracy

Logistic

SVM

0.65 0.70 0.75 0.80 0.85

Fig. 4.11: A comparison of the cross-validated accuracy estimates from a
support vector machine model and a logistic regression model for the credit
scoring data described in Sect. 4.5

is no evidence to support the idea that the accuracy for either model is
significantly better. This makes intuitive sense; the resampled accuracies in
Fig. 4.11 range from 61.3% to 85%; given this amount of variation in the
results, a 0.1% improvement of accuracy is not meaningful.

When a model is characterized in multiple ways, there is a possibility that
comparisons between models can lead to different conclusions. For example,
if a model is created to predict two classes, sensitivity and specificity may
be used to characterize the efficacy of models (see Chap. 11). If the data
set includes more events than nonevents, the sensitivity can be estimated
with greater precision than the specificity. With increased precision, there is
a higher likelihood that models can be differentiated in terms of sensitivity
than for specificity.

4.9 Computing

The R language is used to demonstrate modeling techniques. A concise review
of R and its basic usage are found in Appendix B. Those new to R should
review these materials prior to proceeding. The following sections will refer-
ence functions from the AppliedPredictiveModeling, caret, Design, e1071, ipred
and MASS packages. Syntax will be demonstrated using the simple two-class
example shown in Figs. 4.2 and 4.3 and the data from the credit scoring case
study.
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Data Splitting

The two-class data shown in Fig. 4.1 are contained in the AppliedPredictive-
Modeling package and can be obtained using

> library(AppliedPredictiveModeling)

> data(twoClassData)

The predictors for the example data are stored in a data frame called
predictors. There are two columns for the predictors and 208 samples in
rows. The outcome classes are contained in a factor vector called classes.

> str(predictors)

'data.frame': 208 obs. of 2 variables:
$ PredictorA: num 0.158 0.655 0.706 0.199 0.395 ...
$ PredictorB: num 0.1609 0.4918 0.6333 0.0881 0.4152 ...

> str(classes)

Factor w/ 2 levels "Class1","Class2": 2 2 2 2 2 2 2 2 2 2 ...

The base R function sample can create simple random splits of the data.
To create stratified random splits of the data (based on the classes), the
createDataPartition function in the caret package can be used. The percent
of data that will be allocated to the training set should be specified.

> # Set the random number seed so we can reproduce the results

> set.seed(1)

> # By default, the numbers are returned as a list. Using

> # list = FALSE, a matrix of row numbers is generated.

> # These samples are allocated to the training set.

> trainingRows <- createDataPartition(classes,

+ p = .80,

+ list= FALSE)

> head(trainingRows)

Resample1
[1,] 99
[2,] 100
[3,] 101
[4,] 102
[5,] 103
[6,] 104

> # Subset the data into objects for training using

> # integer sub-setting.

> trainPredictors <- predictors[trainingRows, ]

> trainClasses <- classes[trainingRows]

> # Do the same for the test set using negative integers.

> testPredictors <- predictors[-trainingRows, ]

> testClasses <- classes[-trainingRows]

> str(trainPredictors)
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'data.frame': 167 obs. of 2 variables:
$ PredictorA: num 0.226 0.262 0.52 0.577 0.426 ...
$ PredictorB: num 0.291 0.225 0.547 0.553 0.321 ...

> str(testPredictors)

'data.frame': 41 obs. of 2 variables:
$ PredictorA: num 0.0658 0.1056 0.2909 0.4129 0.0472 ...
$ PredictorB: num 0.1786 0.0801 0.3021 0.2869 0.0414 ...

To generate a test set using maximum dissimilarity sampling, the caret func-
tion maxdissim can be used to sequentially sample the data.

Resampling

The caret package has various functions for data splitting. For example, to
use repeated training/test splits, the function createDataPartition could be
used again with an additional argument named times to generate multiple
splits.

> set.seed(1)

> # For illustration, generate the information needed for three

> # resampled versions of the training set.

> repeatedSplits <- createDataPartition(trainClasses, p = .80,

+ times = 3)

> str(repeatedSplits)

List of 3
$ Resample1: int [1:135] 1 2 3 4 5 6 7 9 11 12 ...
$ Resample2: int [1:135] 4 6 7 8 9 10 11 12 13 14 ...
$ Resample3: int [1:135] 2 3 4 6 7 8 9 10 11 12 ...

Similarly, the caret package has functions createResamples (for bootstrapping),
createFolds (for k-old cross-validation) and createMultiFolds (for repeated
cross-validation). To create indicators for 10-fold cross-validation,

> set.seed(1)

> cvSplits <- createFolds(trainClasses, k = 10,

+ returnTrain = TRUE)

> str(cvSplits)

List of 10
$ Fold01: int [1:151] 1 2 3 4 5 6 7 8 9 11 ...
$ Fold02: int [1:150] 1 2 3 4 5 6 8 9 10 12 ...
$ Fold03: int [1:150] 1 2 3 4 6 7 8 10 11 13 ...
$ Fold04: int [1:151] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold05: int [1:150] 1 2 3 4 5 7 8 9 10 11 ...
$ Fold06: int [1:150] 2 4 5 6 7 8 9 10 11 12 ...
$ Fold07: int [1:150] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold08: int [1:151] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold09: int [1:150] 1 3 4 5 6 7 9 10 11 12 ...
$ Fold10: int [1:150] 1 2 3 5 6 7 8 9 10 11 ...

> # Get the first set of row numbers from the list.

> fold1 <- cvSplits[[1]]
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To get the first 90% of the data (the first fold):

> cvPredictors1 <- trainPredictors[fold1,]

> cvClasses1 <- trainClasses[fold1]

> nrow(trainPredictors)

[1] 167
> nrow(cvPredictors1)

[1] 151

In practice, functions discussed in the next section can be used to automati-
cally create the resampled data sets, fit the models, and evaluate performance.

Basic Model Building in R

Now that we have training and test sets, we could fit a 5-nearest neighbor
classification model (Fig. 4.3) to the training data and use it to predict the test
set. There are multiple R functions for building this model: the knn function
in the MASS package, the ipredknn function in the ipred package, and the knn3

function in caret. The knn3 function can produce class predictions as well as
the proportion of neighbors for each class.

There are two main conventions for specifying models in R: the formula
interface and the non-formula (or “matrix”) interface. For the former, the
predictors are explicitly listed. A basic R formula has two sides: the left-hand
side denotes the outcome and the right-hand side describes how the predictors
are used. These are separated with a tilde (∼). For example, the formula

> modelFunction(price ~ numBedrooms + numBaths + acres,

+ data = housingData)

would predict the closing price of a house using three quantitative character-
istics. The formula y ∼ . can be used to indicate that all of the columns in the
data set (except y) should be used as a predictor. The formula interface has
many conveniences. For example, transformations such as log(acres) can be
specified in-line. Unfortunately, R does not efficiently store the information
about the formula. Using this interface with data sets that contain a large
number of predictors may unnecessarily slow the computations.

The non-formula interface specifies the predictors for the model using a
matrix or data frame (all the predictors in the object are used in the model).
The outcome data are usually passed into the model as a vector object.
For example,

> modelFunction(x = housePredictors, y = price)

Note that not all R functions have both interfaces.
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For knn3, we can estimate the 5-nearest neighbor model with

> trainPredictors <- as.matrix(trainPredictors)

> knnFit <- knn3(x = trainPredictors, y = trainClasses, k = 5)

> knnFit

5-nearest neighbor classification model

Call:
knn3.matrix(x = trainPredictors, y = trainClasses, k = 5)

Training set class distribution:

Class1 Class2
89 78

At this point, the knn3 object is ready to predict new samples. To assign
new samples to classes, the predict method is used with the model object.
The standard convention is

> testPredictions <- predict(knnFit, newdata = testPredictors,

+ type = "class")

> head(testPredictions)

[1] Class2 Class2 Class1 Class1 Class2 Class2
Levels: Class1 Class2

> str(testPredictions)

Factor w/ 2 levels "Class1","Class2": 2 2 1 1 2 2 2 2 2 2 ...

The value of the type argument varies across different modeling functions.

Determination of Tuning Parameters

To choose tuning parameters using resampling, sets of candidate values are
evaluated using different resamples of the data. A profile can be created to
understand the relationship between performance and the parameter values.
R has several functions and packages for this task. The e1071 package contains
the tune function, which can evaluate four types of models across a range of
parameters. Similarly, the errorest function in the ipred package can resample
single models. The train function in the caret package has built-in modules
for 144 models and includes capabilities for different resampling methods,
performances measures, and algorithms for choosing the best model from the
profile. This function also has capabilities for parallel processing so that the
resampled model fits can be executed across multiple computers or processors.
Our focus will be on the train function.

Section 4.6 illustrated parameter tuning for a support vector machine using
the credit scoring data. Using resampling, a value of the cost parameter was
estimated. As discussed in later chapters, the SVM model is characterized
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by what type of kernel function the model uses. For example, the linear
kernel function specifies a linear relationship between the predictors and the
outcome. For the credit scoring data, a radial basis function (RBF) kernel
function was used. This kernel function has an additional tuning parameter
associated with it denoted as σ, which impacts the smoothness of the decision
boundary. Normally, several combinations of both tuning parameters would
be evaluated using resampling. However, Caputo et al. (2002) describe an
analytical formula that can be used to get reasonable estimates of σ. The
caret function train uses this approach to estimate the kernel parameter,
leaving only the cost parameter for tuning.

To tune an SVM model using the credit scoring training set samples, the
train function can be used. Both the training set predictors and outcome are
contained in an R data frame called GermanCreditTrain.

> library(caret)

> data(GermanCredit)

The chapters directory of the AppliedPredictiveModeling package contains
the code for creating the training and test sets. These data sets are contained
in the data frames GermanCreditTrain and GermanCreditTest, respectively.

We will use all the predictors to model the outcome. To do this, we use
the formula interface with the formula Class ∼ . the classes are stored in the
data frame column called class. The most basic function call would be
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> # The "method" argument indicates the model type.

> # See ?train for a list of available models.

> method = "svmRadial")

However, we would like to tailor the computations by overriding several of
the default values. First, we would like to pre-process the predictor data by
centering and scaling their values. To do this, the preProc argument can be
used:
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"))

Also, for this function, the user can specify the exact cost values to investigate.
In addition, the function has algorithms to determine reasonable values for
many models. Using the option tuneLength = 10, the cost values 2−2, 2−2

. . . 27 are evaluated.
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"),

> tuneLength = 10)
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By default, the basic bootstrap will be used to calculate performance mea-
sures. Repeated 10-fold cross-validation can be specified with the trainControl
function. The final syntax is then
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"),

> tuneLength = 10,

> trControl = trainControl(method = "repeatedcv",

> repeats = 5))

> svmFit

800 samples
41 predictors
2 classes: 'Bad', 'Good'

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...

Resampling results across tuning parameters:

C Accuracy Kappa Accuracy SD Kappa SD
0.25 0.7 0 0 0
0.5 0.724 0.141 0.0218 0.0752
1 0.75 0.326 0.0385 0.106
2 0.75 0.363 0.0404 0.0984
4 0.754 0.39 0.0359 0.0857
8 0.738 0.361 0.0404 0.0887
16 0.738 0.361 0.0458 0.1
32 0.732 0.35 0.043 0.0928
64 0.732 0.352 0.0453 0.0961
128 0.731 0.349 0.0451 0.0936

Tuning parameter 'sigma' was held constant at a value of 0.0202
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were C = 4 and sigma = 0.0202.

A different random number seed and set of cost values were used in the
original analysis, so the results are not exactly the same as those shown in
Sect. 4.6. Using a “pick the best” approach, a final model was fit to all 800
training set samples with a σ value of 0.0202 and a cost value of 4. The plot

method can be used to visualize the performance profile. Figure 4.12 shows
an example visualization created from the syntax

> # A line plot of the average performance

> plot(svmFit, scales = list(x = list(log = 2)))

To predict new samples with this model, the predict method is called

> predictedClasses <- predict(svmFit, GermanCreditTest)

> str(predictedClasses)
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Fig. 4.12: A visualization of the average performance profile of an SVM clas-
sification model produced from the plot method for the train class

Factor w/ 2 levels "Bad","Good": 1 1 2 2 1 2 2 2 1 1 ...

> # Use the "type" option to get class probabilities

> predictedProbs <- predict(svmFit, newdata = GermanCreditTest,

+ type = "prob")

> head(predictedProbs)

Bad Good
1 0.5351870 0.4648130
2 0.5084049 0.4915951
3 0.3377344 0.6622656
4 0.1092243 0.8907757
5 0.6024404 0.3975596
6 0.1339467 0.8660533

There are other R packages that can estimate performance via resampling.
The validate function in the Design package and the errorest function in the
ipred package can be used to estimate performance for a model with a single
candidate set of tuning parameters. The tune function of the e1071 package
can also determine parameter settings using resampling.

Between-Model Comparisons

In Sect. 4.6, the SVM model was contrasted with a logistic regression model.
While basic logistic regression has no tuning parameters, resampling can still
be used to characterize the performance of the model. The train function is
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once again used, with a different method argument of "glm" (for generalized
linear models). The same resampling specification is used and, since the ran-
dom number seed is set prior to modeling, the resamples are exactly the same
as those in the SVM model.

> set.seed(1056)

> logisticReg <- train(Class ~ .,

+ data = GermanCreditTrain,

+ method = "glm",

+ trControl = trainControl(method = "repeatedcv",

+ repeats = 5))

> logisticReg

800 samples
41 predictors
2 classes: 'Bad', 'Good'

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720, ...

Resampling results

Accuracy Kappa Accuracy SD Kappa SD
0.749 0.365 0.0516 0.122

To compare these two models based on their cross-validation statistics,
the resamples function can be used with models that share a common set of
resampled data sets. Since the random number seed was initialized prior to
running the SVM and logistic models, paired accuracy measurements exist
for each data set. First, we create a resamples object from the models:

> resamp <- resamples(list(SVM = svmFit, Logistic = logisticReg))

> summary(resamp)

Call:
summary.resamples(object = resamp)

Models: SVM, Logistic
Number of resamples: 50

Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

SVM 0.6500 0.7375 0.7500 0.754 0.7625 0.85 0
Logistic 0.6125 0.7250 0.7562 0.749 0.7844 0.85 0

Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

SVM 0.18920 0.3519 0.3902 0.3897 0.4252 0.5946 0
Logistic 0.07534 0.2831 0.3750 0.3648 0.4504 0.6250 0
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The summary indicates that the performance distributions are very similar.
The NA column corresponds to cases where the resampled models failed (usu-
ally due to numerical issues). The resamples class has several methods for
visualizing the paired values (see ?xyplot.resamples for a list of plot types).
To assess possible differences between the models, the diff method is used:

> modelDifferences <- diff(resamp)

> summary(modelDifferences)

Call:
summary.diff.resamples(object = modelDifferences)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0

Accuracy
SVM Logistic

SVM 0.005
Logistic 0.5921

Kappa
SVM Logistic

SVM 0.02498
Logistic 0.2687

The p-values for the model comparisons are large (0.592 for accuracy and
0.269 for Kappa), which indicates that the models fail to show any difference
in performance.

Exercises

4.1. Consider the music genre data set described in Sect. 1.4. The objective
for these data is to use the predictors to classify music samples into the
appropriate music genre.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your

approach(es).

4.2. Consider the permeability data set described in Sect. 1.4. The objective
for these data is to use the predictors to model compounds’ permeability.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your

approach(es).

4.3. Partial least squares (Sect. 6.3) was used to model the yield of a chemical
manufacturing process (Sect. 1.4). The data can be found in the AppliedPre-
dictiveModeling package and can be loaded using
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Resampled R2

Components Mean Std. Error

1 0.444 0.0272
2 0.500 0.0298
3 0.533 0.0302
4 0.545 0.0308
5 0.542 0.0322
6 0.537 0.0327
7 0.534 0.0333
8 0.534 0.0330
9 0.520 0.0326
10 0.507 0.0324

> library(AppliedPredictiveModeling)

> data(ChemicalManufacturingProcess)

The objective of this analysis is to find the number of PLS components
that yields the optimal R2 value (Sect. 5.1). PLS models with 1 through 10
components were each evaluated using five repeats of 10-fold cross-validation
and the results are presented in the following table:

(a) Using the “one-standard error”method, what number of PLS components
provides the most parsimonious model?

(b) Compute the tolerance values for this example. If a 10% loss in R2 is
acceptable, then what is the optimal number of PLS components?

(c) Several other models (discussed in Part II) with varying degrees of com-
plexity were trained and tuned and the results are presented in Fig. 4.13.
If the goal is to select the model that optimizes R2, then which model(s)
would you choose, and why?

(d) Prediction time, as well as model complexity (Sect. 4.8) are other factors
to consider when selecting the optimal model(s). Given each model’s pre-
diction time, model complexity, and R2 estimates, which model(s) would
you choose, and why?

4.4. Brodnjak-Vonina et al. (2005) develop a methodology for food laborato-
ries to determine the type of oil from a sample. In their procedure, they used
a gas chromatograph (an instrument that separate chemicals in a sample) to
measure seven different fatty acids in an oil. These measurements would then
be used to predict the type of oil in a food samples. To create their model,
they used 96 samples2 of seven types of oils.

These data can be found in the caret package using data(oil). The oil
types are contained in a factor variable called oilType. The types are pumpkin

2 The authors state that there are 95 samples of known oils. However, we count 96
in their Table 1 (pp. 33–35 of the article).
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Fig. 4.13: A plot of the estimated model performance against the time to
predict 500,000 new samples using the chemical manufacturing data

(coded as A), sunflower (B), peanut (C), olive (D), soybean (E), rapeseed (F)
and corn (G). In R,

> data(oil)

> str(oilType)

Factor w/ 7 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
> table(oilType)

oilType
A B C D E F G
37 26 3 7 11 10 2

(a) Use the sample function in base R to create a completely random sample
of 60 oils. How closely do the frequencies of the random sample match
the original samples? Repeat this procedure several times of understand
the variation in the sampling process.

(b) Use the caret package function createDataPartition to create a stratified
random sample. How does this compare to the completely random sam-
ples?
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(c) With such a small samples size, what are the options for determining
performance of the model? Should a test set be used?

(d) One method for understanding the uncertainty of a test set is to use a
confidence interval. To obtain a confidence interval for the overall accu-
racy, the based R function binom.test can be used. It requires the user
to input the number of samples and the number correctly classified to
calculate the interval. For example, suppose a test set sample of 20 oil
samples was set aside and 76 were used for model training. For this test
set size and a model that is about 80% accurate (16 out of 20 correct),
the confidence interval would be computed using

> binom.test(16, 20)

Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20, p-value = 0.01182
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.563386 0.942666

sample estimates:
probability of success

0.8

In this case, the width of the 95% confidence interval is 37.9%. Try
different samples sizes and accuracy rates to understand the trade-off
between the uncertainty in the results, the model performance, and the
test set size.



Chapter 5

Measuring Performance in Regression
Models

For models predicting a numeric outcome, some measure of accuracy is
typically used to evaluate the effectiveness of the model. However, there are
different ways to measure accuracy, each with its own nuance. To understand
the strengths and weaknesses of a particular model, relying solely on a sin-
gle metric is problematic. Visualizations of the model fit, particularly residual
plots, are critical to understanding whether the model is fit for purpose. These
techniques are discussed in this chapter.

5.1 Quantitative Measures of Performance

When the outcome is a number, the most common method for characteriz-
ing a model’s predictive capabilities is to use the root mean squared error
(RMSE). This metric is a function of the model residuals, which are the ob-
served values minus the model predictions. The mean squared error (MSE) is
calculated by squaring the residuals and summing them. The RMSE is then
calculated by taking the square root of the MSE so that it is in the same
units as the original data. The value is usually interpreted as either how far
(on average) the residuals are from zero or as the average distance between
the observed values and the model predictions.

Another common metric is the coefficient of determination, commonly
written as R2. This value can be interpreted as the proportion of the in-
formation in the data that is explained by the model. Thus, an R2 value of
0.75 implies that the model can explain three-quarters of the variation in the
outcome. There are multiple formulas for calculating this quantity (Kv̊alseth
1985), although the simplest version finds the correlation coefficient between
the observed and predicted values (usually denoted by R) and squares it.

While this is an easily interpretable statistic, the practitioner must re-
member that R2 is a measure of correlation, not accuracy. Figure 5.1 shows
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Fig. 5.1: A plot of the observed and predicted outcomes where the R2 is
moderate (51%), but predictions are not uniformly accurate. The diagonal
grey reference line indicates where the observed and predicted values would
be equal

an example where the R2 between the observed and predicted values is high
(51%), but the model has a tendency to overpredict low values and underpre-
dict high ones. This phenomenon can be common to some of the tree-based
regression models discussed in Chap. 8. Depending on the context, this sys-
tematic bias in the predictions may be acceptable if the model otherwise
works well.

It is also important to realize that R2 is dependent on the variation in the
outcome. Using the interpretation that this statistic measures the proportion
of variance explained by the model, one must remember that the denominator
of that proportion is calculated using the sample variance of the outcome. For
example, suppose a test set outcome has a variance of 4.2. If the RMSE of a
predictive model were 1, the R2 would be roughly 76%. If we had another test
set with exactly the same RMSE, but the test outcomes were less variable,
the results would look worse. For example, if the test set variance were 3, the
R2 would be 67%.

Practically speaking, this dependence on the outcome variance can also
have a drastic effect on how the model is viewed. For example, suppose we
were building a model to predict the sale price of houses using predictors such
as house characteristics (e.g., square footage, number of bedrooms, number
of bathrooms), as well as lot size and location. If the range of the houses in
the test set was large, say from $60K to $2M, the variance of the sale price
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would also be very large. One might view a model with a 90% R2 positively,
but the RMSE may be in the tens of thousands of dollars—poor predictive
accuracy for anyone selling a moderately priced property.

In some cases, the goal of the model is to simply rank new samples. As
previously discussed, pharmaceutical scientists may screen large numbers of
compounds for their activity in an effort to find “hits.” The scientists will
then follow up on the compounds predicted to be the most biologically ac-
tive. Here, the focus is on the ranking ability of the model rather than its
predictive accuracy. In this situation, determining the rank correlation be-
tween the observed and predicted values might be a more appropriate metric.
The rank correlation takes the ranks of the observed outcome values (as op-
posed to their actual numbers) and evaluates how close these are to ranks
of the model predictions. To calculate this value, the ranks of the observed
and predicted outcomes are obtained and the correlation coefficient between
these ranks is calculated. This metric is commonly known as Spearman’s rank
correlation.

5.2 The Variance-Bias Trade-off

The MSE can be decomposed into more specific pieces. Formally, the MSE
of a model is

MSE =
1

n

n∑

i=1

(yi − ŷi)
2,

where yi is the outcome and ŷi is the model prediction of that sample’s
outcome. If we assume that the data points are statistically independent and
that the residuals have a theoretical mean of zero and a constant variance
of σ2, then

E[MSE] = σ2 + (Model Bias)2 +Model Variance, (5.1)

where E is the expected value. The first part (σ2) is usually called“irreducible
noise”and cannot be eliminated by modeling. The second term is the squared
bias of the model. This reflects how close the functional form of the model
can get to the true relationship between the predictors and the outcome.
The last term is the model variance. Figure 5.2 shows extreme examples of
models that are either high bias or high variance. The data are a simulated
sin wave. The model fit shown in red splits the data in half and predicts each
half with a simple average. This model has low variance since it would not
substantially change if another set of data points were generated the same
way. However, it is ineffective at modeling the data since, due to its simplicity
and for this reason, it has high bias. Conversely, the blue line is a three-point
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Fig. 5.2: Two model fits to a sin wave. The red line predicts the data using
simple averages of the first and second half of the data. The blue line is a
three-point moving average

moving average. It is flexible enough to model the sin wave (i.e., low bias),
but small perturbations in the data will significantly change the model fit.
Because of this, it has high variance.

It is generally true that more complex models can have very high vari-
ance, which leads to over-fitting. On the other hand, simple models tend not
to over-fit, but under-fit if they are not flexible enough to model the true
relationship (thus high bias). Also, highly correlated predictors can lead to
collinearity issues and this can greatly increase the model variance. In sub-
sequent chapters, models will be discussed that can increase the bias in the
model to greatly reduce the model variance as a way to mitigate the problem
of collinearity. This is referred to as the variance-bias trade-off.

5.3 Computing

The following sections will reference functions from the caret package.
To compute model performance, the observed and predicted outcomes

should be stored in vectors. For regression, these vectors should be numeric.
Here, two example vectors are manually created to illustrate the techniques
(in practice, the vector of predictions would be produced by the model func-
tion):

> # Use the 'c' function to combine numbers into a vector

> observed <- c(0.22, 0.83, -0.12, 0.89, -0.23, -1.30, -0.15, -1.4,

+ 0.62, 0.99, -0.18, 0.32, 0.34, -0.30, 0.04, -0.87,

+ 0.55, -1.30, -1.15, 0.20)
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> predicted <- c(0.24, 0.78, -0.66, 0.53, 0.70, -0.75, -0.41, -0.43,

+ 0.49, 0.79, -1.19, 0.06, 0.75, -0.07, 0.43, -0.42,

+ -0.25, -0.64, -1.26, -0.07)

> residualValues <- observed - predicted

> summary(residualValues)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.9700 -0.4200 0.0800 -0.0310 0.2625 1.0100

An important step in evaluating the quality of the model is to visualize
the results. First, a plot of the observed values against the predicted values
helps one to understand how well the model fits. Also, a plot of the residuals
versus the predicted values can help uncover systematic patterns in the model
predictions, such as the trend shown in Fig. 5.1. The following two commands
were used to produce the images in Fig. 5.3:

> # Observed values versus predicted values

> # It is a good idea to plot the values on a common scale.

> axisRange <- extendrange(c(observed, predicted))

> plot(observed, predicted,

+ ylim = axisRange,

+ xlim = axisRange)

> # Add a 45 degree reference line

> abline(0, 1, col = "darkgrey", lty = 2)

> # Predicted values versus residuals

> plot(predicted, residualValues, ylab = "residual")

> abline(h = 0, col = "darkgrey", lty = 2)

The caret package contains functions for calculating the RMSE and the
R2 value:

> R2(predicted, observed)

[1] 0.5170123
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> RMSE(predicted, observed)

[1] 0.5234883

There are different formulas for R2; Kv̊alseth (1985) provides a survey of
these. By default, the R2 function uses the square of the correlation coefficient.
Base R contains a function to compute the correlation, including Spearman’s
rank correlation.

> # Simple correlation

> cor(predicted, observed)

[1] 0.7190357
> # Rank correlation

> cor(predicted, observed, method = "spearman")

[1] 0.7554552



Chapter 6

Linear Regression and Its Cousins

In this chapter we will discuss several models, all of which are akin to linear
regression in that each can directly or indirectly be written in the form

yi = b0 + b1xi1 + b2xi2 + · · ·+ bPxiP + ei, (6.1)

where yi represents the numeric response for the ith sample, b0 represents the
estimated intercept, bj represents the estimated coefficient for the jth pre-
dictor, xij represents the value of the jth predictor for the ith sample, and
ei represents random error that cannot be explained by the model. When a
model can be written in the form of Eq. 6.1, we say that it is linear in the
parameters. In addition to ordinary linear regression, these types of mod-
els include partial least squares (PLS) and penalized models such as ridge
regression, the lasso, and the elastic net.

Each of these models seeks to find estimates of the parameters so that the
sum of the squared errors or a function of the sum of the squared errors is
minimized. Section 5.2 illustrated that the mean squared error (MSE) can
be divided into components of irreducible variation, model bias, and model
variance. The objectives of the methods presented in this chapter find pa-
rameter estimates that fall along the spectrum of the bias-variance trade-off.
Ordinary linear regression, at one extreme, finds parameter estimates that
have minimum bias, whereas ridge regression, the lasso, and the elastic net
find estimates that have lower variance. The impact of this trade-off on the
predictive ability of these models will be illustrated in the sections to follow.

A distinct advantage of models that follow the form of Eq. 6.1 is that
they are highly interpretable. For example, if the estimated coefficient of
a predictor is 2.5, then a 1 unit increase in that predictor’s value would, on
average, increase the response by 2.5 units. Furthermore, relationships among
predictors can be further interpreted through the estimated coefficients.

Another advantage of these kinds of models is that their mathematical
nature enables us to compute standard errors of the coefficients, provided that
we make certain assumptions about the distributions of the model residuals.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 6,
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These standard errors can then be used to assess the statistical significance of
each predictor in the model. This inferential view can provide a greater degree
of understanding of the model, as long as the distributional assumptions are
adequately met. Because this work focuses on model prediction, we will not
spend much time on the inferential nature of these models.

While linear regression-type models are highly interpretable, they can be
limited in their usefulness. First, these models are appropriate when the re-
lationship between the predictors and response falls along a hyperplane. For
example, if the data had just one predictor, then the techniques would be
appropriate if the relationship between the predictor and response fell along
a straight line. With more predictors, the relationship would need to fall close
to a flat hyperplane. If there is a curvilinear relationship between the pre-
dictors and response (e.g., such as quadratic, cubic, or interactions among
predictors), then linear regression models can be augmented with additional
predictors that are functions of the original predictors in an attempt to cap-
ture these relationships. More discussion about strategies for augmenting
the original predictors will follow in the sections below. However, nonlinear
relationships between predictors and the response may not be adequately
captured with these models. If this is the case for the data, then the meth-
ods detailed in Chaps. 7 and 8 will better uncover the predictive relationship
between the predictors and the response.

6.1 Case Study: Quantitative Structure-Activity
Relationship Modeling

Chemicals, including drugs, can be represented by chemical formulas. For
example, Fig. 6.1 shows the structure of aspirin, which contains nine carbon,
eight hydrogen, and four oxygen atoms. From this configuration, quantita-
tive measurements can be derived, such as the molecular weight, electrical
charge, or surface area. These quantities are referred to as chemical descrip-
tors, and there are myriad types of descriptors that can be derived from a
chemical equation. Some are simplistic, such as the number of carbon atoms,
while others could be described as arcane (e.g., the coefficient sum of the last
eigenvector from Barysz matrix weighted by the van der Waals volume).

Some characteristics of molecules cannot be analytically determined from
the chemical structure. For example, one way a compound may be of medi-
cal value is if it can inhibit production of a specific protein. This is usually
called the biological activity of a compound. The relationship between the
chemical structure and its activity can be complex. As such, the relationship
is usually determined empirically using experiments. One way to do this is to
create a biological assay for the target of interest (i.e., the protein). A set of
compounds can then be placed into the assay and their activity, or inhibition,
is measured. This activity information generates data which can be used as
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Fig. 6.1: A representation of aspirin, which contains carbon atoms (shown
as black balls) and hydrogen (white) and oxygen atoms (red). The chemical
formula for this molecule is O=C(Oc1ccccc1C(=O)O)C, from which molecular
descriptors can be determined, such as a molecular weight of 180.2 g/mol

the training set for predictive modeling so that compounds, which may not
yet exist, can be screened for activity. This process is referred to as quan-
titative structure-activity relationship (QSAR) modeling. Leach and Gillet
(2003) provide a high-level introduction to QSAR modeling and molecular
descriptors.

While activity is important, other characteristics need to be assessed to
determine if a compound is “drug-like” (Lipinski et al. 1997). Physical qual-
ities, such as the solubility or lipophilicity (i.e., “greasiness”), are evaluated
as well as other properties, such as toxicity. A compound’s solubility is very
important if it is to be given orally or by injection. We will demonstrate var-
ious regression modeling techniques by predicting solubility using chemical
structures.

Tetko et al. (2001) and Huuskonen (2000) investigated a set of compounds
with corresponding experimental solubility values using complex sets of de-
scriptors. They used linear regression and neural network models to estimate
the relationship between chemical structure and solubility. For our analyses,
we will use 1,267 compounds and a set of more understandable descriptors
that fall into one of three groups:

• Two hundred and eight binary “fingerprints” that indicate the presence or
absence of a particular chemical substructure.

• Sixteen count descriptors, such as the number of bonds or the number of
bromine atoms.

• Four continuous descriptors, such as molecular weight or surface area.

On average, the descriptors are uncorrelated. However, there are many pairs
that show strong positive correlations; 47 pairs have correlations greater than
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Fig. 6.2: The relationship between solubility and two descriptors. Left : As
molecular weight of a molecule increases, the solubility generally decreases.
The relationship is roughly log-linear, except for several compounds with low
solubility and large weight and solubility between 0 and −5. Right : For a
particular fingerprint descriptor, there is slightly higher solubility when the
substructure of interest is absent from the molecule

0.90. In some cases, we should expect correlations between descriptors. In the
solubility data, for example, the surface area of a compound is calculated for
regions associated with certain atoms (e.g., nitrogen or oxygen). One de-
scriptor in these data measures the surface area associated with two specific
elements while another uses the same elements plus two more. Given their
definitions, we would expect that the two surface area predictors would be
correlated. In fact, the descriptors are identical for 87% of the compounds.
The small differences between surface area predictors may contain some im-
portant information for prediction, but the modeler should realize that there
are implications of redundancy on the model. Another relevant quality of the
solubility predictors is that the count-based descriptors show a significant
right skewness, which may have an impact on some models (see Chap. 3 for
a discussion of these issues).

The outcome data were measured on the log10 scale and ranged from
−11.6 to 1.6 with an average log solubility value of −2.7. Figure 6.2 shows
the relationship between the experimentally derived solubility values and two
types of descriptors in the example data.

The data were split using random sampling into a training set (n = 951)
and test set (n = 316). The training set will be used to tune and estimate
models, as well as to determine initial estimates of performance using repeated
10-fold cross-validation. The test set will be used for a final characterization
of the models of interest.
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It is useful to explore the training set to understand the characteristics
of the data prior to modeling. Recall that 208 of the predictors are binary
fingerprints. Since there are only two values of these variables, there is very
little that pre-processing will accomplish.

Moving on, we can evaluate the continuous predictors for skewness. The
average skewness statistic was 1.6 (with a minimum of 0.7 and a maximum
of 3.8), indicating that these predictors have a propensity to be right skewed.
To correct for this skewness, a Box–Cox transformation was applied to all
predictors (i.e., the transformation parameter was not estimated to be near
one for any of the continuous predictors).

Using these transformed predictors, is it safe to assume that the rela-
tionship between the predictors and the outcome is linear? Figure 6.3 shows
scatter plots of the predictors against the outcome along with a regression line
from a flexible“smoother”model called loess (Cleveland 1979). The smoothed
regression lines indicate that there are some linear relationships between the
predictors and the outcome (e.g., molecular weight) and some nonlinear rela-
tionships (e.g., the number of origins or chlorines). Because of this, we might
consider augmenting the predictor set with quadratic terms for some vari-
ables.

Are there significant between-predictor correlations? To answer this ques-
tion, principal component analysis (PCA) was used on the full set of trans-
formed predictors, and the percent of variance accounted for by each compo-
nent is determined. Figure 6.4 is commonly known as a scree plot and displays
a profile of the variability accounted for by each component. Notice that the
amount of variability summarized by component drops sharply, with no one
component accounting for more than 13% of the variance. This profile indi-
cates that the structure of the data is contained in a much smaller number of
dimensions than the number of dimensions of the original space; this is often
due to a large number of collinearities among the predictors. Figure 6.5 shows
the correlation structure of the transformed continuous predictors; there are
many strong positive correlations (indicated by the large, dark blue circles).
As previously discussed, this could create problems in developing some mod-
els (such as linear regression), and appropriate pre-processing steps will need
to be taken to account for this problem.

6.2 Linear Regression

The objective of ordinary least squares linear regression is to find the plane
that minimizes the sum-of-squared errors (SSE) between the observed and
predicted response:

SSE =

n∑

i=1

(yi − ŷi)
2,
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Fig. 6.4: A scree plot from a PCA analysis of the solubility predictors
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where yi is the outcome and ŷi is the model prediction of that sample’s
outcome. Mathematically, the optimal plane can be shown to be

(
XTX

)−1
XT y, (6.2)

where X is the matrix of predictors and y is the response vector. Equation 6.2
is also known as β̂ (“beta-hat”) in statistical texts and is a vector that con-
tains the parameter estimates or coefficients for each predictor. This quan-
tity (6.2) is easy to compute, and the coefficients are directly interpretable.
Making some minimal assumptions about the distribution of the residuals,
it is straightforward to show that the parameter estimates that minimize
SSE are the ones that have the least bias of all possible parameter estimates
(Graybill 1976). Hence, these estimates minimize the bias component of the
bias-variance trade-off.

The interpretability of coefficients makes it very attractive as a modeling
tool. At the same time, the characteristics that make it interpretable also
make it prone to potentially fatal flaws. Notice that embedded in Eq. (6.2)

is the term
(
XTX

)−1
, which is proportional to the covariance matrix of the

predictors. A unique inverse of this matrix exists when (1) no predictor can
be determined from a combination of one or more of the other predictors and
(2) the number of samples is greater than the number of predictors. If the
data fall under either of these conditions, then a unique set of regression co-
efficients does not exist. However, a unique set of predicted values can still be

obtained for data that fall under condition (1) by either replacing
(
XTX

)−1

with a conditional inverse (Graybill 1976) or by removing predictors that
are collinear. By default, when fitting a linear model with R and collinearity
exists among predictors, “. . .R fits the largest identifiable model by removing
variables in the reverse order of appearance in the model formula” (Faraway
2005). The upshot of these facts is that linear regression can still be used for
prediction when collinearity exists within the data. But since the regression
coefficients to determine these predictions are not unique, we lose our ability
to meaningfully interpret the coefficients.

When condition (2) is true for a data set, the practitioner can take several
steps to attempt to build a regression model. As a first step we suggest using
pre-processing techniques presented in Sect. 3.3 to remove pairwise correlated
predictors, which will reduce the number of overall predictors. However, this
pre-processing step may not completely eliminate collinearity, since one or
more of the predictors may be functions of two or more of the other predictors.
To diagnose multicollinearity in the context of linear regression, the variance
inflation factor can be used (Myers 1994). This statistic is computed for each
predictor and a function of the correlation between the selected predictor and
all of the other predictors.

After pre-processing the data, if the number of predictors still outnumbers
the number of observations, then we will need to take other measures to re-
duce the dimension of the predictor space. PCA pre-processing (Sect. 3.3)
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is one possible remedy. Other remedies include simultaneous dimension
reduction and regression via PLS or employing methods that shrink param-
eter estimates such as ridge regression, the lasso, or the elastic net.

Another drawback of multiple linear regression is that its solution is linear
in the parameters. This means that the solution we obtain is a flat hyperplane.
Clearly, if the data have curvature or nonlinear structure, then regression will
not be able to identify these characteristics. One visual clue to understand-
ing if the relationship between predictors and the response is not linear is
to examine the basic diagnostic plots illustrated in Fig. 5.3. Curvature in the
predicted-versus-residual plot is a primary indicator that the underlying rela-
tionship is not linear. Quadratic, cubic, or interactions between predictors can
be accommodated in regression by adding quadratic, cubic, and interactions
of the original predictors. But the larger the number of original predictors, the
less practical including some or all of these terms becomes. Taking this ap-
proach can cause the data matrix to have more predictors than observations,
and we then again cannot invert the matrix.

If easily identifiable nonlinear relationships exist between the predictors
and the response, then those additional predictors can be added to the de-
scriptor matrix. If, however, it is not possible to identify these relationships
or the relationships between the predictors and the response is highly non-
linear, then more complex methods such as those discussed in Chap. 7 will
more effectively and efficiently find this structure.

A third notable problem with multiple linear regression is that it is prone
to chasing observations that are away from the overall trend of the majority
of the data. Recall that linear regression seeks to find the parameter esti-
mates that minimize SSE; hence, observations that are far from the trend of
the majority of the data will have exponentially large residuals. In order to
minimize SSE, linear regression will adjust the parameter estimates to better
accommodate these unusual observations. Observations that cause significant
changes in the parameter estimates are called influential, and the field of ro-
bust regression has been developed to address these kinds of problems. One
common approach is to use an alternative metric to SSE that is less sensitive
to large outliers. For example, finding parameter estimates that minimize the
sum of the absolute errors is more resistant to outliers, as seen in Fig. 6.6.
Also, the Huber function uses the squared residuals when they are “small”
and the simple different between the observed and predicted values when the
residuals are above a threshold. This approach can effectively minimize the
influence of observations that fall away from the overall trend in the data.

There are no tuning parameters for multiple linear regression. This fact,
however, does not impugn the practitioner from using rigorous model valida-
tion tools, especially when using this model for prediction. In fact, we must
use the same training and validation techniques described in Chap. 4 to un-
derstand the predictive ability of this model on data which the model has
not seen.
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objective function for several techniques. For the Huber approach, a threshold
of 2 was used

When using resampling techniques such as bootstrapping or cross-vali-
dation, the practitioner must still be conscious of the problems described
above. Consider, for example, a data set where there are 100 samples and 75
predictors. If we use a resampling scheme that uses two-thirds of the data for
training, then we will be unable to find a unique set of regression coefficients,
since the number of predictors in the training set will be larger than the
number of samples. Therefore for multiple linear regression, the practitioner
must be aware of its pitfalls not only when working with the original data set
but also when working with subsets of data created during model training
and evaluation.

To illustrate the problem of correlated predictors, linear models were fit
with combinations of descriptors related to the number of non-hydrogen
atoms and the number of hydrogen bonds. In the training set, these predictors
are highly correlated (correlation: 0.994). Figure 6.3 shows their relationship
with the outcome, which is almost identical. First, we fit two separate re-
gression models with the individual terms and then a third model with both
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Table 6.1: Regression coefficients for two highly correlated predictors across
four separate models

Model NumNonHAtoms NumNonHBonds

NumNonHAtoms only −1.2 (0.1)
NumNonHBonds only −1.2 (0.1)
Both −0.3 (0.5) −0.9 (0.5)
All predictors 8.2 (1.4) −9.1 (1.6)

terms. The predictors were centered and scaled prior to modeling so that
their units would be the same. Table 6.1 shows the regression coefficients and
their standard errors in parentheses. For the individual models, the regression
coefficients are almost identical as are their standard errors. However, when
fitting a model with both terms, the results differ; the slope related to the
number of non-hydrogen atoms is greatly decreased. Also, the standard errors
are increased fivefold when compared to the individual models. This reflects
the instability in the regression linear caused by the between-predictor rela-
tionships and this instability is propagated directly to the model predictions.
Table 6.1 also shows the coefficients for these two descriptors when all of the
predictors are put into the model. Recall from Fig. 6.5 that there are many
collinear predictors in the data and we would expect the effect of collinearity
to be exacerbated. In fact, for these two predictors, the values become wildly
large in magnitude and their standard errors are 14–16-fold larger than those
from the individual models.

In practice, such highly correlated predictors might be managed manually
by removing one of the offending predictors. However, if the number of pre-
dictors is large, this may be difficult. Also, on many occasions, relationships
among predictors can be complex and involve many predictors. In these cases,
manual removal of specific predictors may not be possible and models that
can tolerate collinearity may be more useful.

Linear Regression for Solubility Data

Recall that in Sect. 6.1 we split the solubility data into training and test sets
and that we applied a Box–Cox transformation to the continuous predictors
in order to remove skewness. The next step in the model building process for
linear regression is to identify predictors that have high pairwise correlations
and to remove predictors so that no absolute pairwise correlation is greater
than some pre-specified level. In this case we chose to remove predictors that
have pairwise correlations greater than 0.9 (see Sect. 3.3). At this level, 38
predictors were identified and removed. Upon removing these predictors, a
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linear model was fit to the training data.1 The linear model was resampled
using 10-fold cross-validation and the estimated root mean squared error
(RMSE) was 0.71 with a corresponding R2 value of 0.88.

Predictors that were removed from the training data were then also re-
moved from the test data and the model was then applied to the test set.
The R2 value between the observed and predicted values was 0.87, and the
basic regression diagnostic plots are displayed in Fig. 6.7. There does not
appear to be any bias in the prediction, and the distribution between the
predicted values and residuals appears to be random about zero.

6.3 Partial Least Squares

For many real-life data sets, predictors can be correlated and contain similar
predictive information like illustrated with the solubility data. If the corre-
lation among predictors is high, then the ordinary least squares solution for
multiple linear regression will have high variability and will become unstable.

1 In practice, the correlation threshold would need to be smaller to have a significant
effect on collinearity. In these data, it would also remove important variables. Also,
one would investigate how the terms fit into the model. For example, there may be
interactions between predictors that are important and nonlinear transformations
of predictors may also improve the model. For these data, this set of activities is
examined more closely in Chap. 19.
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For other data sets, the number of predictors may be greater than the number
of observations. In this case, too, ordinary least squares in its usual form will
be unable to find a unique set of regression coefficients that minimize the SSE.

A couple of common solutions to the regression problem under these con-
ditions include pre-processing the predictors by either (1) removal of the
highly correlated predictors using techniques as described in Sect. 3.3 or (2)
conducting PCA on the predictors as described in Sect. 3.3. Removing highly
correlated predictors ensures that pairwise correlations among predictors are
below a pre-specified threshold. However, this process does not necessarily
ensure that linear combinations of predictors are uncorrelated with other
predictors. If this is the case, then the ordinary least squares solution will
still be unstable. Therefore it is important to understand that the removal of
highly correlated pairwise predictors may not guarantee a stable least squares
solution. Alternatively, using PCA for pre-processing guarantees that the re-
sulting predictors, or combinations thereof, will be uncorrelated. The trade-off
in using PCA is that the new predictors are linear combinations of the orig-
inal predictors, and thus, the practical understanding of the new predictors
can become murky.

Pre-processing predictors via PCA prior to performing regression is known
as principal component regression (PCR) (Massy 1965); this technique has
been widely applied in the context of problems with inherently highly corre-
lated predictors or problems with more predictors than observations. While
this two-step regression approach (dimension reduction, then regression) has
been successfully used to develop predictive models under these conditions,
it can easily be misled. Specifically, dimension reduction via PCA does not
necessarily produce new predictors that explain the response. As an example
of this scenario, consider the data in Fig. 6.8 which contains two predictors
and one response. The two predictors are correlated, and PCA summarizes
this relationship using the direction of maximal variability. The right-hand
plot of this figure, however, illustrates that the first PCA direction contains
no predictive information about the response.

As this simple example illustrates, PCA does not consider any aspects
of the response when it selects its components. Instead, it simply chases the
variability present throughout the predictor space. If that variability happens
to be related to the response variability, then PCR has a good chance to
identify a predictive relationship. If, however, the variability in the predictor
space is not related to the variability of the response, then PCR can have
difficulty identifying a predictive relationship when one might actually exist.
Because of this inherent problem with PCR, we recommend using PLS when
there are correlated predictors and a linear regression-type solution is desired.

PLS originated with Herman Wold’s nonlinear iterative partial least
squares (NIPALS) algorithm (Wold 1966, 1982) which linearized models that
were nonlinear in the parameters. Subsequently, Wold et al. (1983) adapted
the NIPALS method for the regression setting with correlated predictors and
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Fig. 6.8: An example of principal component regression for a simple data
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predictors shows the direction of the first principal component. Right : The
first PCA direction contains no predictive information for the response

called this adaptation “PLS.”Briefly, the NIPALS algorithm iteratively seeks
to find underlying, or latent, relationships among the predictors which are
highly correlated with the response. For a univariate response, each iteration
of the algorithm assesses the relationship between the predictors (X) and
response (y) and numerically summarizes this relationship with a vector of
weights (w); this vector is also known as a direction. The predictor data are
then orthogonally projected onto the direction to generate scores (t). The
scores are then used to generate loadings (p), which measure the correlation
of the score vector to the original predictors. At the end of each iteration,
the predictors and the response are“deflated”by subtracting the current esti-
mate of the predictor and response structure, respectively. The new deflated
predictor and response information are then used to generate the next set
of weights, scores, and loadings. These quantities are sequentially stored in
matrices W, T, and P, respectively, and are used for predicting new samples
and computing predictor importance. A schematic of the PLS relationship
between predictors and the response can be seen in Fig. 6.9, and a thorough
explanation of the algorithm can be found in Geladi and Kowalski (1986).

To obtain a better understanding of the algorithm’s function, Stone and
Brooks (1990) linked it to well-known statistical concepts of covariance and
regression. In particular, Stone and Brooks showed that like PCA, PLS finds
linear combinations of the predictors. These linear combinations are com-
monly called components or latent variables. While the PCA linear combi-
nations are chosen to maximally summarize predictor space variability, the
PLS linear combinations of predictors are chosen to maximally summarize
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covariance with the response. This means that PLS finds components that
maximally summarize the variation of the predictors while simultaneously
requiring these components to have maximum correlation with the response.
PLS therefore strikes a compromise between the objectives of predictor space
dimension reduction and a predictive relationship with the response. In other
words, PLS can be viewed as a supervised dimension reduction procedure;
PCR is an unsupervised procedure.

To better understand how PLS works and to relate it to PCR, we will
revisit the data presented in Fig. 6.8. This time we seek the first PLS compo-
nent. The left-hand scatter plot in Fig. 6.10 contrasts the first PLS direction
with the first PCA direction. For this illustration the two directions are nearly
orthogonal, indicating that the optimal dimension reduction direction was not
related to maximal variation in the predictor space. Instead, PLS identified
the optimal predictor space dimension reduction for the purpose of regression
with the response.

Clearly this example is designed to show an important flaw with PCR. In
practice, PCR does not fail this drastically; rather, PCR produces models
with similar predictive ability to PLS. Based on our experience, the number
of components retained via cross-validation using PCR is always equal to
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or greater than the number of components retained by PLS. This is due to
the fact that dimensions retained by PLS have been chosen to be optimally
related to the response, while those chosen with PCR are not.

Prior to performing PLS, the predictors should be centered and scaled,
especially if the predictors are on scales of differing magnitude. As described
above, PLS will seek directions of maximum variation while simultaneously
considering correlation with the response. Even with the constraint of corre-
lation with the response, it will be more naturally drawn towards predictors
with large variation. Therefore, predictors should be adequately preprocessed
prior to performing PLS.

Once the predictors have been preprocessed, the practitioner can model the
response with PLS. PLS has one tuning parameter: the number of components
to retain. Resampling techniques as described in Sect. 4.4 can be used to
determine the optimal number of components.

PCR and PLSR for Solubility Data

To demonstrate the model building process with PLS, let’s return to the
solubility data from Sect. 6.1. Although there are 228 predictors, Figs. 6.4
and 6.5 show that many predictors are highly correlated and that the overall
information within the predictor space is contained in a smaller number of
dimensions. These predictor conditions are very favorable for applying PLS.
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Cross-validation was used to determine the optimal number of PLS compo-
nents to retain that minimize RMSE. At the same time, PCR was performed
using the same cross-validation sets to compare its performance to PLS. Fig-
ure 6.11 contains the results, where PLS found a minimum RMSE (0.682)
with ten components and PCR found a minimum RMSE (0.731) with 35
components. We see with these data that the supervised dimension reduction
finds a minimum RMSE with significantly fewer components than unsuper-
vised dimension reduction. Using the one-standard error rule (Sect. 4.6) would
reduce the number of required PLS components to 8.

Figure 6.12 contrasts the relationship between each of the first two PCR
and PLS components with the response. Because the RMSE is lower for
each of the first two PLS components as compared to the first two PCR
components, it is no surprise that the correlation between these components
and the response is greater for PLS than PCR. This figure illustrates that
PLS is more quickly being steered towards the underlying relationship with
the response.

Prediction of the test set using the optimal PCR and PLS models can
be seen in Fig. 6.13. The predictive ability of each method is good, and the
residuals appear to be randomly scattered about zero. Although the predic-
tive ability of these models is close, PLS finds a simpler model that uses far
fewer components than PCR.
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The PLS regression coefficients for the solubility data are presented in
Table 6.2 (page 127), and the magnitudes are similar to the linear regression
model that includes only those two predictors.

Because the latent variables from PLS are constructed using linear combi-
nations of the original predictors, it is more difficult to quantify the relative
contribution of each predictor to the model. Wold et al. (1993) introduced
a heuristic way to assess variable importance when using the NIPALS algo-
rithm and termed this calculation variable importance in the projection. In
the simple case, suppose that the relationship between the predictors and
the response can be adequately summarized by a one-component PLS model.
The importance of the jth predictor is then proportional to the value of



6.3 Partial Least Squares 119

Predicted

O
bs

er
ve

d

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0

Predicted

R
es

id
ua

l

−2

−1

0

1

2

−10 −8 −6 −4 −2 0

Predicted

−10 −8 −6 −4 −2 0

Predicted
−10 −8 −6 −4 −2 0

O
bs

er
ve

d

−10

−8

−6

−4

−2

0

R
es

id
ua

l

−3

−2

−1

0

1

2

3

Fig. 6.13: Left side: Observed versus predicted values for the solubility test set
for PCR (upper) and PLS (lower). Right side: Residuals versus the predicted
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the normalized weight vector, w, corresponding to the jth predictor. When
the relationship between predictors and the response requires more than one
component, the variable importance calculation becomes more involved. In
this case, the numerator of the importance of the jth predictor is a weighted
sum of the normalized weights corresponding to the jth predictor. The jth
normalized weight of the kth component, wkj , is scaled by the amount of
variation in the response explained by the kth component. The denominator
of the variable importance is the total amount of response variation explained
by all k components. Therefore, the larger the normalized weight and amount
of response variation explained by the component, the more important pre-
dictor is in the PLS model.
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For the solubility data, the top 25 most important predictors are shown
in Fig. 6.14. The larger the VIP value, the more important the predictor is in
relating the latent predictor structure to the response. By its construction, the
squared VIP values sum to the total number of predictors. As a rule-of-thumb,
VIP values exceeding 1 are considered to contain predictive information for
the response. Wold (1995) further suggests that predictors with small PLS
regression coefficients and small VIP values are likely not important and
should be considered as candidates for removal from the model.

Algorithmic Variations of PLS

The NIPALS algorithm works fairly efficiently for data sets of small-to-
moderate size (e.g., < 2,500 samples and < 30 predictors) (Alin 2009). But
when the number of samples (n) and predictors (P ) climbs, the algorithm
becomes inefficient. This inefficiency is due to the way the matrix operations
on the predictors and the response are performed. Specifically, both the pre-
dictor matrix and the response must be deflated (i.e., information must be
subtracted from each matrix, thus creating new versions of each matrix) for
each latent variable. This implies that different versions of the predictor ma-
trix and response must be kept at each iteration of the algorithm. Therefore
an n× P matrix and an n× 1 vector must be recomputed, operated on, and
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stored in each iteration. As n and P grow, so do the memory requirements,
and operations on these matrices must be performed throughout the iterative
process.

In a computational step forward, Lindgren et al. (1993) showed that the
constructs of NIPALS could be obtained by working with a “kernel”matrix of
dimension P × P , the covariance matrix of the predictors (also of dimension
P×P ), and the covariance matrix of the predictors and response (of dimension
P×1). This adjustment improved the speed of the algorithm, especially as the
number of observations became much larger than the number of predictors.

At nearly the same time as the kernel approach was developed, de Jong
(1993) improved upon the NIPALS algorithm by viewing the underlying prob-
lem as finding latent orthogonal variables in the predictor space that maxi-
mize the covariance with the response. This perspective shift led to a different
algorithm that focused on deflating the covariance matrix between the pre-
dictors and the response rather than deflating both the predictor matrix and
the response. de Jong (1993) termed the new approach “SIMPLS” because
it was a simple modification of the PLS algorithm that was framed through
statistics. Because the SIMPLS approach deflates the covariance matrix, it re-
quires storing just the deflated covariance matrix at each iteration which has
dimension P × 1—a significant computational improvement over the storage
requirements of NIPALS. Although the SIMPLS approach solves the opti-
mization in a different way, de Jong (1993) showed that the SIMPLS latent
variables are identical to those from NIPALS when there is only one response.
(More will be discussed below when modeling a multivariate response.)

Other authors have also proposed computational modifications to the NI-
PALS algorithm through adjustments to the kernel approach (de Jong and
Ter Braak 1994; Dayal and MacGregor 1997). Dayal and MacGregor (1997)
developed two efficient modifications, especially when n >> P , and, similar
to SIMPLS, only require a deflation of the covariance matrix between the
predictors and the response at each step of the iterative process. In their
first alteration to the inner workings of the algorithm, the original predictor
matrix is used in the computations (without deflation). In the second alter-
ation, the covariance matrix of the predictors is used in the computations
(also without deflation).

Alin (2009) provided a comprehensive computational efficiency comparison
of NIPALS to other algorithmic modifications. In this work, Alin used a vary-
ing number of samples (500–10,000), predictors (10–30), responses (1–15),
and number of latent variables to derive (3–10). In nearly every scenario, the
second kernel algorithm of Dayal and MacGregor was more computationally
efficient than all other approaches and provided superior performance when
n > 2, 500 and P > 30. And in the cases where the second algorithm did not
provide the most computational efficiency, the first algorithm did.

The above approaches to implementing PLS provide clear computational
advantages over the original algorithm. However, as the number of predictors
grows, each becomes less efficient. To address this scenario when P > n,
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Rännar et al. (1994) constructed a kernel based on the predictor matrix
and response that had dimension n × n. A usual PLS analysis can then be
performed using this kernel, the outer products of the predictors, and the
outer products of the response (each with dimension n × n). Hence, this
algorithm is computationally more efficient when there are more predictors
than samples.

As noted in Fig. 6.9, the PLS components summarize the data through
linear substructures (i.e., hyperplanes) of the original predictor space that
are related to the response. But for many problems, the underlying structure
in the predictor space that is optimally related to the response is not linear
but curvilinear or nonlinear. Several authors have attempted to address this
shortcoming of PLS in order to find this type of predictor space/response re-
lationship. While many methods exist, the most easily adaptable approaches
using the algorithms explained above are provided by Berglund and Wold
(1997) and Berglund et al. (2001). In Berglund and Wold (1997), the au-
thors show that adding squared predictors (and cubic, if necessary) can be
included with the original predictors. PLS is then applied to the augmented
data set. The authors also show that there is no need to add cross-product
terms, thus greatly reducing the number of new predictors added to the orig-
inal data. Subsequently, Berglund et al. (2001) employ the use of the GIFI
approach (Michailidis and de Leeuw 1998) which splits each predictor into
two or more bins for those predictors that are thought to have a nonlinear
relationship with the response. Cut points for the bins are selected by the
user and are based on either prior knowledge or characteristics of the data.
The original predictors that were binned are then excluded from the data set
that includes the binned versions of the predictors. PLS is then applied to
the new predictor set in usual way.

Both of these approaches have successfully found nonlinear relationships
between the predictors and the response. But there can be a considerable
amount of effort required in constructing the data sets for input to PLS,
especially as the number of predictors becomes large. As we will show in sub-
sequent sections, other predictive modeling techniques can more naturally
identify nonlinear structures between predictors and the response without
having to modify the predictor space. Therefore, if a more intricate relation-
ship between predictors and response exists, then we suggest employing one
of the other techniques rather than trying to improve the performance of PLS
through this type of augmentation.

6.4 Penalized Models

Under standard assumptions, the coefficients produced by ordinary least
squares regression are unbiased and, of all unbiased linear techniques, this
model also has the lowest variance. However, given that the MSE is a
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combination of variance and bias (Sect. 5.2), it is very possible to produce
models with smaller MSEs by allowing the parameter estimates to be biased.
It is common that a small increase in bias can produce a substantial drop in
the variance and thus a smaller MSE than ordinary least squares regression
coefficients. One consequence of large correlations between the predictor vari-
ances is that the variance can become very large. Combatting collinearity by
using biased models may result in regression models where the overall MSE
is competitive.

One method of creating biased regression models is to add a penalty to
the sum of the squared errors. Recall that original least squares regression
found parameter estimates to minimize the sum of the squared errors:

SSE =
n∑

i=1

(yi − ŷi)
2.

When the model over-fits the data, or when there are issues with collinearity
(as in Table 6.1), the linear regression parameter estimates may become in-
flated. As such, we may want to control the magnitude of these estimates to
reduce the SSE. Controlling (or regularizing) the parameter estimates can be
accomplished by adding a penalty to the SSE if the estimates become large.
Ridge regression (Hoerl 1970) adds a penalty on the sum of the squared re-
gression parameters:

SSEL2 =

n∑

i=1

(yi − ŷi)
2 + λ

P∑

j=1

β2
j .

The “L2” signifies that a second-order penalty (i.e., the square) is being used
on the parameter estimates. The effect of this penalty is that the parameter
estimates are only allowed to become large if there is a proportional reduction
in SSE. In effect, this method shrinks the estimates towards 0 as the λ penalty
becomes large (these techniques are sometimes called “shrinkage methods”).

By adding the penalty, we are making a trade-off between the model vari-
ance and bias. By sacrificing some bias, we can often reduce the variance
enough to make the overall MSE lower than unbiased models.

For example, Fig. 6.15 shows the path of the regression coefficients for the
solubility data over different values of λ. Each line corresponds to a model
parameter and the predictors were centered and scaled prior to this analysis
so that their units are the same. When there is no penalty, many parameters
have reasonable values, such as the predictor for the number of multiple
bonds (shown in orange). However, some parameter estimates are abnormally
large, such as the number of non-hydrogen atoms (in green) and the number
of non-hydrogen bonds (purple) previously singled out in Table 6.1. These
large values are indicative of collinearity issues. As the penalty is increased,
the parameter estimates move closer to 0 at different rates. By the time
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Fig. 6.15: The ridge-regression coefficient path

the penalty has a value of λ = 0.002, these two predictors are much more
well behaved, although other coefficient values are still relatively large in
magnitude.

Using cross-validation, the penalty value was optimized. Figure 6.16 shows
how the RMSE changes with λ. When there is no penalty, the error is inflated.
When the penalty is increased, the error drops from 0.72 to 0.69. As the
penalty increases beyond 0.036, the bias becomes to large and the model
starts to under-fit, resulting in an increase in MSE.

While ridge regression shrinks the parameter estimates towards 0, the
model does not set the values to absolute 0 for any value of the penalty.
Even though some parameter estimates become negligibly small, this model
does not conduct feature selection.

A popular alternative to ridge regression is the least absolute shrinkage
and selection operator model, frequently called the lasso (Tibshirani 1996).
This model uses a similar penalty to ridge regression:

SSEL1 =

n∑

i=1

(yi − ŷi)
2 + λ

P∑

j=1

|βj |.

While this may seem like a small modification, the practical implications
are significant. While the regression coefficients are still shrunk towards 0,
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Fig. 6.16: The cross-validation profiles for a ridge regression model

a consequence of penalizing the absolute values is that some parameters are
actually set to 0 for some value of λ. Thus the lasso yields models that si-
multaneously use regularization to improve the model and to conduct feature
selection. In comparing, the two types of penalties, Friedman et al. (2010)
stated

“Ridge regression is known to shrink the coefficients of correlated predictors
towards each other, allowing them to borrow strength from each other. In the
extreme case of k identical predictors, they each get identical coefficients with
1/kth the size that any single one would get if fit alone.[. . . ]

lasso, on the other hand, is somewhat indifferent to very correlated predictors,
and will tend to pick one and ignore the rest.”

Figure 6.17 shows the paths of the lasso coefficients over different penalty
values. The x-axis is the fraction of the full solution (i.e., ordinary least
squares with no penalty). Smaller values on the x-axis indicate that a large
penalty has been used. When the penalty is large, many of the regression
coefficients are set to 0. As the penalty is reduced, many have nonzero co-
efficients. Examining the trace for the number of non-hydrogen bonds (in
purple), the coefficient is initially 0, has a slight increase, then is shrunken
towards 0 again. When the fraction is around 0.4, this predictor is entered
back into the model with a nonzero coefficient that consistently increases
(most likely due to collinearity). Table 6.2 shows regression coefficients for
ordinary least squares, PLS, ridge-regression, and the lasso model. The ridge-
regression penalty used in this table is 0.036 and the lasso penalty was 0.15.
The ridge-regressionmodel shrinks the coefficients for the non-hydrogen atom
and non-hydrogen bond predictors significantly towards 0 in comparison to



126 6 Linear Regression and Its Cousins

Fraction of Full Solution

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

t

−10

0

10

0.0 0.2 0.4 0.6 0.8 1.0

NumNonHAtoms NumNonHBonds NumMultBonds

Fig. 6.17: The lasso coefficient path for the solubility data. The x-axis is the
fraction of the full least squares solution. As the fraction increases, the lasso
penalty (λ) decreases

the ordinary least squares models while the lasso model shrinks the non-
hydrogen atom predictor out of the model. Between these models, the lasso
model had the smallest cross-validation error of 0.67, slightly better than the
PLS model (0.68) and ridge regression (0.69).

This type of regularization has been a very active area of research. The
lasso model has been extended to many other techniques, such as linear dis-
criminant analysis (Clemmensen et al. 2011; Witten and Tibshirani 2011),
PLS (Chun and Keleş 2010), and PCA (Jolliffe et al. 2003; Zou et al. 2004).
A significant advancement for this model was Efron et al. (2004). Their model,
least angle regression (LARS), is a broad framework that encompasses the
lasso and similar models. The LARS model can be used to fit lasso mod-
els more efficiently, especially in high-dimensional problems. Friedman et al.
(2010) and Hesterberg et al. (2008) provide a survey of these techniques.

A generalization of the lasso model is the elastic net (Zou and Hastie 2005).
This model combines the two types of penalties:

SSEEnet =

n∑

i=1

(yi − ŷi)
2 + λ1

P∑

j=1

β2
j + λ2

P∑

j=1

|βj |.
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Table 6.2: Regression coefficients for two highly correlated predictors for PLS,
ridge regression, the elastic net and other models

Model NumNonHAtoms NumNonHBonds

NumNonHAtoms only −1.2 (0.1)
NumNonHBonds only −1.2 (0.1)
Both −0.3 (0.5) −0.9 (0.5)
All predictors 8.2 (1.4) −9.1 (1.6)
PLS, all predictors −0.4 −0.8
Ridge, all predictors −0.3 −0.3
lasso/elastic net 0.0 −0.8

The ridge penalty used for this table was 0.036 and the lasso penalty was
0.15. The PLS model used ten components.
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Fig. 6.18: The cross-validation profiles for an elastic net model

The advantage of this model is that it enables effective regularization via the
ridge-type penalty with the feature selection quality of the lasso penalty. The
Zou and Hastie (2005) suggest that this model will more effectively deal with
groups of high correlated predictors.

Both the penalties require tuning to achieve optimal performance. Again,
using resampling, this model was tuned for the solubility data. Figure 6.18
shows the performance profiles across three values of the ridge penalty and 20
values of the lasso penalty. The pure lasso model (with λ1 = 0) has an initial
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drop in the error and then an increase when the fraction is greater than 0.2.
The two models with nonzero values of the ridge penalty have minimum errors
with a larger model. In the end, the optimal performance was associated with
the lasso model with a fraction of 0.15, corresponding to 130 predictors out
of a possible 228.

6.5 Computing

The R packages elasticnet, caret, lars, MASS, pls and stats will be referenced.
The solubility data can be obtained from the AppliedPredictiveModeling R

package. The predictors for the training and test sets are contained in data
frames called solTrainX and solTestX, respectively. To obtain the data in R,

> library(AppliedPredictiveModeling)

> data(solubility)

> ## The data objects begin with "sol":

> ls(pattern = "^solT")

[1] "solTestX" "solTestXtrans" "solTestY" "solTrainX"
[5] "solTrainXtrans" "solTrainY"

Each column of the data corresponds to a predictor (i.e., chemical descriptor)
and the rows correspond to compounds. There are 228 columns in the data.
A random sample of column names is

> set.seed(2)

> sample(names(solTrainX), 8)

[1] "FP043" "FP160" "FP130" "FP038" "NumBonds"
[6] "NumNonHAtoms" "FP029" "FP185"

The “FP” columns correspond to the binary 0/1 fingerprint predictors that
are associated with the presence or absence of a particular chemical struc-
ture. Alternate versions of these data that have been Box–Cox transformed
are contained in the data frames solTrainXtrans and solTestXtrans. These
modified versions were used in the analyses in this and subsequent chapters.

The solubility values for each compound are contained in numeric vectors
named solTrainY and solTestY.

Ordinary Linear Regression

The primary function for creating linear regression models using simple least
squares is lm. This function takes a formula and data frame as input. Because
of this, the training set predictors and outcome should be contained in the
same data frame. We can create a new data frame for this purpose:
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> trainingData <- solTrainXtrans

> ## Add the solubility outcome

> trainingData$Solubility <- solTrainY

To fit a linear model with all the predictors entering in the model as simple,
independent linear terms, the formula shortcut Solubility ∼ . can be used:

> lmFitAllPredictors <- lm(Solubility ~ ., data = trainingData)

An intercept term is automatically added to the model. The summary method
displays model summary statistics, the parameter estimates, their standard
errors, and p-values for testing whether each individual coefficient is different
than 0:

> summary(lmFitAllPredictors)

Call:
lm(formula = Solubility ~ ., data = trainingData)

Residuals:
Min 1Q Median 3Q Max

-1.75620 -0.28304 0.01165 0.30030 1.54887

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.431e+00 2.162e+00 1.124 0.261303
FP001 3.594e-01 3.185e-01 1.128 0.259635
FP002 1.456e-01 2.637e-01 0.552 0.580960
FP003 -3.969e-02 1.314e-01 -0.302 0.762617
FP004 -3.049e-01 1.371e-01 -2.223 0.026520 *
FP005 2.837e+00 9.598e-01 2.956 0.003223 **
FP006 -6.886e-02 2.041e-01 -0.337 0.735917
FP007 4.044e-02 1.152e-01 0.351 0.725643
FP008 1.121e-01 1.636e-01 0.685 0.493331
FP009 -8.242e-01 8.395e-01 -0.982 0.326536

: : : : :
MolWeight -1.232e+00 2.296e-01 -5.365 1.09e-07 ***
NumAtoms -1.478e+01 3.473e+00 -4.257 2.35e-05 ***
NumNonHAtoms 1.795e+01 3.166e+00 5.670 2.07e-08 ***
NumBonds 9.843e+00 2.681e+00 3.671 0.000260 ***
NumNonHBonds -1.030e+01 1.793e+00 -5.746 1.35e-08 ***
NumMultBonds 2.107e-01 1.754e-01 1.201 0.229990
NumRotBonds -5.213e-01 1.334e-01 -3.908 0.000102 ***
NumDblBonds -7.492e-01 3.163e-01 -2.369 0.018111 *
NumAromaticBonds -2.364e+00 6.232e-01 -3.794 0.000161 ***
NumHydrogen 8.347e-01 1.880e-01 4.439 1.04e-05 ***
NumCarbon 1.730e-02 3.763e-01 0.046 0.963335
NumNitrogen 6.125e+00 3.045e+00 2.011 0.044645 *
NumOxygen 2.389e+00 4.523e-01 5.283 1.69e-07 ***
NumSulfer -8.508e+00 3.619e+00 -2.351 0.018994 *
NumChlorine -7.449e+00 1.989e+00 -3.744 0.000195 ***
NumHalogen 1.408e+00 2.109e+00 0.668 0.504615
NumRings 1.276e+00 6.716e-01 1.901 0.057731 .
HydrophilicFactor 1.099e-02 1.137e-01 0.097 0.922998
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SurfaceArea1 8.825e-02 6.058e-02 1.457 0.145643
SurfaceArea2 9.555e-02 5.615e-02 1.702 0.089208 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5524 on 722 degrees of freedom
Multiple R-squared: 0.9446, Adjusted R-squared: 0.9271
F-statistic: 54.03 on 228 and 722 DF, p-value: < 2.2e-16

(Since there are 229 predictors in the model, the output is very long and
the results have been trimmed.) A more comprehensive discussion of linear
models in R can be found in Faraway (2005).

The simple estimates of the RMSE and R2 were 0.55 and 0.945, respec-
tively. Note that these values are likely to be highly optimistic as they have
been derived by re-predicting the training set data.

To compute the model solubility values for new samples, the predict

method is used:

> lmPred1 <- predict(lmFitAllPredictors, solTestXtrans)

> head(lmPred1)

20 21 23 25 28 31
0.99370933 0.06834627 -0.69877632 0.84796356 -0.16578324 1.40815083

We can collect the observed and predicted values into a data frame, then use
the caret function defaultSummary to estimate the test set performance:

> lmValues1 <- data.frame(obs = solTestY, pred = lmPred1)

> defaultSummary(lmValues1)

RMSE Rsquared
0.7455802 0.8722236

Based on the test set, the summaries produced by the summary function for
lm were optimistic.

If we wanted a robust linear regression model, then the robust linear model
function (rlm) from the MASS package could be used, which by default em-
ploys the Huber approach. Similar to the lm function, rlm is called as follows:

> rlmFitAllPredictors <- rlm(Solubility ~ ., data = trainingData)

The train function generates a resampling estimate of performance. Be-
cause the training set size is not small, 10-fold cross-validation should produce
reasonable estimates of model performance. The function trainControl spec-
ifies the type of resampling:

> ctrl <- trainControl(method = "cv", number = 10)

train will accept a model formula or a non-formula interface (see Sect. 4.9
for a summary of different methods for specifying predictor models). The
non-formula interface is
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> set.seed(100)

> lmFit1 <- train(x = solTrainXtrans, y = solTrainY,

+ method = "lm", trControl = ctrl)

The random number seed is set prior to modeling so that the results can be
reproduced. The results are:

> lmFit1

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results

RMSE Rsquared RMSE SD Rsquared SD
0.721 0.877 0.07 0.0247

For models built to explain, it is important to check model assumptions,
such as the residual distribution. For predictive models, some of the same
diagnostic techniques can shed light on areas where the model is not predict-
ing well. For example, we could plot the residuals versus the predicted values
for the model. If the plot shows a random cloud of points, we will feel more
comfortable that there are no major terms missing from the model (such as
quadratic terms, etc.) or significant outliers. Another important plot is the
predicted values versus the observed values to assess how close the predic-
tions are to the actual values. Two methods of doing this (using the training
set samples are

> xyplot(solTrainY ~ predict(lmFit1),

+ ## plot the points (type = 'p') and a background grid ('g')
+ type = c("p", "g"),

+ xlab = "Predicted", ylab = "Observed")

> xyplot(resid(lmFit1) ~ predict(lmFit1),

+ type = c("p", "g"),

+ xlab = "Predicted", ylab = "Residuals")

The results are shown in Fig. 6.19. Note that the resid function generates the
model residuals for the training set and that using the predict function with-
out an additional data argument returns the predicted values for the training
set. For this model, there are no obvious warning signs in the diagnostic plots.

To build a smaller model without predictors with extremely high correla-
tions, we can use the methods of Sect. 3.3 to reduce the number of predictors
such that there are no absolute pairwise correlations above 0.9:

> corThresh <- .9

> tooHigh <- findCorrelation(cor(solTrainXtrans), corThresh)

> corrPred <- names(solTrainXtrans)[tooHigh]

> trainXfiltered <- solTrainXtrans[, -tooHigh]
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Fig. 6.19: Diagnostic plots for the linear model using the training set. Left :
A plot of the observed values versus the predicted values. This plot can show
outliers or areas where the model is not calibrated. Right : A plot of the
residuals versus predicted values. If the model has been well specified, this
plot should be a random cloud of points with no outliers or patterns (e.g., a
funnel shape)

> testXfiltered <- solTestXtrans[, -tooHigh]

> set.seed(100)

> lmFiltered <- train(solTrainXtrans, solTrainY, method = "lm",

+ trControl = ctrl)

> lmFiltered

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results

RMSE Rsquared RMSE SD Rsquared SD
0.721 0.877 0.07 0.0247

Robust linear regression can also be performed using the train function which
employs the rlm function. However, it is important to note that rlm does not
allow the covariance matrix of the predictors to be singular (unlike the lm

function). To ensure that predictors are not singular, we will pre-process
the predictors using PCA. Using the filtered set of predictors, the robust
regression model performance is

> set.seed(100)

> rlmPCA <- train(solTrainXtrans, solTrainY,
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+ method = "rlm",

+ preProcess = "pca",

+ trControl = ctrl)

> rlmPCA

951 samples
228 predictors

Pre-processing: principal component signal extraction, scaled, centered
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results

RMSE Rsquared RMSE SD Rsquared SD
0.782 0.854 0.0372 0.0169

Partial Least Squares

The pls package (Mevik and Wehrens 2007) has functions for PLS and
PCR. SIMPLS, the first Dayal and MacGregor algorithm, and the algo-
rithm developed by Rännar et al. (1994) are each available. By default, the
pls package uses the first Dayal and MacGregor kernel algorithm while the
other algorithms can be specified using the method argument using the val-
ues "oscorespls", "simpls", or "widekernelpls". The plsr function, like the lm

function, requires a model formula:

> plsFit <- plsr(Solubility ~ ., data = trainingData)

The number of components can be fixed using the ncomp argument or, if
left to the default, the maximum number of components will be calculated.
Predictions on new samples can be calculated using the predict function.
Predictions can be made for a specific number of components or for several
values at a time. For example

> predict(plsFit, solTestXtrans[1:5,], ncomp = 1:2)

, , 1 comps

Solubility
20 -1.789335
21 -1.427551
23 -2.268798
25 -2.269782
28 -1.867960

, , 2 comps

Solubility



134 6 Linear Regression and Its Cousins

20 0.2520469
21 0.3555028
23 -1.8795338
25 -0.6848584
28 -1.5531552

The plsr function has options for either K-fold or leave-one-out cross-
validation (via the validation argument) or the PLS algorithm to use, such
as SIMPLS (using the method argument).

There are several helper functions to extract the PLS components (in the
function loadings), the PLS scores (scores), and other quantities. The plot

function has visualizations for many aspects of the model.
train can also be used with method values of pls, such as "oscorespls",

"simpls", or "widekernelpls". For example

> set.seed(100)

> plsTune <- train(solTrainXtrans, solTrainY,

+ method = "pls",

+ ## The default tuning grid evaluates

+ ## components 1... tuneLength

+ tuneLength = 20,

+ trControl = ctrl,

+ preProc = c("center", "scale"))

This code reproduces the PLS model displayed in Fig. 6.11.

Penalized Regression Models

Ridge-regression models can be created using the lm.ridge function in the
MASS package or the enet function in the elasticnet package. When calling
the enet function, the lambda argument specifies the ridge-regression penalty:

> ridgeModel <- enet(x = as.matrix(solTrainXtrans), y = solTrainY,

+ lambda = 0.001)

Recall that the elastic net model has both ridge penalties and lasso penalties
and, at this point, the R object ridgeModel has only fixed the ridge penalty
value. The lasso penalty can be computed efficiently for many values of the
penalty. The predict function for enet objects generates predictions for one
or more values of the lasso penalty simultaneously using the s and mode argu-
ments. For ridge regression, we only desire a single lasso penalty of 0, so we
want the full solution. To produce a ridge-regression solution we define s=1

with mode = "fraction". This last option specifies how the amount of penal-
ization is defined; in this case, a value of 1 corresponds to a faction of 1, i.e.,
the full solution:

> ridgePred <- predict(ridgeModel, newx = as.matrix(solTestXtrans),

+ s = 1, mode = "fraction",
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+ type = "fit")

> head(ridgePred$fit)

20 21 23 25 28 31
0.96795590 0.06918538 -0.54365077 0.96072014 -0.03594693 1.59284535

To tune over the penalty, train can be used with a different method:

> ## Define the candidate set of values

> ridgeGrid <- data.frame(.lambda = seq(0, .1, length = 15))

> set.seed(100)

> ridgeRegFit <- train(solTrainXtrans, solTrainY,

+ method = "ridge",

+ ## Fir the model over many penalty values

+ tuneGrid = ridgeGrid,

+ trControl = ctrl,

+ ## put the predictors on the same scale

+ preProc = c("center", "scale"))

> ridgeRegFit

951 samples
228 predictors

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results across tuning parameters:

lambda RMSE Rsquared RMSE SD Rsquared SD
0 0.721 0.877 0.0699 0.0245
0.00714 0.705 0.882 0.045 0.0199
0.0143 0.696 0.885 0.0405 0.0187
0.0214 0.693 0.886 0.0378 0.018
0.0286 0.691 0.887 0.0359 0.0175
0.0357 0.69 0.887 0.0346 0.0171
0.0429 0.691 0.888 0.0336 0.0168
0.05 0.692 0.888 0.0329 0.0166
0.0571 0.693 0.887 0.0323 0.0164
0.0643 0.695 0.887 0.032 0.0162
0.0714 0.698 0.887 0.0319 0.016
0.0786 0.7 0.887 0.0318 0.0159
0.0857 0.703 0.886 0.0318 0.0158
0.0929 0.706 0.886 0.032 0.0157
0.1 0.709 0.885 0.0321 0.0156

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was lambda = 0.0357.

The lasso model can be estimated using a number of different functions.
The lars package contains the lars function, the elasticnet package has enet,
and the glmnet package has a function of the same name. The syntax for
these functions is very similar. For the enet function, the usage would be
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> enetModel <- enet(x = as.matrix(solTrainXtrans), y = solTrainY,

+ lambda = 0.01, normalize = TRUE)

The predictor data must be a matrix object, so the data frame solTrainXtrans

needs to be converted for the enet function. The predictors should be cen-
tered and scaled prior to modeling. The normalize argument will do this stan-
dardization automatically. The parameter lambda controls the ridge-regression
penalty and, setting this value to 0, fits the lasso model. The lasso penalty
does not need to be specified until the time of prediction:

> enetPred <- predict(enetModel, newx = as.matrix(solTestXtrans),

+ s = .1, mode = "fraction",

+ type = "fit")

> ## A list is returned with several items:

> names(enetPred)

[1] "s" "fraction" "mode" "fit"
> ## The 'fit' component has the predicted values:

> head(enetPred$fit)

20 21 23 25 28 31
-0.60186178 -0.42226814 -1.20465564 -1.23652963 -1.25023517 -0.05587631

To determine which predictors are used in the model, the predict method is
used with type = "coefficients":

> enetCoef<- predict(enetModel, newx = as.matrix(solTestXtrans),

+ s = .1, mode = "fraction",

+ type = "coefficients")

> tail(enetCoef$coefficients)

NumChlorine NumHalogen NumRings HydrophilicFactor
0.00000000 0.00000000 0.00000000 0.12678967

SurfaceArea1 SurfaceArea2
0.09035596 0.00000000

More than one value of s can be used with the predict function to generate
predictions from more than one model simultaneously.

Other packages to fit the lasso model or some alternate version of the
model are biglars (for large data sets), FLLat (for the fused lasso), grplasso
(the group lasso), penalized, relaxo (the relaxed lasso), and others. To tune
the elastic net model using train, we specify method = "enet". Here, we tune
the model over a custom set of penalties:

> enetGrid <- expand.grid(.lambda = c(0, 0.01, .1),

+ .fraction = seq(.05, 1, length = 20))

> set.seed(100)

> enetTune <- train(solTrainXtrans, solTrainY,

+ method = "enet",

+ tuneGrid = enetGrid,

+ trControl = ctrl,

+ preProc = c("center", "scale"))

Figure 6.18 can be created from this object using plot(enetTune).
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Fig. 6.20: A sample of ten spectra of the Tecator data. The colors of the
curves reflect the absorption values, where yellow indicates low absorption
and red is indicative of high absorption

Exercises

6.1. Infrared (IR) spectroscopy technology is used to determine the chemi-
cal makeup of a substance. The theory of IR spectroscopy holds that unique
molecular structures absorb IR frequencies differently. In practice a spectrom-
eter fires a series of IR frequencies into a sample material, and the device
measures the absorbance of the sample at each individual frequency. This
series of measurements creates a spectrum profile which can then be used to
determine the chemical makeup of the sample material.

A Tecator Infratec Food and Feed Analyzer instrument was used to analyze
215 samples of meat across 100 frequencies. A sample of these frequency pro-
files is displayed in Fig. 6.20. In addition to an IR profile, analytical chemistry
determined the percent content of water, fat, and protein for each sample.
If we can establish a predictive relationship between IR spectrum and fat
content, then food scientists could predict a sample’s fat content with IR
instead of using analytical chemistry. This would provide costs savings, since
analytical chemistry is a more expensive, time-consuming process:

(a) Start R and use these commands to load the data:

> library(caret)

> data(tecator)

> # use ?tecator to see more details
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The matrix absorp contains the 100 absorbance values for the 215 samples,
while matrix endpoints contains the percent of moisture, fat, and protein
in columns 1–3, respectively.

(b) In this example the predictors are the measurements at the individual fre-
quencies. Because the frequencies lie in a systematic order (850–1,050nm),
the predictors have a high degree of correlation. Hence, the data lie in a
smaller dimension than the total number of predictors (215). Use PCA
to determine the effective dimension of these data. What is the effective
dimension?

(c) Split the data into a training and a test set, pre-process the data, and
build each variety of models described in this chapter. For those mod-
els with tuning parameters, what are the optimal values of the tuning
parameter(s)?

(d) Which model has the best predictive ability? Is any model significantly
better or worse than the others?

(e) Explain which model you would use for predicting the fat content of a
sample.

6.2. Developing a model to predict permeability (see Sect. 1.4) could save sig-
nificant resources for a pharmaceutical company, while at the same time more
rapidly identifying molecules that have a sufficient permeability to become a
drug:

(a) Start R and use these commands to load the data:

> library(AppliedPredictiveModeling)

> data(permeability)

The matrix fingerprints contains the 1,107 binary molecular predic-
tors for the 165 compounds, while permeability contains permeability
response.

(b) The fingerprint predictors indicate the presence or absence of substruc-
tures of a molecule and are often sparse meaning that relatively few of the
molecules contain each substructure. Filter out the predictors that have
low frequencies using the nearZeroVar function from the caret package.
How many predictors are left for modeling?

(c) Split the data into a training and a test set, pre-process the data, and
tune a PLS model. How many latent variables are optimal and what is
the corresponding resampled estimate of R2?

(d) Predict the response for the test set. What is the test set estimate of R2?
(e) Try building other models discussed in this chapter. Do any have better

predictive performance?
(f) Would you recommend any of your models to replace the permeability

laboratory experiment?

6.3. A chemical manufacturing process for a pharmaceutical product was
discussed in Sect. 1.4. In this problem, the objective is to understand the re-
lationship between biological measurements of the raw materials (predictors),
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measurements of the manufacturing process (predictors), and the response of
product yield. Biological predictors cannot be changed but can be used to
assess the quality of the raw material before processing. On the other hand,
manufacturing process predictors can be changed in the manufacturing pro-
cess. Improving product yield by 1% will boost revenue by approximately
one hundred thousand dollars per batch:

(a) Start R and use these commands to load the data:

> library(AppliedPredictiveModeling)

> data(chemicalManufacturing)

The matrix processPredictors contains the 57 predictors (12 describing
the input biological material and 45 describing the process predictors)
for the 176 manufacturing runs. yield contains the percent yield for each
run.

(b) A small percentage of cells in the predictor set contain missing values. Use
an imputation function to fill in these missing values (e.g., see Sect. 3.8).

(c) Split the data into a training and a test set, pre-process the data, and
tune a model of your choice from this chapter. What is the optimal value
of the performance metric?

(d) Predict the response for the test set. What is the value of the performance
metric and how does this compare with the resampled performance metric
on the training set?

(e) Which predictors are most important in the model you have trained? Do
either the biological or process predictors dominate the list?

(f) Explore the relationships between each of the top predictors and the re-
sponse. How could this information be helpful in improving yield in future
runs of the manufacturing process?



Chapter 7

Nonlinear Regression Models

The previous chapter discussed regression models that were intrinsically
linear. Many of these models can be adapted to nonlinear trends in the data
by manually adding model terms (e.g., squared terms). However, to do this,
one must know the specific nature of the nonlinearity in the data.

There are numerous regression models that are inherently nonlinear in
nature. When using these models, the exact form of the nonlinearity does not
need to be known explicitly or specified prior to model training. This chapter
looks at several models: neural networks, multivariate adaptive regression
splines (MARS), support vector machines (SVMs), and K-nearest neighbors
(KNNs). Tree-based models are also nonlinear. Due to their popularity and
use in ensemble models, we have devoted the next chapter to those methods.

7.1 Neural Networks

Neural networks (Bishop 1995; Ripley 1996; Titterington 2010) are power-
ful nonlinear regression techniques inspired by theories about how the brain
works. Like partial least squares, the outcome is modeled by an intermedi-
ary set of unobserved variables (called hidden variables or hidden units here).
These hidden units are linear combinations of the original predictors, but,
unlike PLS models, they are not estimated in a hierarchical fashion (Fig. 7.1).

As previously stated, each hidden unit is a linear combination of some or
all of the predictor variables. However, this linear combination is typically
transformed by a nonlinear function g(·), such as the logistic (i.e., sigmoidal)
function:

hk(x) = g

(
β0k +

P∑
i=1

xjβjk

)
, where

g(u) =
1

1 + e−u
.
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Fig. 7.1: A diagram of a neural network with a single hidden layer. The hidden
units are linear combinations of the predictors that have been transformed
by a sigmoidal function. The output is modeled by a linear combination of
the hidden units

The β coefficients are similar to regression coefficients; coefficient βjk is the
effect of the jth predictor on the kth hidden unit. A neural network model
usually involves multiple hidden units to model the outcome. Note that, unlike
the linear combinations in PLS, there are no constraints that help define
these linear combinations. Because of this, there is little likelihood that the
coefficients in each unit represent some coherent piece of information.
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Once the number of hidden units is defined, each unit must be related to
the outcome. Another linear combination connects the hidden units to the
outcome:

f(x) = γ0 +

H∑
k=1

γkhk.

For this type of network model and P predictors, there are a total of H(P +
1)+H+1 total parameters being estimated, which quickly becomes large as
P increases. For the solubility data, recall that there are 228 predictors. A
neural network model with three hidden units would estimate 691 parameters
while a model with five hidden units would have 1,151 coefficients.

Treating this model as a nonlinear regression model, the parameters are
usually optimized to minimize the sum of the squared residuals. This can be
a challenging numerical optimization problem (recall that there are no con-
straints on the parameters of this complex nonlinear model). The parameters
are usually initialized to random values and then specialized algorithms for
solving the equations are used. The back-propagation algorithm (Rumelhart
et al. 1986) is a highly efficient methodology that works with derivatives to
find the optimal parameters. However, it is common that a solution to this
equation is not a global solution, meaning that we cannot guarantee that the
resulting set of parameters are uniformly better than any other set.

Also, neural networks have a tendency to over-fit the relationship between
the predictors and the response due to the large number of regression coeffi-
cients. To combat this issue, several different approaches have been proposed.
First, the iterative algorithms for solving for the regression equations can be
prematurely halted (Wang and Venkatesh 1984). This approach is referred to
as early stopping and would stop the optimization procedure when some esti-
mate of the error rate starts to increase (instead of some numerical tolerance
to indicate that the parameter estimates or error rate are stable). However,
there are obvious issues with this procedure. First, how do we estimate the
model error? The apparent error rate can be highly optimistic (as discussed
in Sect. 4.1) and further splitting of the training set can be problematic. Also,
since the measured error rate has some amount of uncertainty associated with
it, how can we tell if it is truly increasing?

Another approach to moderating over-fitting is to use weight decay, a pe-
nalization method to regularize the model similar to ridge regression discussed
in the last chapter. Here, we add a penalty for large regression coefficients
so that any large value must have a significant effect on the model errors to
be tolerated. Formally, the optimization produced would try to minimize a
alternative version of the sum of the squared errors:

n∑
i=1

(yi − fi(x))
2 + λ

H∑
k=1

P∑
j=0

β2
jk + λ

H∑
k=0

γ2
k
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for a given value of λ. As the regularization value increases, the fitted model
becomes more smooth and less likely to over-fit the training set. Of course,
the value of this parameter must be specified and, along with the number of
hidden units, is a tuning parameter for the model. Reasonable values of λ
range between 0 and 0.1. Also note that since the regression coefficients are
being summed, they should be on the same scale; hence the predictors should
be centered and scaled prior to modeling.

The structure of the model described here is the simplest neural network
architecture: a single-layer feed-forward network. There are many other kinds,
such as models where there are more than one layer of hidden units (i.e.,
there is a layer of hidden units that models the other hidden units). Also,
other model architectures have loops going both directions between layers.
Practitioners of these models may also remove specific connections between
objects to further optimize the model. There have also been several Bayesian
approaches to neural networks (Neal 1996). The Bayesian framework outlined
in Neal (1996) for these models automatically incorporates regularization
and automatic feature selection. This approach to neural networks is very
powerful, but the computational aspects of the model become even more
formidable. A model very similar to neural networks is self-organizing maps
(Kohonen 1995). This model can be used as an unsupervised, exploratory
technique or in a supervised fashion for prediction (Melssen et al. 2006).

Given the challenge of estimating a large number of parameters, the fit-
ted model finds parameter estimates that are locally optimal; that is, the
algorithm converges, but the resulting parameter estimates are unlikely to
be the globally optimal estimates. Very often, different locally optimal solu-
tions can produce models that are very different but have nearly equivalent
performance. This model instability can sometimes hinder this model. As
an alternative, several models can be created using different starting values
and averaging the results of these model to produce a more stable prediction
(Perrone and Cooper 1993; Ripley 1995; Tumer and Ghosh 1996). Such model
averaging often has a significantly positive effect on neural networks.

These models are often adversely affected by high correlation among the
predictor variables (since they use gradients to optimize the model parame-
ters). Two approaches for mitigating this issue is to pre-filter the predictors
to remove the predictors that are associated with high correlations. Alterna-
tively a feature extraction technique, such as principal component analysis,
can be used prior to modeling to eliminate correlations. One positive side ef-
fect of both these approaches is that fewer model terms need to be optimized,
thus improving computation time.

For the solubility data, model averaged neural networks were used. Three
different weight decay values were evaluated (λ = 0.00, 0.01, 0.10) along with
a single hidden layer with sizes ranging between 1 and 13 hidden units. The
final predictions are the averages of five different neural networks created
using different initial parameter values. The cross-validated RMSE profiles of
these models are displayed in Fig. 7.2. Increasing the amount of weight decay
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Fig. 7.2: RMSE profiles for the neural network model. The optimal model
used λ = 0.1 and 11 hidden units

clearly improved model performance, while more hidden units also reduce the
model error. The optimal model used 11 hidden units with a total of 2,531
coefficients. The performance of the model is fairly stable for a high degree
of regularization (i.e., λ = 0.1), so smaller models could also be effective for
these data.

7.2 Multivariate Adaptive Regression Splines

Like neural networks and partial least squares, MARS (Friedman 1991) uses
surrogate features instead of the original predictors. However, whereas PLS
and neural networks are based on linear combinations of the predictors,
MARS creates two contrasted versions of a predictor to enter the model.
Also, the surrogate features in MARS are usually a function of only one or
two predictors at a time. The nature of the MARS features breaks the pre-
dictor into two groups and models linear relationships between the predictor
and the outcome in each group. Specifically, given a cut point for a predictor,
two new features are “hinge” or “hockey stick” functions of the original (see
Fig. 7.3). The“left-hand”feature has values of zero greater than the cut point,
while the second feature is zero less than the cut point. The new features are
added to a basic linear regression model to estimate the slopes and intercepts.
In effect, this scheme creates a piecewise linear model where each new feature
models an isolated portion of the original data.
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How was the cut point determined? Each data point for each predictor
is evaluated as a candidate cut point by creating a linear regression model
with the candidate features, and the corresponding model error is calculated.
The predictor/cut point combination that achieves the smallest error is then
used for the model. The nature of the predictor transformation makes such a
large number of linear regressions computationally feasible. In some MARS
implementations, including the one used here, the utility of simple linear
terms for each predictor (i.e., no hinge function) is also evaluated.

After the initial model is created with the first two features, the model
conducts another exhaustive search to find the next set of features that,
given the initial set, yield the best model fit. This process continues until a
stopping point is reached (which can be set by the user).

In the initial search for features in the solubility data, a cut point of 5.9 for
molecular weight had the smallest error rate. The resulting artificial predic-
tors are shown in the top two panels of Fig. 7.3. One predictor has all values
less than the cut point set to zero and values greater than the cut point are
left unchanged. The second feature is the mirror image of the first. Instead of
the original data, these two new predictors are used to predict the outcome in
a linear regression model. The bottom panel of Fig. 7.3 shows the result of the
linear regression with the two new features and the piecewise nature of the
relationship. The “left-hand” feature is associated with a negative slope when
the molecular weight is less than 5.9 while the “right-hand” feature estimates
a positive slope for larger values of the predictor.

Mathematically, the hinge function for new features can be written as

h(x) =

{
x x > 0

0 x ≤ 0
(7.1)

A pair of hinge functions is usually written as h(x − a) and h(a − x). The
first is nonzero when x > a, while the second is nonzero when x < a. Note
that when this is true the value of the function is actually −x. For the MARS
model shown in Fig. 7.3, the actual model equation would be

−5 + 2.1× h(MolWeight− 5.94516) + 3× h(5.94516−MolWeight).

The second term in this equation is associated with the right-hand feature
shown in Fig. 7.3 while the last component of the equation is the left-hand
feature. The regression line below the cut is decreasing despite a positive
coefficient for the last feature.

Table 7.1 shows the first few steps of the feature generation phase (prior
to pruning). The features were entered into the linear regression model from
top to bottom. Here the binary fingerprint descriptor enters the model as
a plain linear term (splitting a binary variable would be nonsensical). The
generalized cross-validation (GCV) column shows the estimated RMSE for
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Fig. 7.3: An example of the features used by MARS for the solubility data.
After finding a cut point of 5.9 for molecular weight, two new features are
created and used in a linear regression model. The top two panels show the
relationship between the original predictor and the two resulting features.
The bottom panel shows the predicted relationship when using these two
features in a linear regression model. The red line indicates the contribution
of the “left-hand” hinge function while the blue line is associated with the
other feature
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Table 7.1: The results of several iterations of the MARS algorithm prior to
pruning

Predictor Type Cut RMSE Coefficient

Intercept 4.193 −9.33
MolWeight Right 5.95 2.351 −3.23
MolWeight Left 5.95 1.148 0.66
SurfaceArea1 Right 1.96 0.935 0.19
SurfaceArea1 Left 1.96 0.861 −0.66
NumNonHAtoms Right 3.00 0.803 −7.51
NumNonHAtoms Left 3.00 0.761 8.53
FP137 Linear 0.727 1.24
NumOxygen Right 1.39 0.701 2.22
NumOxygen Left 1.39 0.683 −0.43
NumNonHBonds Right 2.58 0.670 2.21
NumNonHBonds Left 2.58 0.662 −3.29

The root mean squared error was estimated using the GCV statistic

the model containing terms on the current row and all rows above. Prior to
pruning, each pair of hinge functions is kept in the model despite the slight
reduction in the estimated RMSE.

Once the full set of features has been created, the algorithm sequentially
removes individual features that do not contribute significantly to the model
equation. This “pruning” procedure assesses each predictor variable and esti-
mates how much the error rate was decreased by including it in the model.
This process does not proceed backwards along the path that the features
were added; some features deemed important at the beginning of the process
may be removed while features added towards the end might be retained. To
determine the contribution of each feature to the model, the GCV statistic
is used. This value is a computational shortcut for linear regression models
that produces an error value that approximates leave-one-out cross-validation
(Golub et al. 1979). GCV produces better estimates than the apparent error
rate for determining the importance of each feature in the model. The num-
ber of terms to remove can be manually set or treated as a tuning parameter
and determined using some other form of resampling.

The process above is a description of an additive MARS model where
each surrogate feature involves a single predictor. However, MARS can build
models where the features involve multiple predictors at once. With a second-
degree MARS model, the algorithm would conduct the same search of a single
term that improves the model and, after creating the initial pair of features,
would instigate another search to create new cuts to couple with each of the
original features. Suppose the pair of hinge functions are denoted as A and B.
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The search procedure attempts to find hinge functions C and D that, when
multiplied by A, result in an improvement in the model; in other words, the
model would have terms for A, A×B and A×C. The same procedure would
occur for feature B. Note that the algorithm will not add additional terms if
the model is not improved by their addition. Also, the pruning procedure may
eliminate the additional terms. For MARS models that can include two or
more terms at a time, we have observed occasional instabilities in the model
predictions where a few sample predictions are wildly inaccurate (perhaps an
order of magnitude off of the true value). This problem has not been observed
with additive MARS models.

To summarize, there are two tuning parameters associated with the MARS
model: the degree of the features that are added to the model and the number
of retained terms. The latter parameter can be automatically determined us-
ing the default pruning procedure (using GCV), set by the user or determined
using an external resampling technique. For our analysis of the solubility data,
we used 10-fold cross-validation to characterize model performance over first-
and second-order models and 37 values for the number of model terms, rang-
ing from 2 to 38. The resulting performance profile is shown in Fig. 7.4. There
appears to be very little difference in the first- and second-degree models in
terms of RMSE.

The cross-validation procedure picked a second-degree model with 38
terms. However, because the profiles of the first- and second-order model
are almost identical, the more parsimonious first-order model was chosen as
the final model. This model used 38 terms but was a function of only 30
predictors (out of a possible 228).

Cross-validation estimated the RMSE to be 0.7 log units and the R2 to
be 0.887. Recall that the MARS procedure internally uses GCV to estimate
model performance. Using GCV, the RMSE was estimated to be 0.4 log
units and an R2 of 0.908. Using the test set of 316 samples, the RMSE was
determined to be 0.7 with a corresponding R2 of 0.879. Clearly, the GCV
estimates are more encouraging than those obtained by the cross-validation
procedure or the test set. However, note that the internal GCV estimate
that MARS employs evaluates an individual model while the external cross-
validation procedure is exposed to the variation in the entire model building
process, including feature selection. Since the GCV estimate does not reflect
the uncertainty from feature selection, it suffers from selection bias (Ambroise
and McLachlan 2002). This phenomenon will be discussed more in Chap. 19.

There are several advantages to using MARS. First, the model automat-
ically conducts feature selection; the model equation is independent of pre-
dictor variables that are not involved with any of the final model features.
This point cannot be underrated. Given a large number of predictors seen in
many problem domains, MARS potentially thins the predictor set using the
same algorithm that builds the model. In this way, the feature selection rou-
tine has a direct connection to functional performance. The second advantage
is interpretability. Each hinge feature is responsible for modeling a specific
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Fig. 7.4: RMSE profiles for the MARS model. The cross-validation procedure
picked a second-degree model with 38 terms, although there is little difference
between the first- and second-degree models. Given this equivalence, the more
simplistic first-order model was chosen as the final model

region in the predictor space using a (piecewise) linear model. When the
MARS model is additive, the contribution of each predictor can be isolated
without the need to consider the others. This can be used to provide clear
interpretations of how each predictor relates to the outcome. For nonaddi-
tive models, the interpretive power of the model is not reduced. Consider a
second-degree feature involving two predictors. Since each hinge function is
split into two regions, three of the four possible regions will be zero and offer
no contribution to the model. Because of this, the effect of the two factors
can be further isolated, making the interpretation as simple as the additive
model. Finally, the MARS model requires very little pre-processing of the
data; data transformations and the filtering of predictors are not needed. For
example, a zero variance predictor will never be chosen for a split since it
offers no possible predictive information. Correlated predictors do not drasti-
cally affect model performance, but they can complicate model interpretation.
Suppose the training set contained two predictors that were nearly perfectly
correlated. Since MARS can select a predictor more than once during the
iterations, the choice of which predictor is used in the feature is essentially
random. In this case, the model interpretation is hampered by two redun-
dant pieces of information that show up in different parts of the model under
different names.

Another method to help understand the nature of how the predictors affect
the model is to quantify their importance to the model. For MARS, one tech-
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nique for doing this is to track the reduction in the root mean squared error
(as measured using the GCV statistic) that occurs when adding a particular
feature to the model. This reduction is attributed to the original predictor(s)
associated with the feature. These improvements in the model can be aggre-
gated for each predictor as a relative measure of the impact on the model. As
seen in Table 7.1, there is a drop in the RMSE from 4.19 to 1.15 (a reduction
of 3.04) after the two molecular weight features were added to the model.
After this, adding terms for the first surface area predictor decreases the er-
ror by 0.29. Given these numbers, it would appear that the molecular weight
predictor is more important to the model than the first surface area predictor.
This process is repeated for every predictor used in the model. Predictors that
were not used in any feature have an importance of zero. For the solubility
model, the predictors MolWeight, NumNonHAtoms, and SurfaceArea2 appear
to be have the greatest influence on the MARS model (see the Computing
section at the end of the chapter for more details).

Figure 7.5 illustrates the interpretability of the additive MARS model with
the continuous predictors. For each panel, the line represents the prediction
profile for that variable when all the others are held constant at their mean
level. The additive nature of the model allows each predictor to be viewed in
isolation; changing the values of the other predictor variables will not alter
the shape of the profile, only the location on the y-axis where the profile
starts.

7.3 Support Vector Machines

SVMs are a class of powerful, highly flexible modeling techniques. The theory
behind SVMs was originally developed in the context of classification models.
Later, in Chap. 13, the motivation for this technique is discussed in its more
natural form. For regression, we follow Smola (1996) and Drucker et al. (1997)
and motivate this technique in the framework of robust regression where we
seek to minimize the effect of outliers on the regression equations. Also, there
are several flavors of support vector regression and we focus on one particular
technique called ε-insensitive regression.

Recall that linear regression seeks to find parameter estimates that mini-
mize SSE (Sect. 6.2). One drawback of minimizing SSE is that the parameter
estimates can be influenced by just one observation that falls far from the
overall trend in the data. When data may contain influential observations,
an alternative minimization metric that is less sensitive, such as the Huber
function, can be used to find the best parameter estimates. This function uses
the squared residuals when they are “small” and uses the absolute residuals
when the residuals are large. See Fig. 6.6 on p. 110 for an illustration.

SVMs for regression use a function similar to the Huber function, with
an important difference. Given a threshold set by the user (denoted as ε),
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Fig. 7.5: The predicted relationship between the outcome and the continu-
ous predictors using the MARS model (holding all other predictors at their
mean value). The additive nature of the model allows each predictor to be
viewed in isolation. Note that the final predicted values are the summation of
each individual profile. The panels are ordered from top to bottom by their
importance to the model
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data points with residuals within the threshold do not contribute to the
regression fit while data points with an absolute difference greater than the
threshold contribute a linear-scale amount. There are several consequences to
this approach. First, since the squared residuals are not used, large outliers
have a limited effect on the regression equation. Second, samples that the
model fits well (i.e., the residuals are small) have no effect on the regression
equation. In fact, if the threshold is set to a relatively large value, then the
outliers are the only points that define the regression line! This is somewhat
counterintuitive: the poorly predicted points define the line. However, this
approach has been shown to be very effective in defining the model.

To estimate the model parameters, SVM uses the ε loss function shown in
Fig. 7.6 but also adds a penalty. The SVM regression coefficients minimize

Cost

n∑
i=1

Lε(yi − ŷi) +

P∑
j=1

β2
j ,

where Lε(·) is the ε-insensitive function. The Cost parameter is the cost
penalty that is set by the user, which penalizes large residuals.1

Recall that the simple linear regression model predicted new samples using
linear combinations of the data and parameters. For a new sample, u, the
prediction equation is

ŷ = β0 + β1u1 + . . .+ βPuP

= β0 +
P∑

j=1

βjuj

The linear support vector machine prediction function is very similar. The pa-
rameter estimates can be written as functions of a set of unknown parameters
(αi) and the training set data points so that

ŷ = β0 + β1u1 + . . .+ βPuP

= β0 +

P∑
j=1

βjuj

= β0 +
P∑

j=1

n∑
i=1

αixijuj

= β0 +
n∑

i=1

αi

⎛
⎝ P∑

j=1

xijuj

⎞
⎠ . (7.2)

1 The penalty here is written as the reverse of ridge regression or weight decay in
neural networks since it is attached to residuals and not the parameters.
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Fig. 7.6: The relationship between a model residual and its contribution to
the regression line for several techniques. For the Huber approach, a threshold
of 2 was used while for the support vector machine, a value of ε = 1 was used.
Note that the y-axis scales are different to make the figures easier to read

There are several aspects of this equation worth pointing out. First,
there are as many α parameters as there are data points. From the stand-
point of classical regression modeling, this model would be considered over-
parameterized; typically, it is better to estimate fewer parameters than data
points. However, the use of the cost value effectively regularizes the model to
help alleviate this problem.

Second, the individual training set data points (i.e., the xij) are required
for new predictions. When the training set is large, this makes the prediction
equations less compact than other techniques. However, for some percentage
of the training set samples, the αi parameters will be exactly zero, indicat-
ing that they have no impact on the prediction equation. The data points
associated with an αi parameter of zero are the training set samples that
are within ±ε of the regression line (i.e., are within the “funnel” or “tube”
around the regression line). As a consequence, only a subset of training set
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data points, where α �= 0, are needed for prediction. Since the regression line
is determined using these samples, they are called the support vectors as they
support the regression line.

Figure 7.7 illustrates the robustness of this model. A simple linear model
was simulated with a slope of 4 and an intercept of 1; one extreme outlier
was added to the data. The top panel shows the model fit for a linear regres-
sion model (black solid line) and a support vector machine regression model
(blue dashed line) with ε = 0.01. The linear regression line is pulled towards
this point, resulting in estimates of the slope and intercept of 3.5 and 1.2,
respectively. The support vector regression fit is shown in blue and is much
closer to the true regression line with a slope of 3.9 and an intercept of 0.9.
The middle panel again shows the SVM model, but the support vectors are
solid black circles and the other points are shown in red. The horizontal grey
reference lines indicate zero ± ε. Out of 100 data points, 70 of these were
support vectors.

Finally, note that in the last form of Eq. 7.2, the new samples enter into
the prediction function as sum of cross products with the new sample values.
In matrix algebra terms, this corresponds to a dot product (i.e., x′u). This is
important because this regression equation can be rewritten more generally
as

f(u) = β0 +

n∑
i=1

αiK(xi,u),

where K(·) is called the kernel function. When predictors enter the model
linearly, the kernel function reduces to a simple sum of cross products shown
above:

K(xi,u) =

P∑
j=1

xijuj = x′
iu.

However, there are other types of kernel functions that can be used to general-
ize the regression model and encompass nonlinear functions of the predictors:

polynomial = (φ (x′u) + 1)
degree

radial basis function = exp(−σ‖x− u‖2)
hyperbolic tangent = tanh (φ (x′u) + 1) ,

where φ and σ are scaling parameters. Since these functions of the predictors
lead to nonlinear models, this generalization is often called the “kernel trick.”

To illustrate the ability of this model to adapt to nonlinear relationships,
we simulated data that follow a sin wave in the bottom of Fig. 7.7. Outliers
were also added to these data. A linear regression model with an intercept and
a term for sin(x) was fit to the model (solid black line). Again, the regression
line is pulled towards the outlying points. An SVM model with a radial basis
kernel function is represented by the blue dashed line (without specifying the
sin functional form). This line better describes the overall structure of the
data.



156 7 Nonlinear Regression Models

−2 −1 0 1 2

−
5

0
5

10

Predictor

O
ut

co
m

e

Least Squares
SVM

−5 0 5 10

−
2

−
1

0
1

2

Predicted Value

R
es

id
ua

l

2 4 6 8 10

−
5

−
3

−
1

1

Predictor

O
ut

co
m

e

Fig. 7.7: The robustness qualities of SVM models. Top: a small simulated
data set with a single large outlier is used to show the difference between an
ordinary regression line (red) and the linear SVM model (blue). Middle: the
SVM residuals versus the predicted values (the upper end of the y-axis scale
was reduced to make the plot more readable). The plot symbols indicate the
support vectors (shown as grey colored circles) and the other samples (red
crosses). The horizontal lines are ±ε = 0.01. Bottom: A simulated sin wave
with several outliers. The red line is an ordinary regression line (intercept and
a term for sin(x)) and the blue line is a radial basis function SVM model
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Which kernel function should be used? This depends on the problem. The
radial basis function has been shown to be very effective. However, when the
regression line is truly linear, the linear kernel function will be a better choice.

Note that some of the kernel functions have extra parameters. For example,
the polynomial degree in the polynomial kernel must be specified. Similarly,
the radial basis function has a parameter (σ) that controls the scale. These
parameters, along with the cost value, constitute the tuning parameters for
the model. In the case of the radial basis function, there is a possible com-
putational shortcut to estimating the kernel parameter. Caputo et al. (2002)
suggested that the parameter can be estimated using combinations of the
training set points to calculate the distribution of ||x − x′||2, then use the
10th and 90th percentiles as a range for σ. Instead of tuning this parame-
ter over a grid of candidate values, we can use the midpoint of these two
percentiles.

The cost parameter is the main tool for adjusting the complexity of the
model. When the cost is large, the model becomes very flexible since the
effect of errors is amplified. When the cost is small, the model will “stiffen”
and become less likely to over-fit (but more likely to underfit) because the
contribution of the squared parameters is proportionally large in the modified
error function. One could also tune the model over the size of the funnel (e.g.,
over ε). However, there is a relationship between ε and the cost parameter.
In our experience, we have found that the cost parameter provides more
flexibility for tuning the model. So we suggest fixing a value for ε and tuning
over the other kernel parameters.

Since the predictors enter into the model as the sum of cross products,
differences in the predictor scales can affect the model. Therefore, we recom-
mend centering and scaling the predictors prior to building an SVM model.

SVMs were applied to the solubility data. First, a radial basis function
kernel was used. The kernel parameter was estimated analytically to be
σ = 0.0039 and the model was tuned over 14 cost values between 0.25 and
2048 on the log2 scale (Fig. 7.8). When the cost values are small, the model
under-fits the data, but, as the error starts to increase when the cost ap-
proaches 210, over-fitting begins. The cost value associated with the smallest
RMSE was 128. A polynomial model was also evaluated. Here, we tuned over
the cost, the polynomial degree, and a scale factor. In general, quadratic mod-
els have smaller error rates than the linear models. Also, models associated
with larger-scale factors have better performance. The optimal model was
quadratic with a scale factor of 0.01 and a cost value of 2 (Fig. 7.9).

As a comparison, both the optimal radial basis and the polynomial SVM
models use a similar number of support vectors, 623 and 627, respectively (out
of 951 training samples). Also it is important to point out that tuning the
radial basis function kernel parameter was easier than tuning the polynomial
model (which has three tuning parameters).

The literature on SVM models and other kernel methods has been vi-
brant and many alternate methodologies have been proposed. One method,
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the relevance vector machine (Tipping 2001), is a Bayesian analog to the
SVM model. In this case, the α parameters described above have associated
prior distributions and the selection of relevance vectors is determined using
their posterior distribution. If the posterior distribution is highly concen-
trated around zero, the sample is not used in the prediction equation. There
are usually less relevance vectors in this model than support vectors in an
SVM model.

7.4 K-Nearest Neighbors

The KNN approach simply predicts a new sample using the K-closest sam-
ples from the training set (similar to Fig. 4.3). Unlike other methods in this
chapter, KNN cannot be cleanly summarized by a model like the one pre-
sented in Eq. 7.2. Instead, its construction is solely based on the individual
samples from the training data. To predict a new sample for regression,KNN
identifies that sample’s KNNs in the predictor space. The predicted response
for the new sample is then the mean of the K neighbors’ responses. Other
summary statistics, such as the median, can also be used in place of the mean
to predict the new sample.

The basic KNN method as described above depends on how the user
defines distance between samples. Euclidean distance (i.e., the straight-line
distance between two samples) is the most commonly used metric and is
defined as follows: ⎛

⎝ P∑
j=1

(xaj − xbj)
2

⎞
⎠

1
2

,

where xa and xb are two individual samples. Minkowski distance is a gener-
alization of Euclidean distance and is defined as⎛

⎝ P∑
j=1

|xaj − xbj |q
⎞
⎠

1
q

,

where q > 0 (Liu 2007). It is easy to see that when q = 2, then Minkowski
distance is the same as Euclidean distance. When q = 1, then Minkowski dis-
tance is equivalent to Manhattan (or city-block) distance, which is a common
metric used for samples with binary predictors. Many other distance metrics
exist, such as Tanimoto, Hamming, and cosine, and are more appropriate
for specific types of predictors and in specific scientific contexts. Tanimoto
distance, for example, is regularly used in computational chemistry prob-
lems when molecules are described using binary fingerprints (McCarren et al.
2011).
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Because the KNN method fundamentally depends on distance between
samples, the scale of the predictors can have a dramatic influence on the
distances among samples. Data with predictors that are on vastly different
scales will generate distances that are weighted towards predictors that have
the largest scales. That is, predictors with the largest scales will contribute
most to the distance between samples. To avoid this potential bias and to
enable each predictor to contribute equally to the distance calculation, we
recommend that all predictors be centered and scaled prior to performing
KNN.

In addition to the issue of scaling, using distances between samples can
be problematic if one or more of the predictor values for a sample is miss-
ing, since it is then not possible to compute the distance between samples.
If this is the case, then the analyst has a couple of options. First, either the
samples or the predictors can be excluded from the analysis. This is the least
desirable option; however, it may be the only practical choice if the sam-
ple(s) or predictor(s) are sparse. If a predictor contains a sufficient amount
of information across the samples, then an alternative approach is to impute
the missing data using a näıve estimator such as the mean of the predictor,
or a nearest neighbor approach that uses only the predictors with complete
information (see Sect. 3.4).

Upon pre-processing the data and selecting the distance metric, the next
step is to find the optimal number of neighbors. Like tuning parameters from
other models, K can be determined by resampling. For the solubility data,
20 values of K ranging between 1 and 20 were evaluated. As illustrated in
Fig. 7.10, the RMSE profile rapidly decreases across the first four values of
K, then levels off through K = 8, followed by a steady increase in RMSE as
K increases. This performance profile is typical for KNN, since small values
of K usually over-fit and large values of K underfit the data. RMSE ranged
from 1.041 to 1.23 across the candidate values, with the minimum occurring
at K = 4; cross-validated R2 at the optimum K is 0.747.

The elementary version of KNN is intuitive and straightforward and can
produce decent predictions, especially when the response is dependent on
the local predictor structure. However, this version does have some notable
problems, of which researchers have sought solutions. Two commonly noted
problems are computational time and the disconnect between local structure
and the predictive ability of KNN.

First, to predict a sample, distances between the sample and all other
samples must be computed. Computation time therefore increases with n
because the training data must be loaded into memory and because distances
between the new sample and all of the training samples must be computed. To
mitigate this problem, one can replace the original data with a less memory-
intensive representation of the data that describes the locations of the original
data. One specific example of this representation is a k-dimensional tree (or k-
d tree) (Bentley 1975). A k-d tree orthogonally partitions the predictor space
using a tree approach but with different rules than the kinds of trees described
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Fig. 7.10: The RMSE cross-validation profile for a KNN model applied to
the solubility data. The optimal number of neighbors is 4

in Chap. 8. After the tree has been grown, a new sample is placed through
the structure. Distances are only computed for those training observations in
the tree that are close to the new sample. This approach provides significant
computational improvements, especially when the number of training samples
is much larger than the number of predictors.

The KNN method can have poor predictive performance when local pre-
dictor structure is not relevant to the response. Irrelevant or noisy predictors
are one culprit, since these can cause similar samples to be driven away from
each other in the predictor space. Hence, removing irrelevant, noise-laden pre-
dictors is a key pre-processing step for KNN. Another approach to enhancing
KNN predictivity is to weight the neighbors’ contribution to the prediction
of a new sample based on their distance to the new sample. In this variation,
training samples that are closer to the new sample contribute more to the
predicted response, while those that are farther away contribute less to the
predicted response.

7.5 Computing

This section will reference functions from the caret, earth, kernlab, and nnet
packages.

R has a number of packages and functions for creating neural networks.
Relevant packages include nnet, neural, and RSNNS. The nnet package is the
focus here since it supports the basic neural network models outlined in this
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chapter (i.e., a single layer of hidden units) and weight decay and has sim-
ple syntax. RSNNS supports a wide array of neural networks. Bergmeir and
Benitez (2012) outline the various neural network packages in R and contain
a tutorial on RSNNS.

Neural Networks

To fit a regression model, the nnet function takes both the formula and non-
formula interfaces. For regression, the linear relationship between the hidden
units and the prediction can be used with the option linout = TRUE. A basic
neural network function call would be

> nnetFit <- nnet(predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model

+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

This would create a single model with 5 hidden units. Note, this assumes that
the data in predictors have been standardized to be on the same scale.

To use model averaging, the avNNet function in the caret package has nearly
identical syntax:

> nnetAvg <- avNNet(predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ ## Specify how many models to average

+ repeats = 5,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model

+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

Again, new samples are processed using

> predict(nnetFit, newData)

> ## or

> predict(nnetAvg, newData)

To mimic the earlier approach of choosing the number of hidden units and
the amount of weight decay via resampling, the train function can be applied
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using either method = "nnet" or method = "avNNet". First, we remove predic-
tors to ensure that the maximum absolute pairwise correlation between the
predictors is less than 0.75.

> ## The findCorrelation takes a correlation matrix and determines the

> ## column numbers that should be removed to keep all pair-wise

> ## correlations below a threshold

> tooHigh <- findCorrelation(cor(solTrainXtrans), cutoff = .75)

> trainXnnet <- solTrainXtrans[, -tooHigh]

> testXnnet <- solTestXtrans[, -tooHigh]

> ## Create a specific candidate set of models to evaluate:

> nnetGrid <- expand.grid(.decay = c(0, 0.01, .1),

+ .size = c(1:10),

+ ## The next option is to use bagging (see the

+ ## next chapter) instead of different random

+ ## seeds.

+ .bag = FALSE)

> set.seed(100)

> nnetTune <- train(solTrainXtrans, solTrainY,

+ method = "avNNet",

+ tuneGrid = nnetGrid,

+ trControl = ctrl,

+ ## Automatically standardize data prior to modeling

+ ## and prediction

+ preProc = c("center", "scale"),

+ linout = TRUE,

+ trace = FALSE,

+ MaxNWts = 10 * (ncol(trainXnnet) + 1) + 10 + 1,

+ maxit = 500)

Multivariate Adaptive Regression Splines

MARS models are in several packages, but the most extensive implementation
is in the earth package. The MARS model using the nominal forward pass
and pruning step can be called simply

> marsFit <- earth(solTrainXtrans, solTrainY)

> marsFit

Selected 38 of 47 terms, and 30 of 228 predictors
Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceArea1, FP142, ...
Number of terms at each degree of interaction: 1 37 (additive model)
GCV 0.3877448 RSS 312.877 GRSq 0.907529 RSq 0.9213739

Note that since this model used the internal GCV technique for model selec-
tion, the details of this model are different than the one used previously in
the chapter. The summary method generates more extensive output:

> summary(marsFit)
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Call: earth(x=solTrainXtrans, y=solTrainY)

coefficients
(Intercept) -3.223749
FP002 0.517848
FP003 -0.228759
FP059 -0.582140
FP065 -0.273844
FP075 0.285520
FP083 -0.629746
FP085 -0.235622
FP099 0.325018
FP111 -0.403920
FP135 0.394901
FP142 0.407264
FP154 -0.620757
FP172 -0.514016
FP176 0.308482
FP188 0.425123
FP202 0.302688
FP204 -0.311739
FP207 0.457080
h(MolWeight-5.77508) -1.801853
h(5.94516-MolWeight) 0.813322
h(NumNonHAtoms-2.99573) -3.247622
h(2.99573-NumNonHAtoms) 2.520305
h(2.57858-NumNonHBonds) -0.564690
h(NumMultBonds-1.85275) -0.370480
h(NumRotBonds-2.19722) -2.753687
h(2.19722-NumRotBonds) 0.123978
h(NumAromaticBonds-2.48491) -1.453716
h(NumNitrogen-0.584815) 8.239716
h(0.584815-NumNitrogen) -1.542868
h(NumOxygen-1.38629) 3.304643
h(1.38629-NumOxygen) -0.620413
h(NumChlorine-0.46875) -50.431489
h(HydrophilicFactor- -0.816625) 0.237565
h(-0.816625-HydrophilicFactor) -0.370998
h(SurfaceArea1-1.9554) 0.149166
h(SurfaceArea2-4.66178) -0.169960
h(4.66178-SurfaceArea2) -0.157970

Selected 38 of 47 terms, and 30 of 228 predictors
Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceArea1, FP142, ...
Number of terms at each degree of interaction: 1 37 (additive model)
GCV 0.3877448 RSS 312.877 GRSq 0.907529 RSq 0.9213739

In this output, h(·) is the hinge function. In the output above, the term
h(MolWeight-5.77508) is zero when the molecular weight is less than 5.77508
(i.e., similar to the top panel of Fig. 7.3). The reflected hinge function would
be shown as h(5.77508 - MolWeight).
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The plotmo function in the earth package can be used to produce plots
similar to Fig. 7.5. To tune the model using external resampling, the train

function can be used. The following code reproduces the results in Fig. 7.4:

> # Define the candidate models to test

> marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)

> # Fix the seed so that the results can be reproduced

> set.seed(100)

> marsTuned <- train(solTrainXtrans, solTrainY,

+ method = "earth",

+ # Explicitly declare the candidate models to test

+ tuneGrid = marsGrid,

+ trControl = trainControl(method = "cv"))

> marsTuned

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results across tuning parameters:

degree nprune RMSE Rsquared RMSE SD Rsquared SD
1 2 1.54 0.438 0.128 0.0802
1 3 1.12 0.7 0.0968 0.0647
1 4 1.06 0.73 0.0849 0.0594
1 5 1.02 0.75 0.102 0.0551
1 6 0.984 0.768 0.0733 0.042
1 7 0.919 0.796 0.0657 0.0432
1 8 0.862 0.821 0.0418 0.0237
: : : : : :
2 33 0.701 0.883 0.068 0.0307
2 34 0.702 0.883 0.0699 0.0307
2 35 0.696 0.885 0.0746 0.0315
2 36 0.687 0.887 0.0604 0.0281
2 37 0.696 0.885 0.0689 0.0291
2 38 0.686 0.887 0.0626 0.029

RMSE was used to select the optimal model using the smallest value.
The final values used for the model were degree = 1 and nprune = 38.

> head(predict(marsTuned, solTestXtrans))

[1] 0.3677522 -0.1503220 -0.5051844 0.5398116 -0.4792718 0.7377222

There are two functions that estimate the importance of each predictor in
the MARS model: evimp in the earth package and varImp in the caret package
(although the latter calls the former):
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> varImp(marsTuned)

earth variable importance

only 20 most important variables shown (out of 228)

Overall
MolWeight 100.00
NumNonHAtoms 89.96
SurfaceArea2 89.51
SurfaceArea1 57.34
FP142 44.31
FP002 39.23
NumMultBonds 39.23
FP204 37.10
FP172 34.96
NumOxygen 30.70
NumNitrogen 29.12
FP083 28.21
NumNonHBonds 26.58
FP059 24.76
FP135 23.51
FP154 21.20
FP207 19.05
FP202 17.92
NumRotBonds 16.94
FP085 16.02

These results are scaled to be between 0 and 100 and are different than those
shown in Table 7.1 (since the model in Table 7.1 did not undergo the full
model growing and pruning process). Note that after the first few variables,
the remainder have much smaller importance to the model.

Support Vector Machines

There are a number of R packages with implementations of support vector
machine models. The svm function in the e1071 package has an interface to
the LIBSVM library (Chang and Lin 2011) for regression. A more compre-
hensive implementation of SVM models for regression is the kernlab package
(Karatzoglou et al. 2004). In that package, the ksvm function is available for
regression models and a large number of kernel functions. The radial basis
function is the default kernel function. If appropriate values of the cost and
kernel parameters are known, this model can be fit as

> svmFit <- ksvm(x = solTrainXtrans, y = solTrainY,

+ kernel ="rbfdot", kpar = "automatic",

+ C = 1, epsilon = 0.1)

The function automatically uses the analytical approach to estimate σ. Since
y is a numeric vector, the function knows to fit a regression model (instead
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of a classification model). Other kernel functions can be used, including the
polynomial (using kernel = "polydot") and linear (kernel = "vanilladot").

If the values are unknown, they can be estimated through resampling. In
train, the method values of "svmRadial", "svmLinear", or "svmPoly" fit different
kernels:

> svmRTuned <- train(solTrainXtrans, solTrainY,

+ method = "svmRadial",

+ preProc = c("center", "scale"),

+ tuneLength = 14,

+ trControl = trainControl(method = "cv"))

The tuneLength argument will use the default grid search of 14 cost values
between 2−2, 2−1, . . . , 211. Again, σ is estimated analytically by default.

> svmRTuned

951 samples
228 predictors

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 855, 858, 856, 855, 855, 856, ...

Resampling results across tuning parameters:

C RMSE Rsquared RMSE SD Rsquared SD
0.25 0.793 0.87 0.105 0.0396
0.5 0.708 0.889 0.0936 0.0345
1 0.664 0.898 0.0834 0.0306
2 0.642 0.903 0.0725 0.0277
4 0.629 0.906 0.067 0.0253
8 0.621 0.908 0.0634 0.0238
16 0.617 0.909 0.0602 0.0232
32 0.613 0.91 0.06 0.0234
64 0.611 0.911 0.0586 0.0231
128 0.609 0.911 0.0561 0.0223
256 0.609 0.911 0.056 0.0224
512 0.61 0.911 0.0563 0.0226
1020 0.613 0.91 0.0563 0.023
2050 0.618 0.909 0.0541 0.023

Tuning parameter 'sigma' was held constant at a value of 0.00387
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were C = 256 and sigma = 0.00387.

The subobject named finalModel contains the model created by the ksvm

function:

> svmRTuned$finalModel

Support Vector Machine object of class "ksvm"

SV type: eps-svr (regression)
parameter : epsilon = 0.1 cost C = 256
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Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.00387037424967707

Number of Support Vectors : 625

Objective Function Value : -1020.558
Training error : 0.009163

Here, we see that the model used 625 training set data points as support
vectors (66% of the training set).

kernlab has an implementation of the RVM model for regression in the
function rvm. The syntax is very similar to the example shown for ksvm.

K-Nearest Neighbors

The knnreg function in the caret package fits the KNN regression model; train
tunes the model over K:

> # Remove a few sparse and unbalanced fingerprints first

> knnDescr <- solTrainXtrans[, -nearZeroVar(solTrainXtrans)]

> set.seed(100)

> knnTune <- train(knnDescr,

+ solTrainY,

+ method = "knn",

+ # Center and scaling will occur for new predictions too

+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = 1:20),

+ trControl = trainControl(method = "cv"))

When predicting new samples using this object, the new samples are auto-
matically centered and scaled using the values determined by the training set.

Exercises

7.1. Simulate a single predictor and a nonlinear relationship, such as a sin
wave shown in Fig. 7.7, and investigate the relationship between the cost, ε,
and kernel parameters for a support vector machine model:

> set.seed(100)

> x <- runif(100, min = 2, max = 10)

> y <- sin(x) + rnorm(length(x)) * .25

> sinData <- data.frame(x = x, y = y)

> plot(x, y)

> ## Create a grid of x values to use for prediction

> dataGrid <- data.frame(x = seq(2, 10, length = 100))
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(a) Fit different models using a radial basis function and different values of
the cost (the C parameter) and ε. Plot the fitted curve. For example:

> library(kernlab)

> rbfSVM <- ksvm(x = x, y = y, data = sinData,

+ kernel ="rbfdot", kpar = "automatic",

+ C = 1, epsilon = 0.1)

> modelPrediction <- predict(rbfSVM, newdata = dataGrid)

> ## This is a matrix with one column. We can plot the

> ## model predictions by adding points to the previous plot

> points(x = dataGrid$x, y = modelPrediction[,1],

+ type = "l", col = "blue")

> ## Try other parameters

(b) The σ parameter can be adjusted using the kpar argument, such as
kpar = list(sigma = 1). Try different values of σ to understand how this
parameter changes the model fit. How do the cost, ε, and σ values affect
the model?

7.2. Friedman (1991) introduced several benchmark data sets create by sim-
ulation. One of these simulations used the following nonlinear equation to
create data:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N(0, σ2)

where the x values are random variables uniformly distributed between [0, 1]
(there are also 5 other non-informative variables also created in the simula-
tion). The package mlbench contains a function called mlbench.friedman1 that
simulates these data:

> library(mlbench)

> set.seed(200)

> trainingData <- mlbench.friedman1(200, sd = 1)

> ## We convert the 'x' data from a matrix to a data frame

> ## One reason is that this will give the columns names.

> trainingData$x <- data.frame(trainingData$x)

> ## Look at the data using

> featurePlot(trainingData$x, trainingData$y)

> ## or other methods.

>

> ## This creates a list with a vector 'y' and a matrix

> ## of predictors 'x'. Also simulate a large test set to

> ## estimate the true error rate with good precision:

> testData <- mlbench.friedman1(5000, sd = 1)

> testData$x <- data.frame(testData$x)

>

Tune several models on these data. For example:

> library(caret)

> knnModel <- train(x = trainingData$x,

+ y = trainingData$y,

+ method = "knn",
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+ preProc = c("center", "scale"),

+ tuneLength = 10)

> knnModel

200 samples
10 predictors

Pre-processing: centered, scaled
Resampling: Bootstrap (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...

Resampling results across tuning parameters:

k RMSE Rsquared RMSE SD Rsquared SD
5 3.51 0.496 0.238 0.0641
7 3.36 0.536 0.24 0.0617
9 3.3 0.559 0.251 0.0546
11 3.24 0.586 0.252 0.0501
13 3.2 0.61 0.234 0.0465
15 3.19 0.623 0.264 0.0496
17 3.19 0.63 0.286 0.0528
19 3.18 0.643 0.274 0.048
21 3.2 0.646 0.269 0.0464
23 3.2 0.652 0.267 0.0465

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 19.

> knnPred <- predict(knnModel, newdata = testData$x)

> ## The function 'postResample' can be used to get the test set

> ## perforamnce values

> postResample(pred = knnPred, obs = testData$y)

RMSE Rsquared
3.2286834 0.6871735

Which models appear to give the best performance? Does MARS select the
informative predictors (those named X1–X5)?

7.3. For the Tecator data described in the last chapter, build SVM, neural
network, MARS, and KNN models. Since neural networks are especially sen-
sitive to highly correlated predictors, does pre-processing using PCA help the
model?

7.4. Return to the permeability problem outlined in Exercise 6.2. Train sev-
eral nonlinear regression models and evaluate the resampling and test set
performance.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Do any of the nonlinear models outperform the optimal linear model you
previously developed in Exercise 6.2? If so, what might this tell you about
the underlying relationship between the predictors and the response?
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(c) Would you recommend any of the models you have developed to replace
the permeability laboratory experiment?

7.5. Exercise 6.3 describes data for a chemical manufacturing process. Use
the same data imputation, data splitting, and pre-processing steps as before
and train several nonlinear regression models.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Which predictors are most important in the optimal nonlinear regres-
sion model? Do either the biological or process variables dominate the
list? How do the top ten important predictors compare to the top ten
predictors from the optimal linear model?

(c) Explore the relationships between the top predictors and the response for
the predictors that are unique to the optimal nonlinear regression model.
Do these plots reveal intuition about the biological or process predictors
and their relationship with yield?



Chapter 8

Regression Trees and Rule-Based Models

Tree-based models consist of one or more nested if-then statements for the
predictors that partition the data. Within these partitions, a model is used
to predict the outcome. For example, a very simple tree could be defined as

if Predictor A >= 1.7 then

| if Predictor B >= 202.1 then Outcome = 1.3

| else Outcome = 5.6

else Outcome = 2.5

In this case, two-dimensional predictor space is cut into three regions, and,
within each region, the outcome is predicted by a single number (either 1.3,
2.5, or 5.6). Figure 8.1 presents these rules in the predictor space.

In the terminology of tree models, there are two splits of the data into three
terminal nodes or leaves of the tree. To obtain a prediction for a new sample,
we would follow the if-then statements defined by the tree using values of
that sample’s predictors until we come to a terminal node. The model formula
in the terminal node would then be used to generate the prediction. In the
illustration above, the model is a simple numeric value. In other cases, the
terminal node may be defined by a more complex function of the predictors.
Trees for regression will be discussed in Sects. 8.1 and 8.2.

Notice that the if-then statements generated by a tree define a unique
route to one terminal node for any sample. A rule is a set of if-then condi-
tions (possibly created by a tree) that have been collapsed into independent
conditions. For the example above, there would be three rules:

if Predictor A >= 1.7 and Predictor B >= 202.1 then Outcome = 1.3

if Predictor A >= 1.7 and Predictor B < 202.1 then Outcome = 5.6

if Predictor A < 1.7 then Outcome = 2.5

Rules can be simplified or pruned in a way that samples are covered by
multiple rules. This approach can have some advantages over simple tree-
based models; rule-based models will be discussed in Sects. 8.3 and 8.7.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 8,
© Springer Science+Business Media New York 2013
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Fig. 8.1: An example of the predicted values within regions defined by a
tree-based model

Tree-based and rule-based models are popular modeling tools for a num-
ber of reasons. First, they generate a set of conditions that are highly inter-
pretable and are easy to implement. Because of the logic of their construction,
they can effectively handle many types of predictors (sparse, skewed, contin-
uous, categorical, etc.) without the need to pre-process them. In addition,
these models do not require the user to specify the form of the predictors’ re-
lationship to the response like, for example, a linear regression model requires.
Furthermore, these models can effectively handle missing data and implicitly
conduct feature selection, characteristics that are desirable for many real-life
modeling problems.

Models based on single trees or rules, however, do have particular weak-
nesses. Two well-known weaknesses are (1) model instability (i.e., slight
changes in the data can drastically change the structure of the tree or rules
and, hence, the interpretation) and (2) less-than-optimal predictive perfor-
mance. The latter is due to the fact that these models define rectangular
regions that contain more homogeneous outcome values. If the relationship
between predictors and the response cannot be adequately defined by rectan-
gular subspaces of the predictors, then tree-based or rule-based models will
have larger prediction error than other kinds of models.
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To combat these problems, researchers developed ensemble methods that
combine many trees (or rule-based models) into one model. Ensembles tend
to have much better predictive performance than single trees (and this is
generally true for rule-based models, too). Ensembles will be discussed in
Sects. 8.4–8.7.

8.1 Basic Regression Trees

Basic regression trees partition the data into smaller groups that are more
homogenous with respect to the response. To achieve outcome homogeneity,
regression trees determine:

• The predictor to split on and value of the split
• The depth or complexity of the tree
• The prediction equation in the terminal nodes

In this section, we focus on techniques where the model in the terminal nodes
are simple constants.

There are many techniques for constructing regression trees. One of the
oldest and most utilized is the classification and regression tree (CART)
methodology of Breiman et al. (1984). For regression, the model begins with
the entire data set, S, and searches every distinct value of every predictor
to find the predictor and split value that partitions the data into two groups
(S1 and S2) such that the overall sums of squares error are minimized:

SSE =
∑

i∈S1

(yi − ȳ1)
2 +

∑

i∈S2

(yi − ȳ2)
2, (8.1)

where ȳ1 and ȳ2 are the averages of the training set outcomes within groups
S1 and S2, respectively. Then within each of groups S1 and S2, this method
searches for the predictor and split value that best reduces SSE. Because of
the recursive splitting nature of regression trees, this method is also known
as recursive partitioning.

Returning to the solubility data, Fig. 8.2 shows the SSE for the continuum
of splits for the number of carbon atoms (on a transformed scale). Using the
regression tree approach, the optimal split point for this variable is 3.78. The
reduction in the SSE associated with this split is compared to the optimal
values for all of the other predictors and the split corresponding to the abso-
lute minimum error is used to form subsets S1 and S2. After considering all
other variables, this variable was chosen to be the best (see Fig. 8.3). If the
process were stopped at this point, all sample with values for this predictor
less than 3.78 would be predicted to be −1.84 (the average of the solubility
results for these samples) and samples above the splits all have a predicted
value of −4.49:
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Fig. 8.2: Top: A scatter plot of the solubility values (y-axis) versus the number
of carbon atoms (on a transformed scale). Bottom: The SSE profile across
all possible splits for this predictor. The splits used here are the midpoints
between two distinct data points

if the number of carbon atoms >= 3.78 then Solubility = -4.49

else Solubility = -1.84

In practice, the process then continues within sets S1 and S2 until the number
of samples in the splits falls below some threshold (such as 20 samples). This
would conclude the tree growing step. Figure 8.4 shows the second set of splits
for the example data.

When the predictor is continuous, the process for finding the optimal split-
point is straightforward since the data can be ordered in a natural way. Binary
predictors are also easy to split, because there is only one possible split point.
However, when a predictor has more than two categories, the process for
finding the optimal split point can take a couple of justifiable paths. For a
detailed discussion on this topic, see Sect. 14.1.
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Fig. 8.3: Top: The initial splits of the solubility data. Bottom: After the first
split, the two groups are split further into four partitions

Once the full tree has been grown, the tree may be very large and is likely to
over-fit the training set. The tree is then pruned back to a potentially smaller
depth. The processed used by Breiman et al. (1984) is cost–complexity tuning.
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The goal of this process is to find a “right-sized tree” that has the smallest
error rate. To do this, we penalize the error rate using the size of the tree:

SSEcp = SSE + cp × (# Terminal Nodes),

where cp is called the complexity parameter. For a specific value of the
complexity parameter, we find the smallest pruned tree that has the lowest
penalized error rate. Breiman et al. (1984) show the theory and algorithms
for finding the best tree for a particular value of cp. As with other regulariza-
tion methods previously discussed, smaller penalties tend to produce more
complex models, which, in this case, result in larger trees. Larger values of
the complexity parameter may result in a tree with one split (i.e., a stump)
or, perhaps, even a tree with no splits. The latter result would indicate that
no predictor adequately explains enough of the variation in the outcome at
the chosen value of the complexity parameter.

To find the best pruned tree, we evaluate the data across a sequence of
cp values. This process generates one SSE for each chosen cp value. But
we know that these SSE values will vary if we select a different sample of
observations. To understand variation in SSEs at each cp value, Breiman
et al. (1984) suggest using a cross-validation approach similar to the method
discussed in Chap. 4. They also propose using the one-standard-error rule on
the optimization criteria for identifying the simplest tree: find the smallest
tree that is within one standard error of the tree with smallest absolute error
(see Sect. 4.6, page 74). Another approach selects the tree size associated with
the numerically smallest error (Hastie et al. 2008).

Using the one-standard-error rule, the regression tree built on the solubility
data had 11 terminal nodes (cp = 0.01) and the cross-validation estimate of
the RMSE was 1.05. Figure 8.4 shows the regression tree for the model. All
of the splits retained in the model involve the continuous or count predictors
and several paths through the tree use some of the same predictors more than
once.

On the surface, the tree in Fig. 8.4 appears to be fairly interpretable. For
example, one could say that if a compound has a moderately large number
of carbon atoms, has very lower surface area, and has a large number of
non-hydrogen atoms, then it has the lowest solubility. However, there are
many partitions in the data that overlap. For example, nodes 12 and 16 have
roughly the same distribution of solubility values, although one of these paths
has low surface area and another has high surface area.

Alternatively, the model can be tuned by choosing the value of the com-
plexity parameter associated with the smallest possible RMSE value. The
cross-validation profile is shown in Fig. 8.5. In this case, the tuning process
chose a larger tree with a cp value of 0.003 and 25 terminal nodes. The esti-
mated RMSE from this model was 0.97. Although this model more accurately
fits the data, it is much deeper than the tree shown in Fig. 8.4. Interpreting
this model will be much more difficult.
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Fig. 8.5: Cross-validated RMSE profile for the regression tree

This particular tree methodology can also handle missing data. When
building the tree, missing data are ignored. For each split, a variety of alter-
natives (called surrogate splits) are evaluated. A surrogate split is one whose
results are similar to the original split actually used in the tree. If a surrogate
split approximates the original split well, it can be used when the predictor
data associated with the original split are not available. In practice, several
surrogate splits may be saved for any particular split in the tree.

Once the tree has been finalized, we begin to assess the relative importance
of the predictors to the outcome. One way to compute an aggregate measure
of importance is to keep track of the overall reduction in the optimization
criteria for each predictor (Breiman et al. 1984). If SSE is the optimization
criteria, then the reduction in the SSE for the training set is aggregated
for each predictor. Intuitively, predictors that appear higher in the tree (i.e.,
earlier splits) or those that appear multiple times in the tree will be more
important than predictors that occur lower in the tree or not at all. Figure 8.6
shows the importance values for the 16 predictors in the more complex final
solubility model.

An advantage of tree-based models is that, when the tree is not large, the
model is simple and interpretable. Also, this type of tree can be computed
quickly (despite using multiple exhaustive searches). Tree models intrinsically
conduct feature selection; if a predictor is never used in a split, the prediction
equation is independent of these data. This advantage is weakened when there
are highly correlated predictors. If two predictors are extremely correlated,
the choice of which to use in a split is somewhat random. For example, the
two surface area predictors have an extremely high correlation (0.96) and each
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Fig. 8.6: Variable importance scores for the 16 predictors used in the regres-
sion tree model for solubility

is used in the tree shown in Fig. 8.4. It is possible that the small difference
between these predictors is strongly driving the choice between the two, but
it is more likely to be due to small, random differences in the variables.
Because of this, more predictors may be selected than actually needed. In
addition, the variable importance values are affected. If the solubility data
only contained one of the surface area predictors, then this predictor would
have likely been used twice in the tree, therefore inflating its importance
value. Instead, including both surface area predictors in the data causes their
importance to have only moderate values.

While trees are highly interpretable and easy to compute, they do have
some noteworthy disadvantages. First, single regression trees are more likely
to have sub-optimal predictive performance compared to other modeling
approaches. This is partly due to the simplicity of the model. By construction,
tree models partition the data into rectangular regions of the predictor space.
If the relationship between predictors and the outcome is not adequately
described by these rectangles, then the predictive performance of a tree will
not be optimal. Also, the number of possible predicted outcomes from a tree
is finite and is determined by the number of terminal nodes. For the solubil-
ity data, the optimal tree has 11 terminal nodes and consequently can only
produce 11 possible predicted values. This limitation is unlikely to capture
all of the nuances of the data. For example, in Fig. 8.4, Node 21 corresponds
to the highest solubility prediction. Note, however, that the training set data
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falling within this path of the tree vary across several log units of data. If new
data points are consistent with the training data, many of the new samples
falling along this path will not be predicted with a high degree of accuracy.
The two regression tree models shown thus far have RMSE values that are
appreciably larger than the RMSE produced by the simple linear regression
model shown in Chap. 6.

An additional disadvantage is that an individual tree tends to be unstable
[see Breiman (1996b) and Hastie et al. (2008, Chap. 8)]. If the data are slightly
altered, a completely different set of splits might be found (i.e., the model
variance is high). While this is a disadvantage, ensemble methods (discussed
later in this chapter) exploit this characteristic to create models that tend to
have extremely good performance.

Finally, these trees suffer from selection bias: predictors with a higher
number of distinct values are favored over more granular predictors (Loh and
Shih 1997; Carolin et al. 2007; Loh 2010). Loh and Shih (1997) remarked that

“The danger occurs when a data set consists of a mix of informative and noise
variables, and the noise variables have many more splits than the informative
variables. Then there is a high probability that the noise variables will be chosen
to split the top nodes of the tree. Pruning will produce either a tree with
misleading structure or no tree at all.”

Also, as the number of missing values increases, the selection of predictors
becomes more biased (Carolin et al. 2007).

It is worth noting that the variable importance scores for the solubility
regression tree (Fig. 8.6) show that the model tends to rely more on contin-
uous (i.e., less granular) predictors than the binary fingerprints. This could
be due to the selection bias or the content of the variables.

There are several unbiased regression tree techniques. For example, Loh
(2002) proposed the generalized, unbiased, interaction detection and estima-
tion (GUIDE) algorithm which solves the problem by decoupling the process
of selecting the split variable and the split value. This algorithm ranks the
predictors using statistical hypothesis testing and then finds the appropriate
split value associated with the most important factor.

Another approach is conditional inference trees of Hothorn et al. (2006).
They describe a unified framework for unbiased tree-based models for regres-
sion, classification, and other scenarios. In this model, statistical hypothesis
tests are used to do an exhaustive search across the predictors and their pos-
sible split points. For a candidate split, a statistical test is used to evaluate
the difference between the means of the two groups created by the split and
a p-value can be computed for the test.

Utilizing the test statistic p-value has several advantages. First, predictors
that are on disparate scales can be compared since the p-values are on the
same scale. Second, multiple comparison corrections (Westfall and Young
1993) can be applied to the raw p-values within a predictor to reduce the
bias resulting from a large number of split candidates. These corrections
attempt to reduce the number of false-positive test results that are incurred by
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Fig. 8.7: Cross-validated RMSE profile for the conditional inference regression
trees

conducting a large number of statistical hypothesis tests. Thus, predictors are
increasingly penalized by multiple comparison procedures as the number of
splits (and associated p-values) increases. For this reason, the bias is reduced
for highly granular data. A threshold for statistical significance is used to
determine whether additional splits should be created [Hothorn et al. (2006)
use one minus the p-value].

By default, this algorithm does not use pruning; as the data sets are fur-
ther split, the decrease in the number of samples reduces the power of the
hypothesis tests. This results in higher p-values and a lower likelihood of
a new split (and over-fitting). However, statistical hypothesis tests are not
directly related to predictive performance, and, because of this, it is still ad-
visable to choose the complexity of the tree on the basis of performance (via
resampling or some other means).

With a significance threshold of 0.05 (i.e., a 5% false-positive rate for
statistical significance), a conditional inference tree for the solubility data
had 32 terminal nodes. This tree is much larger than the basic regression
tree shown in Fig. 8.4. We also treated the significance threshold as a tuning
parameter and evaluated 16 values between 0.75 and 0.99 (see Fig. 8.7 for
the cross-validation profile). The tree size associated with the smallest error
had 36 terminal nodes (using a threshold of 0.853). Tuning the threshold
improved the estimated RMSE to a value of 0.92 compared to an RMSE of
0.94 associated with a significance threshold of 0.05.
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8.2 Regression Model Trees

One limitation of simple regression trees is that each terminal node uses the
average of the training set outcomes in that node for prediction. As a conse-
quence, these models may not do a good job predicting samples whose true
outcomes are extremely high or low. In Chap. 5, Fig. 5.1 showed an example
plot of the observed and predicted outcomes for a data set. In this figure,
the model tends to underpredict samples in either of the extremes. The pre-
dictions used in this figure were produced using a regression tree ensemble
technique called random forests (described later in this chapter) which also
uses the average of the training data in the terminal nodes and suffers from
the same problem, although not as severe as with a single tree.

One approach to dealing with this issue is to use a different estimator in
the terminal nodes. Here we focus on the model tree approach described in
Quinlan (1992) called M5, which is similar to regression trees except:

• The splitting criterion is different.
• The terminal nodes predict the outcome using a linear model (as opposed

to the simple average).
• When a sample is predicted, it is often a combination of the predictions

from different models along the same path through the tree.

The main implementation of this technique is a “rational reconstruction” of
this model called M5, which is described by Wang and Witten (1997) and is
included in the Weka software package. There are other approaches to trees
with models in the leaves, such as Loh (2002) and Zeileis et al. (2008).

Like simple regression trees, the initial split is found using an exhaustive
search over the predictors and training set samples, but, unlike those models,
the expected reduction in the node’s error rate is used. Let S denote the
entire set of data and let S1, . . . , SP represent the P subsets of the data after
splitting. The split criterion would be

reduction = SD(S)−
P∑

i=1

ni

n
× SD(Si), (8.2)

where SD is the standard deviation and ni is the number of samples in parti-
tion i. This metric determines if the total variation in the splits, weighted by
sample size, is lower than in the presplit data. This scheme is similar to the
methodology for classification trees discussed in Quinlan (1993b). The split
that is associated with the largest reduction in error is chosen and a linear
model is created within the partitions using the split variable in the model.
For subsequent splitting iterations, this process is repeated: an initial split is
determined and a linear model is created for the partition using the current
split variable and all others that preceded it. The error associated with each
linear model is used in place of SD(S) in Eq. 8.2 to determine the expected
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reduction in the error rate for the next split. The tree growing process contin-
ues along the branches of the tree until there are no further improvements in
the error rate or there are not enough samples to continue the process. Once
the tree is fully grown, there is a linear model for every node in the tree.

Figure 8.8 shows an example of a model tree with four splits and eight
linear regression models. Model 5, for instance, would be created using all
the predictors that were in splits 1–3 and with the training set data points
satisfying conditions 1a, 2b, and 3b.

Once the complete set of linear models have been created, each undergoes
a simplification procedure to potentially drop some of the terms. For a given
model, an adjusted error rate is computed. First, the absolute differences
between the observed and predicted data are calculated then multiplied by a
term that penalizes models with large numbers of parameters:

Adjusted Error Rate =
n∗ + p

n∗ − p

n∗∑

i=1

|yi − ŷi|, (8.3)

where n∗ is the number of training set data points that were used to build the
model and p is the number of parameters. Each model term is dropped and
the adjusted error rate is computed. Terms are dropped from the model as
long as the adjusted error rate decreases. In some cases, the linear model may
be simplified to having only an intercept. This procedure is independently
applied to each linear model.

Model trees also incorporate a type of smoothing to decrease the potential
for over-fitting. The technique is based on the “recursive shrinking”method-
ology of Hastie and Pregibon (1990). When predicting, the new sample goes
down the appropriate path of the tree, and moving from the bottom up, the
linear models along that path are combined. Using Fig. 8.8 as a reference,
suppose a new sample goes down the path associated with Model 5. The tree
generates a prediction for this sample using Model 5 as well as the linear
model in the parent node (Model 3 in this case). These two predictions are
combined using

ŷ(p) =
n(k) ŷ(k) + c ŷ(p)

n(k) + c
,

where ŷ(k) is the prediction from the child node (Model 5), n(k) is the number
of training set data points in the child node, ŷ(p) is the prediction from the
parent node, and c is a constant with a default value of 15. Once this combined
prediction is calculated, it is similarly combined with the next model along
the tree (Model 1) and so on. For our example, the new sample falling under
conditions 1a, 2b, and 3b would use a combination of three linear models.
Note that the smoothing equation is a relatively simple linear combination
of models.

This type of smoothing can have a significant positive effect on the model
tree when the linear models across nodes are very different. There are several
possible reasons that the linear models may produce very different predic-
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Split 1

Condition 1a Condition 1b

Model 1
Split 2

Condition 2a Condition 2b

Model 3
Split 3

Condition 3a Condition 3b

Model 6
Split 4

Condition 4a Condition 4b

Model 8Model 7Model 5Model 4Model 2

Fig. 8.8: An example of a regression model tree

tions. Firstly, the number of training set samples that are available in a node
will decrease as new splits are added. This can lead to nodes which model
very different regions of the training set and, thus, produce very different
linear models. This is especially true for small training sets. Secondly, the
linear models derived by the splitting process may suffer from significant
collinearity. Suppose two predictors in the training set have an extremely
high correlation with one another. In this case, the algorithm may choose
between the two predictors randomly. If both predictors are eventually used
in splits and become candidates for the linear models, there would be two
terms in the linear model for effectively one piece of information. As discussed
in previous chapters, this can lead to substantial instability in the model co-
efficients. Smoothing using several models can help reduce the impact of any
unstable linear models.

Once the tree is fully grown, it is pruned back by finding inadequate sub-
trees and removing them. Starting at the terminal nodes, the adjusted error
rate with and without the sub-tree is computed. If the sub-tree does not
decrease the adjusted error rate, it is pruned from the model. This process is
continued until no more sub-trees can be removed.

Model trees were built on the solubility data under the conditions of with
and without pruning and with and without smoothing. Figure 8.9 shows a
plot of the cross-validation profiles for these data. The unpruned tree has
159 paths through the tree, which may over-fit the training data. When the
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Fig. 8.9: Cross-validated RMSE profiles for the model tree

tree is not pruned, model smoothing significantly improves the error rate.
For these data, the effect of pruning on the model was also substantial: the
number of paths through the tree dropped from 159 to 18. For the pruned
trees, smoothing produced a slight gain in performance, and, as a result, the
optimal model used pruning and smoothing.

The resulting model tree (Fig. 8.10) shows that many of the splits involve
the same predictors, such as the number of carbons. Also, for these data,
the splits tend to favor the continuous predictors instead of the fingerprints.1

For these data, splits based on the SSE and the error rate reduction produce
almost identical results. The details of the linear models are shown in Fig. 8.11
(the model coefficients have been normalized to be on the same scale). We
can see from this figure that the majority of models use many predictors,
including a large number of the fingerprints. However, the coefficients of the
fingerprints are small relative to the continuous predictors.

Additionally, this model can be used to demonstrate issues with collinear-
ity. In the figure, linear model 5 (in the lower left of the tree) is associated
with the following conditions:

NumCarbon <= 3.777 &

MolWeight <= 4.83 &

SurfaceArea1 > 0.978 &

NumCarbon <= 2.508 &

1 Also, note that the first three splits here involve the same predictors as the regression
tree shown in Fig. 8.4 (and two of the three split values are identical).
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Fig. 8.11: Linear model coefficients for the model tree seen in Fig. 8.10. The
coefficients have been normalized to be on the same scale. White blocks indi-
cate that the predictor was not involved in the linear model
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NumRotBonds <= 0.347 &

SurfaceArea2 > 10.065

After model reduction and smoothing, there were 57 coefficients in the corre-
sponding linear model, including both surface area predictors. In the training
set, these two predictors are highly correlated (0.96). We would expect severe
collinearity as a result. The two scaled coefficients for these predictors are al-
most complete opposites: 0.9 for SurfaceArea1 and −0.8 for SurfaceArea2.
Since the two predictors are almost identical, there is a contradiction: in-
creasing the surface area equally increases and decreases the solubility. Many
of the models that are shown in Fig. 8.11 have opposite signs for these two
variables. Despite this, the performance for this model is fairly competitive;
smoothing the models has the effect of minimizing the collinearity issues.
Removing the correlated predictors would produce a model that has less in-
consistencies and is more interpretable. However, there is a measurable drop
in performance by using the strategy.

8.3 Rule-Based Models

A rule is defined as a distinct path through a tree. Consider the model tree
shown in the last section and the path to get to linear model 15 in the lower
right of Fig. 8.10:

NumCarbon > 3.777 &

SurfaceArea2 > 0.978 &

SurfaceArea1 > 8.404 &

FP009 <= 0.5 &

FP075 <= 0.5 &

NumRotBonds > 1.498 &

NumRotBonds > 1.701

For the model tree shown in Fig. 8.10, there are a total of 18 rules. For the
tree, a new sample can only travel down a single path through the tree defined
by these rules. The number of samples affected by a rule is called its coverage.

In addition to the pruning algorithms described in the last section, the
complexity of the model tree can be further reduced by either removing entire
rules or removing some of the conditions that define the rule. In the previous
rule, note that the number of rotatable bonds is used twice. This occurred
because another path through the tree determined that modeling the data
subset where the number of rotatable bonds is between 1.498 and 1.701 was
important. However, when viewed in isolation, the rule above is unnecessarily
complex because of this redundancy. Also, it may be advantageous to remove
other conditions in the rule because they do not contribute much to the
model.
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Quinlan (1993b) describes methodologies for simplifying the rules gener-
ated from classification trees. Similar techniques can be applied to model
trees to create a more simplistic set of rules from an initial model tree. This
specific approach is described later in this chapter in the context of Cubist
models (Sect. 8.7).

Another approach to creating rules from model trees is outlined in Holmes
et al. (1993) that uses the “separate and conquer” strategy. This procedure
derives rules from many different model trees instead of from a single tree.
First, an initial model tree is created (they recommend using unsmoothed
model trees). However, only the rule with the largest coverage is saved from
this model. The samples covered by the rule are removed from the training
set and another model tree is created with the remaining data. Again, only
the rule with the maximum coverage is retained. This process repeats until
all the training set data have been covered by at least one rule. A new sample
is predicted by determining which rule(s) it falls under then applies the linear
model associated with the largest coverage.

For the solubility data, a rule-based model was evaluated. Similar to the
model tree tuning process, four models were fit using all combinations for
pruning and smoothing. The same resampling data sets were used in the
model tree analysis, so direct comparisons can be made. Figure 8.12 shows
the results of this process. The right panel is the same as Fig. 8.9 while the
left panel shows the results when the model trees are converted to rules. For
these data, when smoothing and pruning are used, the model tree and rule-
based version had equivalent error rates. As with the model trees, pruning
had a large effect on the model and smoothing had a larger impact on the
unpruned models.

The best fitting model tree was associated with a cross-validated RMSE
of 0.737. The best rule-based model resulted in an RMSE value of 0.741.
Based on this alone, the model tree would be used for prediction. However,
for illustration, the rule-based model will be examined in more detail.

In all, nine rules were used to model these data, although the final rule
has no associated conditions. The conditions for the rules are
Rule 1: NumCarbon <= 3.777 & MolWeight > 4.83

Rule 2: NumCarbon > 2.999

Rule 3: SurfaceArea1 > 0.978 & NumCarbon > 2.508 & NumRotBonds > 0.896

Rule 4: SurfaceArea1 > 0.978 & MolWeight <= 4.612 & FP063 <= 0.5

Rule 5: SurfaceArea1 > 0.978 & MolWeight <= 4.612

Rule 6: SurfaceArea1 <= 4.159 & NumHydrogen <= 3.414

Rule 7: SurfaceArea1 > 2.241 & FP046 <= 0.5 & NumBonds > 2.74

Rule 8: NumHydrogen <= 3.414

Looking back at the full model tree in Fig. 8.10, the rule corresponding to
Model 10 has the largest coverage using the conditions NumCarbon ≥ 3.77
and MolWeight > 4.83. This rule was preserved as the first rule in the new
model. The next model tree was created using the remaining samples. Here,
the rule with the largest coverage has a condition similar to the previous rule:
NumCarbon > 2.99. In this case, a sample with NumCarbon > 2.99 would be
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Fig. 8.12: Cross-validated RMSE profiles for the model trees before and after
the conversion to rules

covered by at least two rules. The other rules used many of the same pre-
dictors: SurfaceArea1 (five times), MolWeight (three times), and NumCarbon

(also three times). Figure 8.13 shows the coefficients of the linear models for
each rule (similar to Fig. 8.11 for the full model tree). Here, the linear models
are more sparse; the number of terms in the linear models decreases as more
rules are created. This makes sense because there are fewer data points to
construct deep trees.

8.4 Bagged Trees

In the 1990s, ensemble techniques (methods that combine many models’ pre-
dictions) began to appear. Bagging, short for bootstrap aggregation, was orig-
inally proposed by Leo Breiman and was one of the earliest developed en-
semble techniques (Breiman 1996a). Bagging is a general approach that uses
bootstrapping (Sect. 4.4) in conjunction with any regression (or classification;
see Sect. 14.3) model to construct an ensemble. The method is fairly simple
in structure and consists of the steps in Algorithm 8.1. Each model in the
ensemble is then used to generate a prediction for a new sample and these m
predictions are averaged to give the bagged model’s prediction.

Bagging models provide several advantages over models that are not
bagged. First, bagging effectively reduces the variance of a prediction through
its aggregation process (see Sect. 5.2 for a discussion of the bias-variance
trade-off). For models that produce an unstable prediction, like regression
trees, aggregating over many versions of the training data actually reduces
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Fig. 8.13: Linear model coefficients for the rule-based version of M5. The co-
efficients have been normalized to be on the same scale as Fig. 8.11. White
blocks indicate that the predictor was not involved in linear regression equa-
tion for that rule
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1 for i = 1 to m do

2 Generate a bootstrap sample of the original data

3 Train an unpruned tree model on this sample

4 end

Algorithm 8.1: Bagging

the variance in the prediction and, hence, makes the prediction more stable.
Consider the illustration of trees in Fig. 8.14. In this example, six bootstrap
samples of the solubility data were generated and a tree of maximum depth
was built for each sample. These trees vary in structure (compare Fig. 8.14b,
d, which have different structures on the right- and left-hand sides of each
tree), and hence the prediction for samples will vary from tree to tree. When
the predictions for a sample are averaged across all of the single trees, the
average prediction has lower variance than the variance across the individual
predictions. This means that if we were to generate a different sequence of
bootstrap samples, build a model on each of the bootstrap samples, and aver-
age the predictions across models, then we would likely get a very similar pre-
dicted value for the selected sample as with the previous bagging model. This
characteristic also improves the predictive performance of a bagged model
over a model that is not bagged. If the goal of the modeling effort is to find
the best prediction, then bagging has a distinct advantage.

Bagging stable, lower variance models like linear regression and MARS,
on the other hand, offers less improvement in predictive performance. Con-
sider Fig. 8.15, in which bagging has been applied to trees, linear models, and
MARS for the solubility data and also for data from a study of concrete mix-
tures (see Chap. 10). For each set of data, the test set performance based on
RMSE is plotted by number of bagging iterations. For the solubility data,
the decrease in RMSE across iterations is similar for trees, linear regression,
and MARS, which is not a typical result. This suggests that either the model
predictions from linear regression and MARS have some inherent instabil-
ity for these data which can be improved using a bagged ensemble or that
trees are less effective at modeling the data. Bagging results for the concrete
data are more typical, in which linear regression and MARS are least im-
proved through the ensemble, while the predictions for regression trees are
dramatically improved.

As a further demonstration of bagging’s ability to reduce the variance of
a model’s prediction, consider the simulated sin wave in Fig. 5.2. For this
illustration, 20 sin waves were simulated, and, for each data set, regression
trees and MARS models were computed. The red lines in the panels show the
true trend while the multiple black lines show the predictions for each model.
Note that the CART panel has more noise around the true sin curve than
the MARS model, which only shows variation at the change points of the
pattern. This illustrates the high variance in the regression tree due to model
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Fig. 8.14: Example of trees of maximum depth from bagging for the solubility
data. Notice that the trees vary in structure, and hence the predictions will
vary from tree to tree. The prediction variance for the ensemble of trees will
be less than the variance of predictions from individual trees. (a) Sample 1.
(b) Sample 2. (c) Sample 3. (d) Sample 4. (e) Sample 5. (f) Sample 6

instability. The bottom panels of the figure show the results for 20 bagged
regression trees and MARS models (each with 50 model iterations). The
variation around the true curve is greatly reduced for regression trees, and,
for MARS, the variation is only reduced around the curvilinear portions on
the pattern. Using a simulated test set for each model, the average reduction
in RMSE by bagging the tree was 8.6% while the more stable MARS model
had a corresponding reduction of 2% (Fig. 8.16).
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Another advantage of bagging models is that they can provide their own
internal estimate of predictive performance that correlates well with either
cross-validation estimates or test set estimates. Here’s why: when construct-
ing a bootstrap sample for each model in the ensemble, certain samples are
left out. These samples are called out-of-bag, and they can be used to assess
the predictive performance of that specific model since they were not used
to build the model. Hence, every model in the ensemble generates a measure
of predictive performance courtesy of the out-of-bag samples. The average
of the out-of-bag performance metrics can then be used to gauge the pre-
dictive performance of the entire ensemble, and this value usually correlates
well with the assessment of predictive performance we can get with either
cross-validation or from a test set. This error estimate is usually referred to
as the out-of-bag estimate.

In its basic form, the user has one choice to make for bagging: the number
of bootstrap samples to aggregate, m. Often we see an exponential decrease
in predictive improvement as the number of iterations increases; the most
improvement in prediction performance is obtained with a small number of
trees (m < 10). To illustrate this point, consider Fig. 8.17 which displays pre-
dictive performance (RMSE) for varying numbers of bootstrapped samples
for CART trees. Notice predictive performance improves through ten trees
and then tails off with very limited improvement beyond that point. In our
experience, small improvements can still be made using bagging ensembles
up to size 50. If performance is not at an acceptable level after 50 bagging
iterations, then we suggest trying other more powerfully predictive ensemble
methods such as random forests and boosting which will be described the
following sections.

For the solubility data, CART trees without bagging produce an optimal
cross-validated RMSE of 0.97 with a standard error of 0.021. Upon bag-
ging, the performance improves and bottoms at an RMSE of 0.9, with a
standard error of 0.019. Conditional inference trees, like CART trees, can
also be bagged. As a comparison, conditional inference trees without bagging
have an optimal RMSE and standard error of 0.93 and 0.034, respectively.
Bagged conditional inference trees reduce the optimal RMSE to 0.8 with a
standard error of 0.018. For both types of models, bagging improves perfor-
mance and reduces variance of the estimate. In this specific example, bagging
conditional inference trees appears to have a slight edge over CART trees in
predictive performance as measured by RMSE. The test set R2 values parallel
the cross-validated RMSE performance with conditional inference trees doing
slightly better (0.87) than CART trees (0.85).

Although bagging usually improves predictive performance for unstable
models, there are a few caveats. First, computational costs and memory
requirements increase as the number of bootstrap samples increases. This
disadvantage can be mostly mitigated if the modeler has access to parallel
computing because the bagging process can be easily parallelized. Recall that
each bootstrap sample and corresponding model is independent of any other
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Fig. 8.17: Cross-validated performance profile for bagging CART trees for
the solubility data by number of bootstrap samples. Vertical lines indicate ±
one-standard error of RMSE. Most improvement in predictive performance
is obtained aggregating across ten bootstrap replications

sample and model. This means that each model can be built separately and
all models can be brought together in the end to generate the prediction.

Another disadvantage to this approach is that a bagged model is much
less interpretable than a model that is not bagged. Convenient rules that we
can get from a single regression tree like those displayed in Fig. 8.4 cannot be
attained. However, measures of variable importance can be constructed by
combining measures of importance from the individual models across the en-
semble. More about variable importance will be discussed in the next section
when we examine random forests.

8.5 Random Forests

As illustrated with the solubility data, bagging trees (or any high variance,
low bias technique) improves predictive performance over a single tree by re-
ducing variance of the prediction. Generating bootstrap samples introduces
a random component into the tree building process, which induces a distri-
bution of trees, and therefore also a distribution of predicted values for each
sample. The trees in bagging, however, are not completely independent of
each other since all of the original predictors are considered at every split of
every tree. One can imagine that if we start with a sufficiently large number
of original samples and a relationship between predictors and response that
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can be adequately modeled by a tree, then trees from different bootstrap
samples may have similar structures to each other (especially at the top of
the trees) due to the underlying relationship. This characteristic is known
as tree correlation and prevents bagging from optimally reducing variance of
the predicted values. Figure 8.14 provides a direct illustration of this phe-
nomenon. Despite taking bootstrap samples, each tree starts splitting on the
number of carbon atoms at a scaled value of approximately 3.5. The second-
level splits vary a bit more but are restricted to both of the surface area
predictors and molecular weight. While each tree is ultimately unique—no
two trees are exactly the same—they all begin with a similar structure and
are consequently related to each other. Therefore, the variance reduction pro-
vided by bagging could be improved. For a mathematical explanation of the
tree correlation phenomenon, see Hastie et al. (2008). Reducing correlation
among trees, known as de-correlating trees, is then the next logical step to
improving the performance of bagging.

From a statistical perspective, reducing correlation among predictors can
be done by adding randomness to the tree construction process. After
Breiman unveiled bagging, several authors tweaked the algorithm by adding
randomness into the learning process. Because trees were a popular learner
for bagging, Dietterich (2000) developed the idea of random split selection,
where trees are built using a random subset of the top k predictors at each
split in the tree. Another approach was to build entire trees based on random
subsets of descriptors (Ho 1998; Amit and Geman 1997). Breiman (2000) also
tried adding noise to the response in order to perturb tree structure. After
carefully evaluating these generalizations to the original bagging algorithm,
Breiman (2001) constructed a unified algorithm called random forests. A gen-
eral random forests algorithm for a tree-based model can be implemented as
shown in Algorithm 8.2.

Each model in the ensemble is then used to generate a prediction for a new
sample and these m predictions are averaged to give the forest’s prediction.
Since the algorithm randomly selects predictors at each split, tree correlation
will necessarily be lessened. As an example, the first splits for the first six trees
in the random forest for the solubility data are NumNonHBonds, NumCarbon,
NumNonHAtoms, NumCarbon, NumCarbon, and NumCarbon, which are different
from the trees illustrated in Fig. 8.14.

Random forests’ tuning parameter is the number of randomly selected
predictors, k, to choose from at each split, and is commonly referred to as
mtry. In the regression context, Breiman (2001) recommends setting mtry

to be one-third of the number of predictors. For the purpose of tuning the
mtry parameter, since random forests is computationally intensive, we suggest
starting with five values of k that are somewhat evenly spaced across the range
from 2 to P . The practitioner must also specify the number of trees for the
forest. Breiman (2001) proved that random forests is protected from over-
fitting; therefore, the model will not be adversely affected if a large number
of trees are built for the forest. Practically speaking, the larger the forest, the
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1 Select the number of models to build, m
2 for i = 1 to m do

3 Generate a bootstrap sample of the original data

4 Train a tree model on this sample
5 for each split do

6 Randomly select k (< P ) of the original predictors

7 Select the best predictor among the k predictors and
partition the data

8 end

9 Use typical tree model stopping criteria to determine when a
tree is complete (but do not prune)

10 end

Algorithm 8.2: Basic Random Forests

more computational burden we will incur to train and build the model. As
a starting point, we suggest using at least 1,000 trees. If the cross-validation
performance profiles are still improving at 1,000 trees, then incorporate more
trees until performance levels off.

Breiman showed that the linear combination of many independent learners
reduces the variance of the overall ensemble relative to any individual learner
in the ensemble. A random forest model achieves this variance reduction
by selecting strong, complex learners that exhibit low bias. This ensemble
of many independent, strong learners yields an improvement in error rates.
Because each learner is selected independently of all previous learners, ran-
dom forests is robust to a noisy response. We elaborate more on this point in
Sect. 20.2 and provide an illustration of the effect of noise on random forests
as well as many other models. At the same time, the independence of learners
can underfit data when the response is not noisy (Fig. 5.1).

Compared to bagging, random forests is more computationally efficient
on a tree-by-tree basis since the tree building process only needs to evaluate
a fraction of the original predictors at each split, although more trees are
usually required by random forests. Combining this attribute with the ability
to parallel process tree building makes random forests more computationally
efficient than boosting (Sect. 8.6).

Like bagging, CART or conditional inference trees can be used as the base
learner in random forests. Both of these base learners were used, as well
as 10-fold cross-validation and out-of-bag validation, to train models on the
solubility data. The mtry parameter was evaluated at ten values from 10 to
228. The RMSE profiles for these combinations are presented in Fig. 8.18.
Contrary to bagging, CART trees have better performance than conditional
inference trees at all values of the tuning parameter. Each of the profiles



8.5 Random Forests 201

#Randomly Selected Predictors

R
M

S
E

0.7

0.8

0.9

0 50 100 150 200

CART (CV)
CART (OOB)

Conditional Inference (CV)
Conditional Inference (OOB)

Fig. 8.18: Cross-validated RMSE profile for the CART and conditional infer-
ence approaches to random forests

shows a flat plateau between mtry = 58 and mtry = 155. The CART-based
random forest model was numerically optimal at mtry = 131 regardless of the
method of estimating the RMSE. Our experience is that the random forest
tuning parameter does not have a drastic effect on performance. In these
data, the only real difference in the RMSE comes when the smallest value
is used (10 in this case). It is often the case that such a small value is not
associated with optimal performance. However, we have seen rare examples
where small tuning parameter values generate the best results. To get a quick
assessment of how well the random forest model performs, the default tuning
parameter value for regression (mtry = P/3) tends to work well. If there is
a desire to maximize performance, tuning this value may result in a slight
improvement.

In Fig. 8.18, also notice that random forest models built with CART trees
had extremely similar RMSE results with the out-of-bag error estimate and
cross-validation (when compared across tuning parameters). It is unclear
whether the pattern seen in these data generalizes, especially under differ-
ent circumstances such as small sample sizes. Using the out-of-bag error rate
would drastically decrease the computational time to tune random forest
models. For forests created using conditional inference trees, the out-of-bag
error was much more optimistic than the cross-validated RMSE. Again, the
reasoning behind this pattern is unclear.
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The ensemble nature of random forests makes it impossible to gain an
understanding of the relationship between the predictors and the response.
However, because trees are the typical base learner for this method, it is
possible to quantify the impact of predictors in the ensemble. Breiman (2000)
originally proposed randomly permuting the values of each predictor for the
out-of-bag sample of one predictor at a time for each tree. The difference in
predictive performance between the non-permuted sample and the permuted
sample for each predictor is recorded and aggregated across the entire forest.
Another approach is to measure the improvement in node purity based on the
performance metric for each predictor at each occurrence of that predictor
across the forest. These individual improvement values for each predictor are
then aggregated across the forest to determine the overall importance for the
predictor.

Although this strategy to determine the relative influence of a predictor
is very different from the approach described in Sect. 8 for single regression
trees, it suffers from the same limitations related to bias. Also, Strobl et al.
(2007) showed that the correlations between predictors can have a significant
impact on the importance values. For example, uninformative predictors with
high correlations to informative predictors had abnormally large importance
values. In some cases, their importance was greater than or equal to weakly
important variables. They also demonstrated that the mtry tuning parameter
has a serious effect on the importance values.

Another impact of between-predictor correlations is to dilute the impor-
tances of key predictors. For example, suppose a critical predictor had an
importance of X . If another predictor is just as critical but is almost per-
fectly correlated as the first, the importance of these two predictors will be
roughly X/2. If three such predictors were in the model, the values would
further decrease to X/3 and so on. This can have profound implications for
some problems. For example, RNA expression profiling data tend to measure
the same gene at many locations, and, as a result, the within-gene variables
tend to have very high correlations. If this gene were important for predicting
some outcome, adding all the variables to a random forest model would make
the gene appear to be less important than it actually is.

Strobl et al. (2007) developed an alternative approach for calculating im-
portance in random forest models that takes between-predictor correlations
into account. Their methodology reduces the effect of between-predictor
redundancy. It does not adjust for the aforementioned dilution effect.

Random forest variable importance values for the top 25 predictors of
the solubility data are presented in Fig. 8.19. For this model, MolWeight,
NumCarbon, SurfaceArea2, and SurfaceArea1 percolate to the top of the
importance metric, and importance values begin to taper with fingerprints.
Importance values for fingerprints 116 and 75 are top fingerprint performers
for importance, which may indicate that the structures represented by these
fingerprints have an impact on a compound’s solubility.
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Fig. 8.19: Variable importance scores for the top 25 predictors used in the
random forest CART tree model for solubility

Contrasting random forest importance results to a single CART tree
(Fig. 8.6) we see that 2 of the top 4 predictors are the same (SurfaceArea2
and NumCarbon) and 14 of the top 16 are the same. However, the importance
orderings are much different. For example NumNonHBonds is the top predictor
for a CART tree but ends up ranked 14th for random forests; random forests
identify MolWeight as the top predictor, whereas a CART tree ranks it 5th.
These differences should not be disconcerting; rather they emphasize that a
single tree’s greediness prioritizes predictors differently than a random forest.

8.6 Boosting

Boosting models were originally developed for classification problems and
were later extended to the regression setting. Readers unfamiliar with boost-
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ing may benefit by first reading about boosting for classification (Sect. 14.5)
and then returning to this section. For completeness of this section, we will
give a history of boosting to provide a bridge from boosting’s original develop-
ment in classification to its use in the regression context. This history begins
with the AdaBoost algorithm and evolves to Friedman’s stochastic gradient
boosting machine, which is now widely accepted as the boosting algorithm
of choice among practitioners.

In the early 1990s boosting algorithms appeared (Schapire 1990; Freund
1995; Schapire 1999), which were influenced by learning theory (Valiant 1984;
Kearns and Valiant 1989), in which a number of weak classifiers (a classifier
that predicts marginally better than random) are combined (or boosted) to
produce an ensemble classifier with a superior generalized misclassification
error rate. Researchers struggled for a time to find an effective implementa-
tion of boosting theory, until Freund and Schapire collaborated to produce
the AdaBoost algorithm (Schapire 1999). AdaBoost (see Algorithm 14.2) pro-
vided a practical implementation of Kerns and Valiant’s concept of boosting
a weak learner into a strong learner (Kearns and Valiant 1989).

Boosting, especially in the form of the AdaBoost algorithm, was shown to
be a powerful prediction tool, usually outperforming any individual model.
Its success drew attention from the modeling community and its use became
widespread with applications in gene expression (Dudoit et al. 2002; Ben-Dor
et al. 2000), chemometrics (Varmuza et al. 2003), and music genre identifica-
tion (Bergstra et al. 2006), to name a few.

The AdaBoost algorithm clearly worked, and after its successful arrival,
several researchers (Friedman et al. 2000) connected the AdaBoost algorithm
to statistical concepts of loss functions, additive modeling, and logistic re-
gression and showed that boosting can be interpreted as a forward stagewise
additive model that minimizes exponential loss. This fundamental under-
standing of boosting led to a new view of boosting that facilitated several
algorithmic generalizations to classification problems (Sect. 14.5). Moreover,
this new perspective also enabled the method to be extended to regression
problems.

Friedman’s ability to see boosting’s statistical framework yielded a sim-
ple, elegant, and highly adaptable algorithm for different kinds of problems
(Friedman 2001). He called this method “gradient boosting machines” which
encompassed both classification and regression. The basic principles of gra-
dient boosting are as follows: given a loss function (e.g., squared error for
regression) and a weak learner (e.g., regression trees), the algorithm seeks
to find an additive model that minimizes the loss function. The algorithm
is typically initialized with the best guess of the response (e.g., the mean of
the response in regression). The gradient (e.g., residual) is calculated, and a
model is then fit to the residuals to minimize the loss function. The current
model is added to the previous model, and the procedure continues for a
user-specified number of iterations.
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As described throughout this text, any modeling technique with tuning
parameters can produce a range of predictive ability—from weak to strong.
Because boosting requires a weak learner, almost any technique with tuning
parameters can be made into a weak learner. Trees, as it turns out, make
an excellent base learner for boosting for several reasons. First, they have
the flexibility to be weak learners by simply restricting their depth. Second,
separate trees can be easily added together, much like individual predictors
can be added together in a regression model, to generate a prediction. And
third, trees can be generated very quickly. Hence, results from individual
trees can be directly aggregated, thus making them inherently suitable for an
additive modeling process.

When regression tree are used as the base learner, simple gradient boosting
for regression has two tuning parameters: tree depth and number of iterations.
Tree depth in this context is also known as interaction depth, since each
subsequential split can be thought of as a higher-level interaction term with
all of the other previous split predictors. If squared error is used as the loss
function, then a simple boosting algorithm using these tuning parameters can
be found in Algorithm 8.3.

1 Select tree depth, D, and number of iterations, K

2 Compute the average response, y, and use this as the initial
predicted value for each sample

3 for k = 1 to K do

4 Compute the residual, the difference between the observed value
and the current predicted value, for each sample

5 Fit a regression tree of depth, D, using the residuals as the
response

6 Predict each sample using the regression tree fit in the previous
step

7 Update the predicted value of each sample by adding the
previous iteration’s predicted value to the predicted value
generated in the previous step

8 end

Algorithm 8.3: Simple Gradient Boosting for Regression

Clearly, the version of boosting presented in Algorithm 8.3 has similarities
to random forests: the final prediction is based on an ensemble of models,
and trees are used as the base learner. However, the way the ensembles are
constructed differs substantially between each method. In random forests, all
trees are created independently, each tree is created to have maximum depth,
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and each tree contributes equally to the final model. The trees in boosting,
however, are dependent on past trees, have minimum depth, and contribute
unequally to the final model. Despite these differences, both random forests
and boosting offer competitive predictive performance. Computation time for
boosting is often greater than for random forests, since random forests can
be easily parallel processed given that the trees are created independently.

Friedman recognized that his gradient boosting machine could be suscep-
tible to over-fitting, since the learner employed—even in its weakly defined
learning capacity—is tasked with optimally fitting the gradient. This means
that boosting will select the optimal learner at each stage of the algorithm.
Despite using weak learners, boosting still employs the greedy strategy of
choosing the optimal weak learner at each stage. Although this strategy gen-
erates an optimal solution at the current stage, it has the drawbacks of not
finding the optimal global model as well as over-fitting the training data.
A remedy for greediness is to constrain the learning process by employing
regularization, or shrinkage, in the same manner as illustrated in Sect. 6.4.
In Algorithm 8.3, a regularization strategy can be injected into the final line
of the loop. Instead of adding the predicted value for a sample to previous
iteration’s predicted value, only a fraction of the current predicted value is
added to the previous iteration’s predicted value. This fraction is commonly
referred to as the learning rate and is parameterized by the symbol, λ. This
parameter can take values between 0 and 1 and becomes another tuning
parameter for the model. Ridgeway (2007) suggests that small values of the
learning parameter (< 0.01) work best, but he also notes that the value of
the parameter is inversely proportional to the computation time required to
find an optimal model, because more iterations are necessary. Having more
iterations also implies that more memory is required for storing the model.

After Friedman published his gradient boosting machine, he considered
some of the properties of Breiman’s bagging technique. Specifically, the ran-
dom sampling nature of bagging offered a reduction in prediction variance for
bagging. Friedman updated the boosting machine algorithm with a random
sampling scheme and termed the new procedure stochastic gradient boosting.
To do this, Friedman inserted the following step before line within the loop:
randomly select a fraction of the training data. The residuals and models in
the remaining steps of the current iteration are based only on the sample
of data. The fraction of training data used, known as the bagging fraction,
then becomes another tuning parameter for the model. It turns out that this
simple modification improved the prediction accuracy of boosting while also
reducing the required computational resources. Friedman suggests using a
bagging fraction of around 0.5; this value, however, can be tuned like any
other parameter.

Figure 8.20 presents the cross-validated RMSE results for boosted trees
across tuning parameters of tree depth (1–7), number of trees (100–1,000),
and shrinkage (0.01 or 0.1); the bagging fraction in this illustration was fixed
at 0.5. When examining this figure, the larger value of shrinkage (right-hand
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Fig. 8.20: Cross-validated RMSE profiles for the boosted tree model

plot) has an impact on reducing RMSE for all choices of tree depth and
number of trees. Also, RMSE decreases as tree depth increases when shrinkage
is 0.01. The same pattern holds true for RMSE when shrinkage is 0.1 and the
number of trees is less than 300.

Using the one-standard-error rule, the optimal boosted tree has depth 3
with 400 trees and shrinkage of 0.1. These settings produce a cross-validated
RMSE of 0.616.

Variable importance for boosting is a function of the reduction in squared
error. Specifically, the improvement in squared error due to each predictor
is summed within each tree in the ensemble (i.e., each predictor gets an im-
provement value for each tree). The improvement values for each predictor are
then averaged across the entire ensemble to yield an overall importance value
(Friedman 2002; Ridgeway 2007). The top 25 predictors for the model are
presented in Fig. 8.21. NumCarbon and MolWeight stand out in this example
as most important followed by SurfaceArea1 and SurfaceArea2; importance
values tail off after about 7 predictors. Comparing these results to random
forests we see that both methods identify the same top 4 predictors, albeit in
different order. The importance profile for boosting has a much steeper im-
portance slope than the one for random forests. This is due to the fact that
the trees from boosting are dependent on each other and hence will have
correlated structures as the method follows by the gradient. Therefore many
of the same predictors will be selected across the trees, increasing their con-
tribution to the importance metric. Differences between variable importance
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Fig. 8.21: Variable importance scores for the top 25 predictors used in the
stochastic gradient boosting model for solubility

ordering and magnitude between random forests and boosting should not be
disconcerting. Instead, one should consider these as two different perspectives
of the data and use each view to provide some understanding of the gross
relationships between predictors and the response.

8.7 Cubist

Cubist is a rule-based model that is an amalgamation of several methodolo-
gies published some time ago (Quinlan 1987, 1992, 1993a) but has evolved
over this period. Previously, Cubist was only available in a commercial capac-
ity, but in 2011 the source code was released under an open-source license.
At this time, the full details of the current version of the model became
public. Our description of the model stems from the open-source version
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of the model.2 Some specific differences between Cubist and the previously
described approaches for model trees and their rule-based variants are:

• The specific techniques used for linear model smoothing, creating rules,
and pruning are different

• An optional boosting—like procedure called committees
• The predictions generated by the model rules can be adjusted using nearby

points from the training set data

The model tree construction process is almost identical to the process
described in Sect. 8.2, although the smoothing process between linear models
is more complex than the approach described in Quinlan (1992). In Cubist,
the models are still combined using a linear combination of two models:

ŷpar = a× ŷ(k) + (1− a)× ŷ(p),

where ŷ(k) is the prediction from the current model and ŷ(p) is from parent
model above it in the tree. Compared to model trees, Cubist calculates the
mixing proportions using a different equation. Let e(k) be the collection of
residuals of the child model (i.e., y − ŷ(k)) and e(p) be similar values for
the parent model. The smoothing procedure first determines the covariance
between the two sets of model residuals (denoted as Cov[e(p), e(k)]). This is an
overall measure of the linear relation between the two sets of residuals. If the
covariance is large, this implies that the residuals generally have the same
sign and relative magnitude, while a value near 0 would indicate no (linear)
relationship between the errors of the two models. Cubist also calculates the
variance of the difference between the residuals, e.g., Var[e(p) − e(k)]. The
smoothing coefficient used by Cubist is then

a =
Var[e(p)]− Cov[e(k), e(p)]

Var[e(p) − e(k)]
.

The first part of the numerator is proportional to the parent model’s RMSE.
If variance of the parent model’s errors is larger than the covariance, the
smoothing procedure tends to weight the child more than the parent. Con-
versely, if the variance of the parent model is low, that model is given more
weight.

In the end, the model with the smallest RMSE has a higher weight in the
smoothed model. When the models have the same RMSE, they are equally
weighted in the smooth procedure (regardless of the covariance).

Unlike the previously discussed “separate and conquer” methodology, the
final model tree is used to construct the initial set of rules. Cubist collects the
sequence of linear models at each node into a single, smoothed representation
of the models so that there is one liner model associated with each rule. The

2 We are indebted to the work of Chris Keefer, who extensively studied the Cubist
source code.
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adjusted error rate (Eq. 8.3) is the criterion for pruning and/or combining
rules. Starting with splits made near the terminal nodes, each condition of
the rules is tested using the adjusted error rate for the training set. If the
deletion of a condition in the rule does not increase the error rate, it is
dropped. This can lead to entire rules being removed from the overall model.
Once the rule conditions have been finalized, a new sample is predicted using
the average of the linear models from the appropriate rules (as opposed to
the rule with the largest coverage).

Model committees can be created by generating a sequence of rule-based
models. Like boosting, each model is affected by the result of the previous
models. Recall that boosting uses new weights for each data point based
on previous fits and then fits a new model utilizing these weights. Commit-
tees function differently. The training set outcome is adjusted based on the
prior model fit and then builds a new set of rules using this pseudo-response.
Specifically, the mth committee model uses an adjusted response:

y∗(m) = y − (ŷ(m−1) − y).

Basically, if a data point is underpredicted, the sample value is increased in
the hope that the model will produce a larger prediction in the next iteration.
Similarly, over-predicted points are adjusted so that the next model will lower
its prediction. Once the full set of committee models are created, new samples
are predicted using each model and the final rule-based prediction is the
simple average of the individual model predictions (recall that boosting uses
stage weights for the average).

Once the rule-based model is finalized (either using a single model or a
committee), Cubist has the ability to adjust the model prediction with sam-
ples from the training set (Quinlan 1993a). When predicting a new sample,
the K most similar neighbors are determined from the training set. Suppose
that the model predicts the new sample to be ŷ and then the final prediction
would be

1

K

K∑

�=1

w�

[
t� +

(
ŷ − t̂�

)]
,

where t� is the observed outcome for a training set neighbor, t̂� is the model
prediction of that neighbor, and w� is a weight calculated using the distance
of the training set neighbors to the new sample. As the difference between
the predictions of the new sample and its closest neighbor increases, the
adjustment becomes larger.

There are several details that must be specified to enact this process. First,
a distance metric to define the neighbors is needed. The implementation of
Cubist uses Manhattan (a.k.a. city block) distances to determine the nearest
neighbors. Also, neighbors are only included if they are “close enough” to the
prediction sample. To filter the neighbors, the average pairwise distance of
data points in the training set is used as a threshold. If the distance from
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Fig. 8.22: Cross-validated RMSE profiles for the number of committees and
neighbors used in Cubist

the potential neighbor to the prediction samples is greater than this average
distance, the neighbor is excluded. The weights w� also use the distance to
the neighbors. The raw weights are computed as

w� =
1

D� + 0.5
,

where D� is the distance of the neighbor to the prediction sample. These
weights are normalized to sum to one. Weighting has the effect of emphasizing
neighbors that are more similar to the prediction sample. Quinlan (1993a)
provides more information and further details can be found in the Cubist
source code at www.RuleQuest.com.

To tune this model, different numbers of committees and neighbors were
assessed. Figure 8.22 shows the cross-validation profiles. Independent of the
number of neighbors used, there is a trend where the error is significantly
reduced as the number of committees is increased and then stabilizes around
50 committees. The use of the training set to adjust the model predictions is
interesting: a purely rule-based model does better than an adjustment with
a single neighbor, but the error is reduced the most when nine neighbors are
used. In the end, the model with the lowest error (0.57 log units) was associ-
ated with 100 committees and an adjustment using nine neighbors, although
fewer committees could also be used without much loss of performance. For
the final Cubist model, the average number of rules per committee was 5.1
but ranged from 1 to 15.
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We can compare the Cubist model with a single committee member and
no neighbor adjustment to the previous rule-based model. The M5 rule-based
model had an estimated cross-validation error of 0.74 whereas the correspond-
ing Cubist model had error rate of 0.71. Based on the variation in the results,
this difference is slightly statistically significant (p-value: 0.0485). This might
indicate that the methodological differences between the two methods for
constructing rule-based models are not large, at least for these data.

There is no established technique for measuring predictor importance for
Cubist models. Each linear model has a corresponding slope for each pre-
dictor, but, as previously shown, these values can be gigantic when there
is significant collinearity in the data. A metric that relied solely on these
values would also ignore which predictors were used in the splits. However,
one can enumerate how many times a predictor variable was used in either
a linear model or a split and use these tabulations to get a rough idea the
impact each predictor has on the model. However, this approach ignores the
neighbor-based correction that is sometimes used by Cubist. The modeler
can choose how to weight the counts for the splits and the linear models in
the overall usage calculation.

For the solubility data, predictor importance values were calculated for the
model with 100 committees and correct the prediction using the 9-nearest
neighbors. Figure 8.23 shows a visualization of the values, where the x-axis is
the total usage of the predictor (i.e., the number of times it was used in a split
or a linear model). Like many of the other models discussed for these data,
the continuous predictors appear to have a greater impact on the model than
the fingerprint descriptors. Unlike the boosted tree model, there is a more
gradual decrease in importance for these data; there is not a small subset of
predictors that are dominating the model fit.

8.8 Computing

The R packages used in this section are caret, Cubist, gbm, ipred, party, partykit,
randomForest, rpart, RWeka.

Single Trees

Two widely used implementations for single regression trees in R are rpart and
party. The rpart package makes splits based on the CART methodology using
the rpart function, whereas the party makes splits based on the conditional
inference framework using the ctree function. Both rpart and ctree functions
use the formula method:
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Fig. 8.23: Variable importance scores for the top 25 predictors used in the
Cubist model for solubility

> library(rpart)

> rpartTree <- rpart(y ~ ., data = trainData)

> # or,

> ctreeTree <- ctree(y ~ ., data = trainData)

The rpart function has several control parameters that can be accessed
through the rpart.control argument. Two that are commonly used in train-
ing and that can be accessed through the train function are the complex-
ity parameter (cp) and maximum node depth (maxdepth). To tune an CART
tree over the complexity parameter, the method option in the train function
should be set to method = "rpart". To tune over maximum depth, the method
option should be set to method="rpart2":

> set.seed(100)

> rpartTune <- train(solTrainXtrans, solTrainY,

+ method = "rpart2",

+ tuneLength = 10,

+ trControl = trainControl(method = "cv"))
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Likewise, the party package has several control parameters that can be
accessed through the ctree_control argument. Two of these parameters are
commonly used in training: mincriterion and maxdepth. mincriterion defines
the statistical criterion that must be met in order to continue splitting;
maxdepth is the maximum depth of the tree. To tune a conditional inference
tree over mincriterion, the method option in the train function should be
set to method = "ctree". To tune over maximum depth, the method option
should be set to method="ctree2".

The plot method in the party package can produce the tree diagrams shown
in Fig. 8.4 via

> plot(treeObject)

To produce such plots for rpart trees, the partykit can be used to first convert
the rpart object to a party object and then use the plot function:

> library(partykit)

> rpartTree2 <- as.party(rpartTree)

> plot(rpartTree2)

Model Trees

The main implementation for model trees can be found in the Weka software
suite, but the model can be accessed in R using the RWeka package. There
are two different interfaces: M5P fits the model tree, while M5Rules uses the rule-
based version. In either case, the functions work with formula methods:

> library(RWeka)

> m5tree <- M5P(y ~ ., data = trainData)

> # or, for rules:

> m5rules <- M5Rules(y ~ ., data = trainData)

In our example, the minimum number of training set points required to
create additional splits was raised from the default of 4–10. To do this, the
control argument is used:

> m5tree <- M5P(y ~ ., data = trainData,

+ control = Weka_control(M = 10))

The control argument also has options for toggling the use of smoothing and
pruning. If the full model tree is used, a visualization similar to Fig. 8.10 can
be created by the plot function on the output from M5P.

To tune these models, the train function in the caret package has two
options: using method = "M5" evaluates model trees and the rule-based versions
of the model, as well as the use of smoothing and pruning. Figure 8.12 shows
the results of evaluating these models from the code:
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> set.seed(100)

> m5Tune <- train(solTrainXtrans, solTrainY,

+ method = "M5",

+ trControl = trainControl(method = "cv"),

+ ## Use an option for M5() to specify the minimum

+ ## number of samples needed to further splits the

+ ## data to be 10

+ control = Weka_control(M = 10))

followed by plot(m5Tune). train with method = "M5Rules" evaluates only the
rule-based version of the model.

Bagged Trees

The ipred package contains two functions for bagged trees: bagging uses the
formula interface and ipredbagg has the non-formula interface:

> library(ipred)

> baggedTree <- ipredbagg(solTrainY, solTrainXtrans)

> ## or

> baggedTree <- bagging(y ~ ., data = trainData)

The function uses the rpart function and details about the type of tree can
be specified by passing rpart.control to the control argument for bagging and
ipredbagg. By default, the largest possible tree is created.

Several other packages have functions for bagging. The aforementioned
RWeka package has a function called Bagging and the caret package has a
general framework for bagging many model types, including trees, called bag.
Conditional inference trees can also be bagged using the cforest function in
the party package if the argument mtry is equal to the number of predictors:

> library(party)

> ## The mtry parameter should be the number of predictors (the

> ## number of columns minus 1 for the outcome).

> bagCtrl <- cforest_control(mtry = ncol(trainData) - 1)

> baggedTree <- cforest(y ~ ., data = trainData, controls = bagCtrl)

Random Forest

The primary implementation for random forest comes from the package with
the same name:

> library(randomForest)

> rfModel <- randomForest(solTrainXtrans, solTrainY)

> ## or

> rfModel <- randomForest(y ~ ., data = trainData)
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The two main arguments are mtry for the number of predictors that are
randomly sampled as candidates for each split and ntree for the number of
bootstrap samples. The default for mtry in regression is the number of predic-
tors divided by 3. The number of trees should be large enough to provide a
stable, reproducible results. Although the default is 500, at least 1,000 boot-
strap samples should be used (and perhaps more depending on the number of
predictors and the values of mtry). Another important option is importance;
by default, variable importance scores are not computed as they are time
consuming; importance = TRUE will generate these values:

> library(randomForest)

> rfModel <- randomForest(solTrainXtrans, solTrainY,

+ importance = TRUE,

+ ntrees = 1000)

For forests built using conditional inference trees, the cforest function in
the party package is available. It has similar options, but the controls argu-
ment (note the plural) allows the user to pick the type of splitting algorithm
to use (e.g., biased or unbiased).

Neither of these functions can be used with missing data.
The train function contains wrappers for tuning either of these models by

specifying either method = "rf" or method = "cforest". Optimizing the mtry

parameter may result in a slight increase in performance. Also, train can use
standard resampling methods for estimating performance (as opposed to the
out-of-bag estimate).

For randomForest models, the variable importance scores can be accessed
using a function in that package called importance. For cforest objects, the
analogous function in the party package is varimp.

Each package tends to have its own function for calculating importance
scores, similar to the situation for class probabilities shown in Table B.1 of the
first Appendix. caret has a unifying function called varImp that is a wrapper
for variable importance functions for the following tree-model objects: rpart,
classbagg (produced by the ipred package’s bagging functions) randomForest,
cforest, gbm, and cubist.

Boosted Trees

The most widely used package for boosting regression trees via stochastic
gradient boosting machines is gbm. Like the random forests interface, models
can be built in two distinct ways:

> library(gbm)

> gbmModel <- gbm.fit(solTrainXtrans, solTrainY, distribution = "gaussian")

> ## or

> gbmModel <- gbm(y ~ ., data = trainData, distribution = "gaussian")
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The distribution argument defines the type of loss function that will be
optimized during boosting. For a continuous response, distribution should
be set to “gaussian.”The number of trees (n.trees), depth of trees (interac-
tion.depth), shrinkage (shrinkage), and proportion of observations to be sam-
pled (bag.fraction) can all be directly set in the call to gbm.

Like other parameters, the train function can be used to tune over these
parameters. To tune over interaction depth, number of trees, and shrinkage,
for example, we first define a tuning grid. Then we train over this grid as
follows:

> gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),

+ .n.trees = seq(100, 1000, by = 50),

+ .shrinkage = c(0.01, 0.1))

> set.seed(100)

> gbmTune <- train(solTrainXtrans, solTrainY,

+ method = "gbm",

+ tuneGrid = gbmGrid,

+ ## The gbm() function produces copious amounts

+ ## of output, so pass in the verbose option

+ ## to avoid printing a lot to the screen.

+ verbose = FALSE)

Cubist

As previously mentioned, the implementation for this model created by Rule-
Quest was recently made public using an open-source license. An R package
called Cubist was created using the open-source code. The function does not
have a formula method since it is desirable to have the Cubist code manage
the creation and usage of dummy variables. To create a simple rule-based
model with a single committee and no instance-based adjustment, we can
use the simple code:

> library(Cubist)

> cubistMod <- cubist(solTrainXtrans, solTrainY)

An argument, committees, fits multiple models. The familiar predict method
would be used for new samples:

> predict(cubistMod, solTestXtrans)

The choice of instance-based corrections does not need to be made until
samples are predicted. The predict function has an argument, neighbors, that
can take on a single integer value (between 0 and 9) to adjust the rule-based
predictions from the training set.

Once the model is trained, the summary function generates the exact rules
that were used, as well as the final smoothed linear model for each rule. Also,
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as with most other models, the train function in the caret package can tune
the model over values of committees and neighbors through resampling:

> cubistTuned <- train(solTrainXtrans, solTrainY, method = "cubist")

Exercises

8.1. Recreate the simulated data from Exercise 7.2:

> library(mlbench)

> set.seed(200)

> simulated <- mlbench.friedman1(200, sd = 1)

> simulated <- cbind(simulated$x, simulated$y)

> simulated <- as.data.frame(simulated)

> colnames(simulated)[ncol(simulated)] <- "y"

(a) Fit a random forest model to all of the predictors, then estimate the
variable importance scores:

> library(randomForest)

> library(caret)

> model1 <- randomForest(y ~ ., data = simulated,

+ importance = TRUE,

+ ntree = 1000)

> rfImp1 <- varImp(model1, scale = FALSE)

Did the random forest model significantly use the uninformative predic-
tors (V6 – V10)?

(b) Now add an additional predictor that is highly correlated with one of the
informative predictors. For example:

> simulated$duplicate1 <- simulated$V1 + rnorm(200) * .1

> cor(simulated$duplicate1, simulated$V1)

Fit another random forest model to these data. Did the importance score
for V1 change? What happens when you add another predictor that is
also highly correlated with V1?

(c) Use the cforest function in the party package to fit a random forest model
using conditional inference trees. The party package function varimp can
calculate predictor importance. The conditional argument of that func-
tion toggles between the traditional importance measure and the modified
version described in Strobl et al. (2007). Do these importances show the
same pattern as the traditional random forest model?

(d) Repeat this process with different tree models, such as boosted trees and
Cubist. Does the same pattern occur?
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Fig. 8.24: A comparison of variable importance magnitudes for differing values
of the bagging fraction and shrinkage parameters. Both tuning parameters
are set to 0.1 in the left figure. Both are set to 0.9 in the right figure

8.2. Use a simulation to show tree bias with different granularities.

8.3. In stochastic gradient boosting the bagging fraction and learning rate
will govern the construction of the trees as they are guided by the gradi-
ent. Although the optimal values of these parameters should be obtained
through the tuning process, it is helpful to understand how the magnitudes
of these parameters affect magnitudes of variable importance. Figure 8.24
provides the variable importance plots for boosting using two extreme values
for the bagging fraction (0.1 and 0.9) and the learning rate (0.1 and 0.9) for
the solubility data. The left-hand plot has both parameters set to 0.1, and
the right-hand plot has both set to 0.9:

(a) Why does the model on the right focus its importance on just the first few
of predictors, whereas the model on the left spreads importance across
more predictors?

(b) Which model do you think would be more predictive of other samples?
(c) How would increasing interaction depth affect the slope of predictor im-

portance for either model in Fig. 8.24?
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8.4. Use a single predictor in the solubility data, such as the molecular weight
or the number of carbon atoms and fit several models:

(a) A simple regression tree
(b) A random forest model
(c) Different Cubist models with a single rule or multiple committees (each

with and without using neighbor adjustments)

Plot the predictor data versus the solubility results for the test set. Overlay
the model predictions for the test set. How do the model differ? Does changing
the tuning parameter(s) significantly affect the model fit?

8.5. Fit different tree- and rule-based models for the Tecator data discussed
in Exercise 6.1. How do they compare to linear models? Do the between-
predictor correlations seem to affect your models? If so, how would you trans-
form or re-encode the predictor data to mitigate this issue?

8.6. Return to the permeability problem described in Exercises 6.2 and 7.4.
Train several tree-based models and evaluate the resampling and test set
performance:

(a) Which tree-based model gives the optimal resampling and test set per-
formance?

(b) Do any of these models outperform the covariance or non-covariance
based regression models you have previously developed for these data?
What criteria did you use to compare models’ performance?

(c) Of all the models you have developed thus far, which, if any, would you
recommend to replace the permeability laboratory experiment?

8.7. Refer to Exercises 6.3 and 7.5 which describe a chemical manufacturing
process. Use the same data imputation, data splitting, and pre-processing
steps as before and train several tree-based models:

(a) Which tree-based regression model gives the optimal resampling and test
set performance?

(b) Which predictors are most important in the optimal tree-based regression
model? Do either the biological or process variables dominate the list?
How do the top 10 important predictors compare to the top 10 predictors
from the optimal linear and nonlinear models?

(c) Plot the optimal single tree with the distribution of yield in the terminal
nodes. Does this view of the data provide additional knowledge about the
biological or process predictors and their relationship with yield?



Chapter 9

A Summary of Solubility Models

Across the last few chapters, a variety of models have been fit to the solubility
data set. How do the models compare for these data and which one should
be selected for the final model? Figs. 9.1 and 9.2 show scatter plots of the
performance metrics calculated using cross-validation and the test set data.

With the exception of poorly performing models, there is a fairly high
correlation between the results derived from resampling and the test set (0.9
for the RMSE and 0.88 for R2). For the most part, the models tend to rank
order similarly. K-nearest neighbors were the weakest performer, followed by
the two single tree-based methods. While bagging these trees did help, it
did not make the models very competitive. Additionally, conditional random
forest models had mediocre results.

There was a “pack” of models that showed better results, including model
trees, linear regression, penalized linear models, MARS, and neural networks.
These models are more simplistic but would not be considered interpretable
given the number of predictors involved in the linear models and the com-
plexity of the model trees and MARS. For the most part, they would be
easy to implement. Recall that this type of model might be used by a phar-
maceutical company to screen millions of potential compounds, so ease of
implementation should not be taken lightly.

The group of high-performance models include support vector machines
(SVMs), boosted trees, random forests, and Cubist. Each is essentially a
black box with a highly complex prediction equation. The performance of
these models is head and shoulders above the rest so there is probably some
value in finding computationally efficient implementations that can be used
to predict large numbers of new samples.

Are there any real differences between these models? Using the resampling
results, a set of confidence intervals were constructed to characterize the
differences in RMSE in the models using the techniques shown in Sect. 4.8.
Figure 9.3 shows the intervals. There are very few statistically significant
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Fig. 9.3: Confidence intervals for the differences in RMSE for the high-
performance models

differences. Additionally, most of the estimated mean differences are less than
0.05 log units, which are not scientifically meaningful. Given this, any of these
models would be a reasonable choice.



Chapter 10

Case Study: Compressive Strength
of Concrete Mixtures

Thus far, the focus has been on observational data sets where the values of the
predictors were not pre-specified. For example, the QSAR data used in the
previous chapters involved a collection of diverse compounds that captured
a sufficient amount of the “chemical space.” This particular data set was
not created by specifying exact values for the chemical properties (such as
molecular weight). Instead compounds were sampled from an appropriate
population for use in the model.

Designed experiments are created by planning the exact values of the pre-
dictors (referred to as the factors in this context) using some sort of strategic
methodology. The configurations of predictor settings are created so that they
have good mathematical and experimental properties. One such property is
balance. A balanced design is one where no one experimental factor (i.e., the
predictors) has more focus than the others. In most cases, this means that
each predictor has the same number of possible levels and that the frequen-
cies of the levels are equivalent for each factor. The properties used to choose
the best experimental design are driven by the stage of experimentation.

Box et al. (1978) popularized the concept of sequential experimentation
where a large number of possible experimental factors are screened with low
resolution (i.e., “casting a wide net”) to determine the active or important
factors that relate to the outcome. Once the importance of the predictors
are quantified, more focused experiments are created with the subset of im-
portant factors. In subsequent experiments, the nature of the relationship
between the important factors can be further elucidated. The last step in the
sequence of experiments is to fine-tune a small number of important factors.
Response surface experiments (Myers and Montgomery 2009) use a smaller
set of predictor values. Here, the primary goal is to optimize the experimental
settings based on a nonlinear model of the experimental predictors.
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Designed experiments and predictive models have several differences1:

• A sequence of studies is preferred over a single, comprehensive data set that
attempts to include all possible predictors (i.e., experimental factors) with
many values per predictor. The iterative paradigm of planning, designing,
and then analyzing an experiment is, on the surface, different than most
predictive modeling problems.

• Until the final stages of sequential experimentation, the focus is on un-
derstanding which predictors affect the outcome and how. Once response
surface experiments are utilized, the focus of the activities is solely about
prediction.

This case study will focus on the prediction of optimal formulations of
concrete mixture-based data from designed experiments.

Concrete is an integral part of most industrialized societies. It is used to
some extent in nearly all structures and in many roads. One of the main
properties of interest (beside cost) is the compressive strength of the hard-
ened concrete. The composition of many concretes includes a number of dry
ingredients which are mixed with water and then are allowed to dry and
harden. Given its abundance and critical role in infrastructure, the composi-
tion is important and has been widely studied. In this chapter, models will
be created to help find potential recipes to maximize compressive strength.

Yeh (2006) describes a standard type of experimental setup for this sce-
nario called a mixture design (Cornell 2002; Myers and Montgomery 2009).
Here, boundaries on the upper and lower limits on the mixture proportion
for each ingredient are used to create multiple mixtures that methodically fill
the space within the boundaries. For a specific type of mixture design, there
is a corresponding linear regression model that is typically used to model the
relationship between the ingredients and the outcome. These linear models
can include interaction effects and higher-order terms for the ingredients. The
ingredients used in Yeh (2006) were:

• Cement (kg/m3)
• Fly ash (kg/m3), small particles produced by burning coal
• Blast furnace slag (kg/m3)
• Water (kg/m3)

1 There are cases where specialized types of experimental designs are utilized with
predictive models. In the field of chemometrics, an orthogonal array-type design fol-
lowed by the sequential elimination of level combination algorithm has been shown
to improve QSAR models (Mandal et al. 2006, 2007). Also, the field of active learn-
ing sequentially added samples based on the training set using the predictive model
results (Cohn et al. 1994; Saar-Tsechansky and Provost 2007a).



10 Case Study: Compressive Strength of Concrete Mixtures 227

• Superplasticizer (kg/m3), an additive that reduces particle aggregation
• Coarse aggregate (kg/m3)
• Fine aggregate (kg/m3)

Yeh (2006) also describes an additional non-mixture factor related to com-
pressive strength: the age of the mixture (at testing). Since this is not an
ingredient, it is usually referred to as a process factor. Specific experimental
designs (and linear model forms) exist for experiments that combine mixture
and process variables (see Cornell (2002) for more details).

Yeh (1998) takes a different approach to modeling concrete mixture exper-
iments. Here, separate experiments from 17 sources with common experimen-
tal factors were combined into one “meta-experiment” and the author used
neural networks to create predictive models across the whole mixture space.
Age was also included in the model. The public version of the data set in-
cludes 1030 data points across the different experiments, although Yeh (1998)
states that some mixtures were removed from his analysis due to nonstandard
conditions. There is no information regarding exactly which mixtures were
removed, so the analyses here will use all available data points. Table 10.1
shows a summary of the predictor data (in amounts) and the outcome.

Figure 10.1 shows scatter plots of each predictor versus the compressive
strength. Age shows a strong nonlinear relationship with the predictor, and
the cement amount has a linear relationship. Note that several of the in-
gredients have a large frequency of a single amount, such as zero for the
superplasticizer and the amount of fly ash. In these cases, the compressive
strength varies widely for those values of the predictors. This might indi-
cate that some of the partitioning methods, such as trees or MARS, may
be able to isolate these mixtures within the model and more effectively pre-
dict the compressive strength. For example, there are 53 mixtures with no
superplasticizer or fly ash but with exactly 228 kg/m3 of water. This may
represent an important sub-population of mixtures that may benefit from a
model that is specific to these types of mixtures. A tree- or rule-based model
has the ability to model such a sub-group while classical regression models
would not.

Although the available data do not denote which formulations came from
each source, there are 19 distinct mixtures with replicate data points. The
majority of these mixtures had only two or three duplicate conditions, al-
though some conditions have as many as four replicates. When modeling
these data, the replicate results should not be treated as though they are in-
dependent observations. For example, having replicate mixtures in both the
training and test sets can result in overly optimistic assessments of how well
the model works. A common approach here is to average the outcomes within
each unique mixture. Consequentially, the number of mixtures available for
modeling drops from 1030 to 992.
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Table 10.1: Data for the concrete mixtures

9 Variables 1030 Observations

Cement
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 278 281.2 143.7 153.5 192.4 272.9 350.0 425.0 480.0

lowest : 102.0 108.3 116.0 122.6 132.0
highest: 522.0 525.0 528.0 531.3 540.0

BlastFurnaceSlag
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 185 73.9 0.0 0.0 0.0 22.0 142.9 192.0 236.0

lowest : 0.0 11.0 13.6 15.0 17.2
highest: 290.2 305.3 316.1 342.1 359.4

FlyAsh
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 156 54.19 0.0 0.0 0.0 0.0 118.3 141.1 167.0

lowest : 0.0 24.5 59.0 60.0 71.0
highest: 194.0 194.9 195.0 200.0 200.1

Water
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1030 0 195 181.6 146.1 154.6 164.9 185.0 192.0 203.5 228.0

lowest : 121.8 126.6 127.0 127.3 137.8
highest: 228.0 236.7 237.0 246.9 247.0

Superplasticizer
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 111 6.205 0.00 0.00 0.00 6.40 10.20 12.21 16.05

lowest : 0.0 1.7 1.9 2.0 2.2,
highest: 22.0 22.1 23.4 28.2 32.2

CoarseAggregate
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 284 972.9 842.0 852.1 932.0 968.0 1029.4 1076.5 1104.0

lowest : 801.0 801.1 801.4 811.0 814.0
highest: 1124.4 1125.0 1130.0 1134.3 1145.0

FineAggregate
n missing unique Mean 0.05 0.10 0.25 .50 0.75 .90 0.95

1030 0 302 773.6 613.0 664.1 730.9 779.5 824.0 880.8 898.1

lowest : 594.0 605.0 611.8 612.0 613.0
highest: 925.7 942.0 943.1 945.0 992.6

Age
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 14 45.66 3 3 7 28 56 100 180

1 3 7 14 28 56 90 91 100 120 180 270 360 365
Frequency 2 134 126 62 425 91 54 22 52 3 26 13 6 14
% 0 13 12 6 41 9 5 2 5 0 3 1 1 1

CompressiveStrength
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 845 35.82 10.96 14.20 23.71 34.45 46.14 58.82 66.80

lowest : 2.33 3.32 4.57 4.78 4.83
highest: 79.40 79.99 80.20 81.75 82.60
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Fig. 10.1: Scatter plots of the concrete predictors versus the compressive
strength

10.1 Model Building Strategy

The neural network models used in Yeh (1998) were single-layer networks
with eight hidden units. Multiple data splitting approaches were used by the
original author. Four models were fit with different training sets such that all
the data from a single source were held out each time. These models resulted
in test set R2 values ranging from 0.814 to 0.895. They also used a random
sample of 25% of the data for holdout test sets. This was repeated four times
to produce test set R2 values between 0.908 and 0.922.

Although an apples-to-apples comparison cannot be made with the anal-
yses of Yeh (1998), a similar data splitting approach will be taken for this
case study. A random holdout set of 25% (n = 247) will be used as a test set
and five repeats of 10-fold cross-validation will be used to tune the various
models.

In this case study, a series of models will be created and evaluated. Once
a final model is selected, the model will be used to predict mixtures with
optimal compressive strength within practical limitations.
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How should the predictors be used to model the outcome? Yeh (1998)
discusses traditional approaches, such as relying on the water-to-cement
ratio, but suggests that the existing experimental data are not consistent
with historical strategies. In this chapter, the predictors will enter the mod-
els as the proportion of the total amount. Because of this, there is a built-in
dependency in the predictor values (any predictor can be automatically de-
termined by knowing the values of the other seven). Despite this, the pairwise
correlations are not large, and, therefore, we would not expect methods that
are designed to deal with collinearity (e.g., PLS, ridge regression) to have
performance that is superior to other models.

A suite of models were tested:

• Linear regression, partial least squares, and the elastic net. Each model
used an expanded set of predictors that included all two-factor interactions
(e.g., age × water) and quadratic terms.

• Radial basis function support vector machines (SVMs).
• Neural network models.
• MARS models.
• Regression trees (both CART and conditional inference trees), model trees

(with and without rules), and Cubist (with and without committees and
neighbor-based adjustments).

• Bagged and boosted regression trees, along with random forest models.

The details of how the models were tuned are given in the Computing section
at the end of the chapter.

10.2 Model Performance

The same cross-validation folds were used for each model. Figure 10.2 shows
parallel-coordinate plots for the resampling results across the models. Each
line corresponds to a common cross-validation holdout. From this, the top
performing models were tree ensembles (random forest and boosting), rule
ensembles (Cubist), and neural networks. Linear models and simple trees did
not perform well. Bagged trees, SVMs, and MARS showed modest results but
are clearly worse than the top cluster of models. The averaged R2 statistics
ranged from 0.76 to 0.92 across the models. The top three models (as ranked
by resampling) were applied to the test set. The RMSE values are roughly
consistent with the cross-validation rankings: 3.9 (boosted tree), 4.2 (neural
networks), and 4.5 (cubist).

Figure 10.3 shows plots of the raw data, predictions, and residuals for the
three models. The plots for each model are fairly similar; each shows good
concordance between the observed and predicted values with a slight“fanning
out” at the high end of compressive strength. The majority of the residuals
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Fig. 10.2: Parallel coordinate plots for the cross-validated RMSE and R2

across different models. Each line represents the results for a common cross-
validation holdout set

are within ±2.8 MPa with the largest errors slightly more than 15 MPa.
There is no clear winner or loser in the models based on these plots.

The neural network model used 27 hidden units with a weight decay value
of 0.1. The performance profile for this model (not shown, but can be re-
produced using syntax provided in the Computing section below) showed
that weight decay had very little impact on the effectiveness of the model.
The final Cubist model used 100 committees and adjusted the predic-
tions with 3-nearest neighbors. Similar to the Cubist profiles shown for the
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Fig. 10.3: Diagnostic plots of the test set results for three models. (a) Neural
network (b) Boosted trees (c) Cubist
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computational chemistry data (see the figure on page 211), performance
suffered when the number of neighbors was either too low or too high. The
boosted tree preferred a fast learning rate and deep trees.

10.3 Optimizing Compressive Strength

The neural network and Cubist models were used to determine possible
mixtures with improved compressive strength. To do this, a numerical search
routine can be used to find formulations with high compressive strength (as
predicted by the model). Once a candidate set of mixtures is found, addi-
tional experiments would then be executed for the mixtures to verify that
the strength has indeed improved. For illustrative purposes, the age of the
formulation was fixed to a value of 28 days (there are a large number of data
points in the training set with this value) and only the mixture ingredients
will be optimized.

How, exactly, should the search be conducted? There are numerous numer-
ical optimization routines that can search seven-dimensional space. Many rely
on determining the gradient (i.e., first derivative) of the prediction equation.
Several of the models have smooth prediction equations (e.g., neural net-
works and SVMs). However, others have many discontinuities (such as tree-
and rule-based models and multivariate adaptive regression splines) that are
not conducive to gradient-based search methods.

An alternative is to use a class of optimizers called direct methods that
would not use derivatives to find the settings with optimal compressive
strength and evaluate the prediction equation many more times than derivative-
based optimizers. Two such search procedures are the Nelder–Mead simplex
method (Nelder and Mead 1965; Olsson and Nelson 1975) and simulated
annealing (Bohachevsky et al. 1986). Of these, the simplex search procedure
had the best results for these data.2 The Nelder–Mead method has the poten-
tial to get “stuck” in a sub-optimal region of the search space, which would
generate poor mixtures. To counter-act this issue, it is common to repeat
the search using different starting points and choosing the searches that are
associated with the best results. To do this, 15–28-day-old mixtures were se-
lected from the training set. The first of the 15 was selected at random and
the remaining starting points were selected using the maximum dissimilarity
sampling procedure discussed in Sect. 4.3.

Before beginning the search, constraints were used to avoid searching parts
of the formulation space that were impractical or impossible. For example,
the amount of water ranged from 5.1% to 11.2%. The search procedure was
set to only consider mixtures with at least 5% water.

2 The reader can also try simulated annealing using the code at the end of the chapter.
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Table 10.2: The top three optimal mixtures predicted from two models where
the age was fixed at a value of 28. In the training set, matching on age, the
strongest mixtures had compressive strengths of 81.75, 79.99, and 78.8

Model Cement Slag Ash Plast. C. Agg. F. Agg. Water Prediction

Cubist
New mix 1 12.7 14.9 6.8 0.5 34.0 25.7 5.4 89.1
New mix 2 21.7 3.4 5.7 0.3 33.7 29.9 5.3 88.4
New mix 3 14.6 13.7 0.4 2.0 35.8 27.5 6.0 88.2

Neural network
New mix 4 34.4 7.9 0.2 0.3 31.1 21.1 5.1 88.7
New mix 5 21.2 11.6 0.1 1.1 32.4 27.8 5.8 85.7
New mix 6 40.8 4.9 6.7 0.7 20.3 20.5 6.1 83.9

In the training set, there were 416 formulations that were tested at 28 days.
Of these, the top three mixtures had compressive strengths of 81.75, 79.99,
and 78.8. Table 10.2 shows the top three predicted mixtures for a smooth and
non-smooth model (neural networks and Cubist, respectively). The models
are able to find formulations that are predicted to have better strength than
those seen in the data.

The Cubist mixtures were predicted to have similar compressive strengths.
Their formulations were differentiated by the cement, slag, ash, and plasticizer
components. The neural network mixtures were in a nearby region of mix-
ture space and had predicted values that were lower than the Cubist model
predictions but larger than the best-observed mixtures. In each of the six
cases, the mixtures have very low proportions of water. Principal component
analysis was used to represent the training set mixture (in seven-dimensional
space) using two components. A PCA plot of the 28-day data is shown in
Fig. 10.4. The principal component values for the 15 mixtures used as start-
ing points for the search procedure are shown (as × symbols) as are the
other 401 time-matched data points in the training set (shown as small grey
dots). The top three predictions from the two models are also shown. Many
of the predicted mixtures are near the outskirts of the mixture space and are
likely to suffer some model inaccuracy due to extrapolation. Given this, it
is extremely important to validate these new formulations scientifically and
experimentally.

More complex approaches to finding optimal mixtures can also be used.
For example, it may be important to incorporate the cost of the mixture (or
other factors) into the search. Such amultivariate ormultiparameter optimiza-
tion can be executed a number of ways. One simple approach is desirability
functions (Derringer and Suich 1980; Costa et al. 2011). Here, the impor-
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Fig. 10.4: A PCA plot of the training set data where the mixtures were aged
28 days. The search algorithm was executed across 15 different training set
mixtures (shown as × in the plot). The top three optimal mixtures predicted
from two models are also shown

tant characteristics of a mixture (e.g., strength and cost) are mapped to a
common desirability scale between 0 and 1, where one is most desirable and
zero is completely undesirable. For example, mixtures above a certain cost
may be unacceptable. Mixtures associated with costs at or above this value
would have zero desirability (literally). As the cost decreases the relationship
between cost and desirability might be specified to be linearly decreasing.
Figure 10.5 shows two hypothetical examples of desirability function for cost
and strength. Here, formulations with costs greater than 20 and strength less
than 70 are considered completely unacceptable. Once desirability functions
are created by the user for every characteristic to be optimized, the overall
desirability is combined, usually using a geometric mean. Note that, since the
geometric mean multiplies values, if any one desirability function has a score
of 0, all other characteristics would be considered irrelevant (since the over-
all value is also 0). The overall desirability would be optimized by a search
procedure to find a solution that takes all the characteristics into account.
Wager et al. (2010) and Cruz-Monteagudo et al. (2011) show examples of this
approach.
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for the purpose of finding strong, low-cost mixtures

10.4 Computing

This section uses functions from the caret, desirability, Hmisc, and plyr
packages.

The concrete data can be found in the UCI Machine Learning repository.
The AppliedPredictiveModeling package contains the original data
(in amounts) and an alternate version that has the mixture proportions:

> library(AppliedPredictiveModeling)

> data(concrete)

> str(concrete)

'data.frame': 1030 obs. of 9 variables:
$ Cement : num 540 540 332 332 199 ...
$ BlastFurnaceSlag : num 0 0 142 142 132 ...
$ FlyAsh : num 0 0 0 0 0 0 0 0 0 0 ...
$ Water : num 162 162 228 228 192 228 228 228 228 228 ...
$ Superplasticizer : num 2.5 2.5 0 0 0 0 0 0 0 0 ...
$ CoarseAggregate : num 1040 1055 932 932 978 ...
$ FineAggregate : num 676 676 594 594 826 ...
$ Age : int 28 28 270 365 360 90 365 28 28 28 ...
$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

> str(mixtures)

'data.frame': 1030 obs. of 9 variables:
$ Cement : num 0.2231 0.2217 0.1492 0.1492 0.0853 ...
$ BlastFurnaceSlag : num 0 0 0.0639 0.0639 0.0569 ...
$ FlyAsh : num 0 0 0 0 0 0 0 0 0 0 ...
$ Water : num 0.0669 0.0665 0.1023 0.1023 0.0825 ...
$ Superplasticizer : num 0.00103 0.00103 0 0 0 ...
$ CoarseAggregate : num 0.43 0.433 0.418 0.418 0.42 ...
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$ FineAggregate : num 0.279 0.278 0.266 0.266 0.355 ...
$ Age : int 28 28 270 365 360 90 365 28 28 28 ...
$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

Table 10.1 was created using the describe function in the Hmisc package,
and Fig. 10.1 was create using the featurePlot function in caret:

> featurePlot(x = concrete[, -9],

+ y = concrete$CompressiveStrength,

+ ## Add some space between the panels

+ between = list(x = 1, y = 1),

+ ## Add a background grid ('g') and a smoother ('smooth')
+ type = c("g", "p", "smooth"))

The code for averaging the replicated mixtures and splitting the data into
training and test sets is

> averaged <- ddply(mixtures,

+ .(Cement, BlastFurnaceSlag, FlyAsh, Water,

+ Superplasticizer, CoarseAggregate,

+ FineAggregate, Age),

+ function(x) c(CompressiveStrength =

+ mean(x$CompressiveStrength)))

> set.seed(975)

> forTraining <- createDataPartition(averaged$CompressiveStrength,

+ p = 3/4)[[1]]

> trainingSet <- averaged[ forTraining,]

> testSet <- averaged[-forTraining,]

To fit the linear models with the expanded set of predictors, such as inter-
actions, a specific model formula was created. The dot in the formula below
is shorthand for all predictors and (.)^2 expands into a model with all the
linear terms and all two-factor interactions. The quadratic terms are created
manually and are encapsulated inside the I() function. This “as-is” function
tells R that the squaring of the predictors should be done arithmetically (and
not symbolically).

The formula is first created as a character string using the paste command,
then is converted to a bona fide R formula.

> modFormula <- paste("CompressiveStrength ~ (.)^2 + I(Cement^2) + ",

+ "I(BlastFurnaceSlag^2) + I(FlyAsh^2) + I(Water^2) +",

+ " I(Superplasticizer^2) + I(CoarseAggregate^2) + ",

+ "I(FineAggregate^2) + I(Age^2)")

> modFormula <- as.formula(modFormula)

Each model used repeated 10-fold cross-validation and is specified with
the trainControl function:

> controlObject <- trainControl(method = "repeatedcv",

+ repeats = 5,

+ number = 10)
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To create the exact same folds, the random number generator is reset to a
common seed prior to running train. For example, to fit the linear regression
model:

> set.seed(669)

> linearReg <- train(modFormula,

+ data = trainingSet,

+ method = "lm",

+ trControl = controlObject)

> linearReg

745 samples
44 predictors

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 671, 671, 672, 670, 669, 669, ...

Resampling results

RMSE Rsquared RMSE SD Rsquared SD
7.85 0.771 0.647 0.0398

The output shows that 44 predictors were used, indicating the expanded
model formula was used.

The other two linear models were created with:

> set.seed(669)

> plsModel <- train(modForm, data = trainingSet,

+ method = "pls",

+ preProc = c("center", "scale"),

+ tuneLength = 15,

+ trControl = controlObject)

> enetGrid <- expand.grid(.lambda = c(0, .001, .01, .1),

+ .fraction = seq(0.05, 1, length = 20))

> set.seed(669)

> enetModel <- train(modForm, data = trainingSet,

+ method = "enet",

+ preProc = c("center", "scale"),

+ tuneGrid = enetGrid,

+ trControl = controlObject)

MARS, neural networks, and SVMs were created as follows:

> set.seed(669)

> earthModel <- train(CompressiveStrength ~ ., data = trainingSet,

+ method = "earth",

+ tuneGrid = expand.grid(.degree = 1,

+ .nprune = 2:25),

+ trControl = controlObject)

> set.seed(669)

> svmRModel <- train(CompressiveStrength ~ ., data = trainingSet,

+ method = "svmRadial",

+ tuneLength = 15,

+ preProc = c("center", "scale"),
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+ trControl = controlObject)

> nnetGrid <- expand.grid(.decay = c(0.001, .01, .1),

+ .size = seq(1, 27, by = 2),

+ .bag = FALSE)

> set.seed(669)

> nnetModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "avNNet",

+ tuneGrid = nnetGrid,

+ preProc = c("center", "scale"),

+ linout = TRUE,

+ trace = FALSE,

+ maxit = 1000,

+ trControl = controlObject)

The regression and model trees were similarly created:

> set.seed(669)

> rpartModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "rpart",

+ tuneLength = 30,

+ trControl = controlObject)

> set.seed(669)

> ctreeModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "ctree",

+ tuneLength = 10,

+ trControl = controlObject)

> set.seed(669)

> mtModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "M5",

+ trControl = controlObject)

The following code creates the remaining model objects:

> set.seed(669)

> treebagModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "treebag",

+ trControl = controlObject)

> set.seed(669)

> rfModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "rf",

+ tuneLength = 10,

+ ntrees = 1000,

+ importance = TRUE,

+ trControl = controlObject)

> gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),

+ .n.trees = seq(100, 1000, by = 50),
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+ .shrinkage = c(0.01, 0.1))

> set.seed(669)

> gbmModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "gbm",

+ tuneGrid = gbmGrid,

+ verbose = FALSE,

+ trControl = controlObject)

> cubistGrid <- expand.grid(.committees = c(1, 5, 10, 50, 75, 100),

+ .neighbors = c(0, 1, 3, 5, 7, 9))

> set.seed(669)

> cbModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "cubist",

+ tuneGrid = cubistGrid,

+ trControl = controlObject)

The resampling results for these models were collected into a single object
using caret’s resamples function. This object can then be used for visualiza-
tions or to make formal comparisons between the models.

> allResamples <- resamples(list("Linear Reg" = lmModel,

+ "PLS" = plsModel,

+ "Elastic Net" = enetModel,

+ MARS = earthModel,

+ SVM = svmRModel,

+ "Neural Networks" = nnetModel,

+ CART = rpartModel,

+ "Cond Inf Tree" = ctreeModel,

+ "Bagged Tree" = treebagModel,

+ "Boosted Tree" = gbmModel,

+ "Random Forest" = rfModel,

+ Cubist = cbModel))

Figure 10.2 was created from this object as

> ## Plot the RMSE values

> parallelPlot(allResamples)

> ## Using R-squared:

> parallelplot(allResamples, metric = "Rsquared")

Other visualizations of the resampling results can also be created (see
?xyplot.resamples for other options).

The test set predictions are achieved using a simple application of the
predict function:

> nnetPredictions <- predict(nnetModel, testData)

> gbmPredictions <- predict(gbmModel, testData)

> cbPredictions <- predict(cbModel, testData)

To predict optimal mixtures, we first use the 28-day data to generate a set
of random starting points from the training set.

Since distances between the formulations will be used as a measure of
dissimilarity, the data are pre-processed to have the same mean and variance
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for each predictor. After this, a single random mixture is selected to initialize
the maximum dissimilarity sampling process:

> age28Data <- subset(trainingData, Age == 28)

> ## Remove the age and compressive strength columns and

> ## then center and scale the predictor columns

> pp1 <- preProcess(age28Data[, -(8:9)], c("center", "scale"))

> scaledTrain <- predict(pp1, age28Data[, 1:7])

> set.seed(91)

> startMixture <- sample(1:nrow(age28Data), 1)

> starters <- scaledTrain[startMixture, 1:7]

After this, the maximum dissimilarity sampling method from Sect. 4.3 selects
14 more mixtures to complete a diverse set of starting points for the search
algorithms:

> pool <- scaledTrain

> index <- maxDissim(starters, pool, 14)

> startPoints <- c(startMixture, index)

> starters <- age28Data[startPoints,1:7]

Since all seven mixture proportions should add to one, the search procedures
will conduct the search without one ingredient (water), and the water propor-
tion will be determined by the sum of the other six ingredient proportions.
Without this step, the search procedures would pick candidate mixture values
that would not add to one.

> ## Remove water

> startingValues <- starters[, -4]

To maximize the compressive strength, the R function optim searches the
mixture space for optimal formulations. A custom R function is needed to
translate a candidate mixture to a prediction. This function can find settings
to minimize a function, so it will return the negative of the compressive
strength. The function below checks to make sure that (a) the proportions
are between 0 and 1 and (b) the proportion of water does not fall below 5%.
If these conditions are violated, the function returns a large positive number
which the search procedure will avoid (as optim is for minimization).

> ## The inputs to the function are a vector of six mixture proportions

> ## (in argument 'x') and the model used for prediction ('mod')
> modelPrediction <- function(x, mod)

+ {

+ ## Check to make sure the mixture proportions are

+ ## in the correct range

+ if(x[1] < 0 | x[1] > 1) return(10^38)

+ if(x[2] < 0 | x[2] > 1) return(10^38)

+ if(x[3] < 0 | x[3] > 1) return(10^38)

+ if(x[4] < 0 | x[4] > 1) return(10^38)

+ if(x[5] < 0 | x[5] > 1) return(10^38)

+ if(x[6] < 0 | x[6] > 1) return(10^38)

+

+ ## Determine the water proportion
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+ x <- c(x, 1 - sum(x))

+

+ ## Check the water range

+ if(x[7] < 0.05) return(10^38)

+

+ ## Convert the vector to a data frame, assign names

+ ## and fix age at 28 days

+ tmp <- as.data.frame(t(x))

+ names(tmp) <- c('Cement','BlastFurnaceSlag','FlyAsh',
+ 'Superplasticizer','CoarseAggregate',
+ 'FineAggregate', 'Water')
+ tmp$Age <- 28

+ ## Get the model prediction, square them to get back to the

+ ## original units, then return the negative of the result

+ -predict(mod, tmp)

+ }

First, the Cubist model is used:

> cbResults <- startingValues

> cbResults$Water <- NA

> cbResults$Prediction <- NA

> ## Loop over each starting point and conduct the search

> for(i in 1:nrow(cbResults))

+ {

+ results <- optim(unlist(cbResults[i,1:6]),

+ modelPrediction,

+ method = "Nelder-Mead",

+ ## Use method = 'SANN' for simulated annealing

+ control=list(maxit=5000),

+ ## The next option is passed to the

+ ## modelPrediction() function

+ mod = cbModel)

+ ## Save the predicted compressive strength

+ cbResults$Prediction[i] <- -results$value

+ ## Also save the final mixture values

+ cbResults[i,1:6] <- results$par

+ }

> ## Calculate the water proportion

> cbResults$Water <- 1 - apply(cbResults[,1:6], 1, sum)

> ## Keep the top three mixtures

> cbResults <- cbResults[order(-cbResults$Prediction),][1:3,]

> cbResults$Model <- "Cubist"

We then employ the same process for the neural network model:

> nnetResults <- startingValues

> nnetResults$Water <- NA

> nnetResults$Prediction <- NA

> for(i in 1:nrow(nnetResults))

+ {

+ results <- optim(unlist(nnetResults[i, 1:6,]),

+ modelPrediction,

+ method = "Nelder-Mead",

+ control=list(maxit=5000),



10.4 Computing 243

+ mod = nnetModel)

+ nnetResults$Prediction[i] <- -results$value

+ nnetResults[i,1:6] <- results$par

+ }

> nnetResults$Water <- 1 - apply(nnetResults[,1:6], 1, sum)

> nnetResults <- nnetResults[order(-nnetResults$Prediction),][1:3,]

> nnetResults$Model <- "NNet"

To create Fig. 10.4, PCA was conducted on the 28-day-old mixtures and
the six predicted mixtures were projected. The components are combined and
plotted:

> ## Run PCA on the data at 28\,days

> pp2 <- preProcess(age28Data[, 1:7], "pca")

> ## Get the components for these mixtures

> pca1 <- predict(pp2, age28Data[, 1:7])

> pca1$Data <- "Training Set"

> ## Label which data points were used to start the searches

> pca1$Data[startPoints] <- "Starting Values"

> ## Project the new mixtures in the same way (making sure to

> ## re-order the columns to match the order of the age28Data object).

> pca3 <- predict(pp2, cbResults[, names(age28Data[, 1:7])])

> pca3$Data <- "Cubist"

> pca4 <- predict(pp2, nnetResults[, names(age28Data[, 1:7])])

> pca4$Data <- "Neural Network"

> ## Combine the data, determine the axis ranges and plot

> pcaData <- rbind(pca1, pca3, pca4)

> pcaData$Data <- factor(pcaData$Data,

+ levels = c("Training Set","Starting Values",

+ "Cubist","Neural Network"))

> lim <- extendrange(pcaData[, 1:2])

> xyplot(PC2 ~ PC1, data = pcaData, groups = Data,

+ auto.key = list(columns = 2),

+ xlim = lim, ylim = lim,

+ type = c("g", "p"))

Desirability functions can be calculated with the desirability package. The
functions dMin and dMax can be used to create desirability function curve
definitions for minimization and maximization, respectively.



Chapter 11

Measuring Performance in Classification
Models

In the previous part of this book we focused on building and evaluating
models for a continuous response. We now turn our focus to building and
evaluating models for a categorical response. Although many of the regression
modeling techniques can also be used for classification, the way we evaluate
model performance is necessarily very different since metrics like RMSE and
R2 are not appropriate in the context of classification. We begin this part
of the book by discussing metrics for evaluating classification model perfor-
mance. In the first section of this chapter we take an in-depth look at the
different aspects of classification model predictions and how these relate to
the question of interest. The two subsequent sections explore strategies for
evaluating classification models using statistics and visualizations.

11.1 Class Predictions

Classification models usually generate two types of predictions. Like regres-
sion models, classification models produce a continuous valued prediction,
which is usually in the form of a probability (i.e., the predicted values of
class membership for any individual sample are between 0 and 1 and sum
to 1). In addition to a continuous prediction, classification models generate
a predicted class, which comes in the form of a discrete category. For most
practical applications, a discrete category prediction is required in order to
make a decision. Automated spam filtering, for example, requires a definitive
judgement for each e-mail.

Although classification models produce both of these types of predictions,
often the focus is on the discrete prediction rather than the continuous predic-
tion. However, the probability estimates for each class can be very useful for
gauging the model’s confidence about the predicted classification. Returning
to the spam e-mail filter example, an e-mail message with a predicted prob-
ability of being spam of 0.51 would be classified the same as a message with

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 11,
© Springer Science+Business Media New York 2013

247



248 11 Measuring Performance in Classification Models

a predicted probability of being spam of 0.99. While both messages would be
treated the same by the filter, we would have more confidence that the sec-
ond message was, in fact, truly spam. As a second example, consider building
a model to classify molecules by their in-vivo safety status (i.e., non-toxic,
weakly toxic, and strongly toxic; e.g., Piersma et al. 2004). A molecule with
predicted probabilities in each respective toxicity category of 0.34, 0.33, and
0.33, would be classified the same as a molecule with respective predicted
probabilities of 0.98, 0.01, and 0.01. However in this case, we are much more
confident that the second molecule is non-toxic as compared to the first.

In some applications, the desired outcome is the predicted class proba-
bilities which are then used as inputs for other calculations. Consider an
insurance company that wants to uncover and prosecute fraudulent claims.
Using historical claims data, a classification model could be built to predict
the probability of claim fraud. This probability would then be combined with
the company’s investigation costs and potential monetary loss to determine
if pursuing the investigation is in the best financial interest of the insurance
company. As another example of classification probabilities as inputs to a sub-
sequent model, consider the customer lifetime value (CLV) calculation which
is defined as the amount of profit associated with a customer over a period
of time (Gupta et al. 2006). To estimate the CLV, several quantities are re-
quired, including the amount paid by a consumer over a given time frame,
the cost of servicing the consumer, and the probability that the consumer
will make a purchase in the time frame.

As mentioned above, most classification models generate predicted class
probabilities. However, when some models are used for classification, like neu-
ral networks and partial least squares, they produce continuous predictions
that do not follow the definition of a probability-the predicted values are not
necessarily between 0 and 1 and do not sum to 1. For example, a partial least
squares classification model (described in more detail in Sect. 12.4) would
create 0/1 dummy variables for each class and simultaneously model these
values as a function of the predictors. When samples are predicted, the model
predictions are not guaranteed to be within 0 and 1. For classification mod-
els like these, a transformation must be used to coerce the predictions into
“probability-like”values so that they can be interpreted and used for classifi-
cation. One such method is the softmax transformation (Bridle 1990) which
is defined as

p̂∗� =
eŷ�

∑C
l=1 e

ŷl

where ŷ� is the numeric model prediction for the �th class and p̂∗� is the
transformed value between 0 and 1. Suppose that an outcome has three classes
and that a PLS model predicts values of ŷ1 = 0.25, ŷ2 = 0.76, and ŷ3 =-0.1.
The softmax function would transform these values to p̂∗1 = 0.30, p̂∗2 = 0.49,
and p̂∗3 = 0.21. To be clear, no probability statement is being created by
this transformation; it merely ensures that the predictions have the same
mathematical qualities as probabilities.
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Well-Calibrated Probabilities

Whether a classification model is used to predict spam e-mail, a molecule’s
toxicity status, or as inputs to insurance fraud or customer lifetime value
calculations, we desire that the estimated class probabilities are reflective of
the true underlying probability of the sample. That is, the predicted class
probability (or probability-like value) needs to be well-calibrated. To be well-
calibrated, the probabilities must effectively reflect the true likelihood of the
event of interest. Returning to the spam filter illustration, if a model produces
a probability or probability-like value of 20% for the likelihood of a particular
e-mail to be spam, then this value would be well-calibrated if similar types
of messages would truly be from that class on average in 1 of 5 samples.

One way to assess the quality of the class probabilities is using a calibration
plot. For a given set of data, this plot shows some measure of the observed
probability of an event versus the predicted class probability. One approach
for creating this visualization is to score a collection of samples with known
outcomes (preferably a test set) using a classification model. The next step
is to bin the data into groups based on their class probabilities. For example,
a set of bins might be [0, 10%], (10%, 20%], . . ., (90%, 100%]. For each
bin, determine the observed event rate. Suppose that 50 samples fell into
the bin for class probabilities less than 10% and there was a single event.
The midpoint of the bin is 5% and the observed event rate would be 2%.
The calibration plot would display the midpoint of the bin on the x-axis and
the observed event rate on the y-axis. If the points fall along a 45◦ line, the
model has produced well-calibrated probabilities.

As an illustration, a data set was simulated in a way that the true event
probabilities are known. For two classes (classes 1 and 2) and two predic-
tors (A and B), the true probability (p) of the event is generated from the
equation:

log

(
p

1− p

)

= −1− 2A− .2A2 + 2B2

Figure 11.1 shows a simulated test set along with the a contour line for
a p = 0.50 event probability. Two models were fit to the training set:
quadratic discriminant analysis (QDA, Sect. 13.1) and a random forest model
(Sect. 14.4). A test set of n = 1000 samples was used to score the model and
create the calibration plot also shown in Fig. 11.1. Both classification mod-
els have similar accuracy for the test set (about 87.1% for either model).
The calibration plot shows that the QDA class probabilities tend to perform
poorly compared to the random forest model. For example, in the bin with
class probabilities ranging from 20 to 30%, the observed percentage of events
for QDA was 4.6%, far lower than the percentage in the random forest model
(35.4%).

The class probabilities can be calibrated to more closely reflect the like-
lihood of the event (or, at least the likelihood seen in the actual data).
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Fig. 11.1: Left: A simulated two-class data set with two predictors. The solid
black line denotes the 50% probability contour. Right: A calibration plot
of the test set probabilities for random forest and quadratic discriminant
analysis models

For example, Fig. 11.1 shows a sigmoidal pattern such that the QDA model
under-predicts the event probability when the true likelihood is moderately
high or low. An additional model could be created to adjust for this pattern.
One equation that is consistent with this sigmoidal pattern is the logistic
regression model (described in Sect. 12.2). The class predictions and true
outcome values from the training set can be used to post-process the proba-
bly estimates with the following formula (Platt 2000):

p̂∗ =
1

1 + exp (−β0 − β1p̂)
(11.1)

where the β parameters are estimated by predicting the true classes as a
function of the uncalibrated class probabilities (p̂). For the QDA model, this

process resulted in estimates β̂0 = −5.7 and β̂1 = 11.7. Figure 11.2 shows the
results for the test set samples using this correction method. The results show
improved calibration with the test set data. Alternatively, an application of
Bayes’ Rule (described model is Sect. 13.6) can be similarly applied to recal-
ibrate the predictions. The Bayesian approach also improves the predictions
(Fig. 11.2). Note that, after calibration, the samples must be reclassified to
ensure consistency between the new probabilities and the predicted classes.
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Fig. 11.2: The original QDA class probabilities and recalibrated versions using
two different methodologies

Presenting Class Probabilities

Visualizations of the class probabilities are an effective method of commu-
nicating model results. For two classes, histograms of the predicted classes
for each of the true outcomes illustrate the strengths and weaknesses of a
model. In Chap. 4 we introduced the credit scoring example. Two classifi-
cation models were created to predict the quality of a customer’s credit: a
support vector machine (SVM) and logistic regression. Since the performance
of the two models were roughly equivalent, the logistic regression model was
favored due to its simplicity. The top panel of Fig. 11.6 shows histograms of
the test set probabilities for the logistic regression model (the panels indicate
the true credit status). The probability of bad credit for the customers with
good credit shows a skewed distribution where most customers’ probabili-
ties are quite low. In contrast, the probabilities for the customers with bad
credit are flat (or uniformly distributed), reflecting the model’s inability to
distinguish bad credit cases.

This figure also presents a calibration plot for these data. The accuracy of
the probability of bad credit degrades as it becomes larger to the point where
no samples with bad credit were predicted with a probability above 82.7%.
This pattern is indicative of a model that has both poor calibration and poor
performance.

When there are three or more classes, a heat map of the class probabilities
can help gauge the confidence in the predictions. Figure 11.4 shows the test
set results with eight classes (denotes A through I) and 48 samples. The
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Fig. 11.3: Top: Histograms for a set of probabilities associated with bad credit.
The two panels split the customers by their true class. Bottom: A calibration
plot for these probabilities

true classes are shown in the rows (along with the sample identifiers) and the
columns reflect the class probabilities. In some cases, such as Sample 20, there
was a clear signal associated with the predicted class (the class C probability
was 78.5%), while in other cases, the situation is murky. Consider Sample 7.
The four largest probabilities (and associated classes) were 19.6% (B), 19.3%
(C), 17.7% (A), and 15% (E). While the model places the highest individual
probability for this sample in the correct class, it is uncertain that it could
also be of class C, A, or E.
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Fig. 11.4: A heat map of a test set with eight classes. The true classes are
shown in the row labels while columns quantify the probabilities for each
category (labeled as A through I)
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Table 11.1: The confusion matrix for the two-class problem (“events” and
“nonevents.”The table cells indicate number of the true positives (TP ), false
positives (FP ), true negatives (TN), and false negatives (FN)

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

Equivocal Zones

An approach to improving classification performance is to create an equivocal
or indeterminate zone where the class is not formally predicted when the
confidence is not high. For a two-class problem that is nearly balanced in the
response, the equivocal zone could be defined as 0.50± z. If z were 0.10, then
samples with prediction probabilities between 0.40 and 0.60 would be called
“equivocal.” In this case, model performance would be calculated excluding
the samples in the indeterminate zone. The equivocal rate should also be
reported with the performance so that the rate of unpredicted results is well
understood. For data sets with more than 2 classes (C > 2), similar thresholds
can be applied where the largest class probability must be larger than (1/C)+
z to make a definitive prediction. For the data shown in Fig. 11.4, if (1/C)+z
is set to 30%, then 5 samples would be designated as equivocal.

11.2 Evaluating Predicted Classes

A common method for describing the performance of a classification model
is the confusion matrix. This is a simple cross-tabulation of the observed
and predicted classes for the data. Table 11.1 shows an example when the
outcome has two classes. Diagonal cells denote cases where the classes are
correctly predicted while the off-diagonals illustrate the number of errors for
each possible case.

The simplest metric is the overall accuracy rate (or, for pessimists, the
error rate). This reflects the agreement between the observed and predicted
classes and has the most straightforward interpretation. However, there are a
few disadvantages to using this statistic. First, overall accuracy counts make
no distinction about the type of errors being made. In spam filtering, the cost
of erroneous deleting an important email is likely to be higher than incorrectly
allowing a spam email past a filter. In situations where the costs are different,
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accuracy may not measure the important model characteristics. Provost et al.
(1998) provide a comprehensive discussion of this issue, which is examined
further below.

Second, one must consider the natural frequencies of each class. For
example, in the USA, pregnant women routinely have blood drawn for alpha-
fetoprotein testing, which attempts to detect genetic problems such as Down
syndrome. Suppose the rate of this disorder1 in fetuses is approximately 1 in
800 or about one-tenth of one percent. A predictive model can achieve almost
perfect accuracy by predicting all samples to be negative for Down syndrome.

What benchmark accuracy rate should be used to determine whether a
model is performing adequately? The no-information rate is the accuracy
rate that can be achieved without a model. There are various ways to define
this rate. For a data set with C classes, the simplest definition, based on pure
randomness, is 1/C. However, this does not take into account the relative
frequencies of the classes in the training set. For the Down syndrome exam-
ple, if 1,000 random samples are collected from the population who would
receive the test, the expected number of positive samples would be small
(perhaps 1 or 2). A model that simply predicted all samples to be negative
for Down syndrome would easily surpass the no-information rate based on
random guessing (50%). An alternate definition of the no-information rate is
the percentage of the largest class in the training set. Models with accuracy
greater than this rate might be considered reasonable. The effect of severe
class imbalances and some possible remedies are discussed in Chap. 16.

Rather than calculate the overall accuracy and compare it to the no-
information rate, other metrics can be used that take into account the class
distributions of the training set samples. The Kappa statistic (also known as
Cohen’s Kappa) was originally designed to assess the agreement between two
raters (Cohen 1960). Kappa takes into account the accuracy that would be
generated simply by chance. The form of the statistic is

Kappa =
O − E

1− E

where O is the observed accuracy and E is the expected accuracy based on
the marginal totals of the confusion matrix. The statistic can take on val-
ues between −1 and 1; a value of 0 means there is no agreement between
the observed and predicted classes, while a value of 1 indicates perfect con-
cordance of the model prediction and the observed classes. Negative values
indicate that the prediction is in the opposite direction of the truth, but large
negative values seldom occur, if ever, when working with predictive models.2

1 In medical terminology, this rate is referred to as the prevalence of a disease while
in Bayesian statistics it would be the prior distribution of the event.
2 This is true since predictive models seek to find a concordant relationship with
the truth. A large negative Kappa would imply that there is relationship between
the predictors and the response and the predictive model would seek to find the
relationship in the correct direction.
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When the class distributions are equivalent, overall accuracy and Kappa are
proportional. Depending on the context, Kappa values within 0.30 to 0.50
indicate reasonable agreement. Suppose the accuracy for a model is high
(90%) but the expected accuracy is also high (85%), the Kappa statistic
would show moderate agreement (Kappa = 1/3) between the observed and
predicted classes.

The Kappa statistic can also be extended to evaluate concordance in prob-
lems with more than two classes. When there is a natural ordering to the
classes (e.g., “low,”“medium,” and “high”), an alternate form of the statistic
called weighted Kappa can be used to enact more substantial penalties on er-
rors that are further away from the true result. For example, a “low” sample
erroneously predicted as “high” would reduce the Kappa statistic more than
an error were “low” was predicted to be “medium.” See (Agresti 2002) for
more details.

Two-Class Problems

Consider the case where there are two classes. Table 11.1 shows the confusion
matrix for generic classes “event” and “nonevent.” The top row of the table
corresponds to samples predicted to be events. Some are predicted correctly
(the true positives, or TP ) while others are inaccurately classified (false posi-
tives or FP ). Similarly, the second row contains the predicted negatives with
true negatives (TN) and false negatives (FN).

For two classes, there are additional statistics that may be relevant when
one class is interpreted as the event of interest (such as Down syndrome in
the previous example). The sensitivity of the model is the rate that the event
of interest is predicted correctly for all samples having the event, or

Sensitivity =
# samples with the event and predicted to have the event

# samples having the event

The sensitivity is sometimes considered the true positive rate since it measures
the accuracy in the event population. Conversely, the specificity is defined as
the rate that nonevent samples are predicted as nonevents, or

Specificity =
# samples without the event and predicted as nonevents

# samples without the event

The false-positive rate is defined as one minus the specificity. Assuming a
fixed level of accuracy for the model, there is typically a trade-off to be made
between the sensitivity and specificity. Intuitively, increasing the sensitivity
of a model is likely to incur a loss of specificity, since more samples are being
predicted as events. Potential trade-offs between sensitivity and specificity
may be appropriate when there are different penalties associated with each
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Table 11.2: Test set confusion matrix for the logistic regression model training
with the credit scoring data from Sect. 4.5

Predicted Observed
Bad Good

Bad 24 10
Good 36 130

type of error. In spam filtering, there is usually a focus on specificity; most
people are willing to accept seeing some spam if emails from family members
or coworkers are not deleted. The receiver operating characteristic (ROC)
curve is one technique for evaluating this trade-off and is discussed in the
next section.

In Chap. 4 we introduced the credit scoring example. Two classification
models were created to predict the quality of a customer’s credit: a SVM and
logistic regression. Since the performance of the two models were roughly
equivalent, the logistic regression model was favored due to its simplicity.
Using the previously chosen test set of 200 customers, Table 11.2 shows the
confusion matrix associated with the logistic regression model. The overall
accuracy was 77%, which is slightly better than the no-information rate of
70%. The test set had a Kappa value of 0.375, which suggests moderate
agreement. If we choose the event of interest to be a customer with bad
credit, the sensitivity from this model would be estimated to be 40% and
the specificity to be 92.9%. Clearly, the model has trouble predicting when
customers have bad credit. This is likely due to the imbalance of the classes
and a lack of a strong predictor for bad credit.

Often, there is interest in having a single measure that reflects the false-
positive and false-negative rates. Youden’s J Index (Youden 1950), which is

J = Sensitivity + Specificity− 1

measures the proportions of correctly predicted samples for both the event
and nonevent groups. In some contexts, this may be an appropriate method
for summarizing the magnitude of both types of errors. The most common
method for combining sensitivity and specificity into a single value uses the
receiver operating characteristic (ROC) curve, discussed below.

One often overlooked aspect of sensitivity and specificity is that they are
conditional measures. Sensitivity is the accuracy rate for only the event popu-
lation (and specificity for the nonevents). Using the sensitivity and specificity,
the obstetrician can make statements such as “assuming that the fetus does
not have Down syndrome, the test has an accuracy of 95%.” However, these
statements might not be helpful to a patient since, for new samples, all that
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is known is the prediction. The person using the model prediction is typically
interested in unconditional queries such as “what are the chances that the
fetus has the genetic disorder?” This depends on three values: the sensitiv-
ity and specificity of the diagnostic test and the prevalence of the event in
the population. Intuitively, if the event is rare, this should be reflected in
the answer. Taking the prevalence into account, the analog to sensitivity is
the positive predicted value, and the analog to specificity is the negative pre-
dicted value. These values make unconditional evaluations of the data.3 The
positive predicted value answers the question “what is the probability that
this sample is an event?” The formulas are

PPV =
Sensitivity× Prevalence

(Sensitivity× Prevalence) + ((1− Specificity)× (1− Prevalence))

NPV =
Specificity× (1 − Prevalence)

(Prevalence× (1− Sensitivity)) + (Specificity × (1− Prevalence))

Clearly, the predictive values are nontrivial combinations of performance
and the rate of events. The top panel in Fig. 11.5 shows the effect of prevalence
on the predictive values when the model has a specificity of 95% and a
sensitivity of either 90% or 99%. Large negative predictive values can be
achieved when the prevalence is low. However, as the event rate becomes high,
the negative predictive value becomes very small. The opposite is true for the
positive predictive values. This figure also shows that a sizable difference in
sensitivity (90% versus 99%) has little effect on the positive predictive values.

The lower panel of Fig. 11.5 shows the positive predictive value as a func-
tion of sensitivity and specificity when the event rate is balanced (50%). In
this case, the positive predicted value would be

PPV =
Sensitivity

Sensitivity× (1 − Specificity)
=

TP

TP + FP

This figure also shows that the value of the sensitivity has a smaller effect
than specificity. For example, if specificity is high, say ≥90%, a large positive
predicted value can be achieved across a wide range of sensitivities.

Predictive values are not often used to characterize the model. There are
several reasons why, most of which are related to prevalence. First, prevalence
is hard to quantify. Our experience is that very few people, even experts, are
willing to propose an estimate of this quantity based on prior knowledge.
Also, the prevalence is dynamic. For example, the rate of spam emails in-
creases when new schemes are invented but later fall off to baseline levels.
For medical diagnoses, the prevalence of diseases can vary greatly depend-

3 In relation to Bayesian statistics, the sensitivity and specificity are the conditional
probabilities, the prevalence is the prior, and the positive/negative predicted values
are the posterior probabilities.
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Fig. 11.5: Top: The effect of prevalence on the positive and negative predictive
values. The PPV was computed using a specificity of 95% and two values of
sensitivity. The NPV was computed with 90% sensitivity and 95% specificity.
Bottom: For a fixed prevalence of 50%, positive predictive values are shown
as a function of sensitivity and specificity

ing on the geographic location (e.g., urban versus rural). For example, in a
multicenter clinical trial of a diagnostic test for Neisseria gonorrhoeae, the
prevalence within the patient population varied from 0% to 42.9% across
nine clinical sites (Becton Dickinson and Company 1991).
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Table 11.3: The confusion matrix and profit costs/benefits for the direct mail-
ing example of Larose (2006)

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response TP FP $26.40 −$2.00
Nonresponse FN TN −$28.40 –

Non-Accuracy-Based Criteria

For many commercial applications of predictive models, accuracy is not the
primary goal for the model. Often, the purpose of the model might be to:

• Predict investment opportunities that maximize return
• Improve customer satisfaction by market segmentation
• Lower inventory costs by improving product demand forecasts or
• Reduce costs associated with fraudulent transactions

While accuracy is important, it only describes how well the model predicts
the data. If the model is fit for purpose, other more direct metrics of per-
formance should be considered. These metrics quantify the consequences of
correct and incorrect predictions (i.e., the benefits and costs). For example,
in fraud detection, a model might be used to quantify the likelihood that a
transaction is fraudulent. Suppose that fraud is the event of interest. Any
model predictions of fraud (correct or not) have an associated cost for a more
in-depth review of the case. For true positives, there is also a quantifiable
benefit to catching bad transactions. Likewise, a false negative results in a
loss of income.

Consider the direct marketing application in Larose (2006, Chap. 7) where
a clothing company is interested in offering promotions by mail to its cus-
tomers. Using existing customer data on shopping habits, they wish to predict
who would respond (i.e., the two classes and “responders” and “nonrespon-
ders”). The 2×2 table of possible outcomes is shown in Table 11.3 where the
type of decisions is presented on the left and the revenue or cost per deci-
sion is on the right. For example, if the model were to accurately predict a
responder, the average profit when the customer responds to the promotion
is estimated to be $28.40. There is a small $2.00 cost for mailing the pro-
motion, so the net profit of a correct decision is $26.40. If we inaccurately
predict that a customer will respond (a false positive), the only loss is the
cost of the promotion ($2.00).



11.2 Evaluating Predicted Classes 261

Table 11.4: Left: A hypothetical test confusion matrix for a predictive model
with a sensitivity of 75% and a specificity of 94.4%. Right: The confusion
matrix when a mass mailing is used for all customers

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response 1, 500 1, 000 2,000 18,000
Nonresponse 500 17, 000 0 0

If the model accurately predicts a nonresponse, there is no gain or loss since
they would not have made a purchase and the mailer was not sent.4 However,
incorrectly predicting that a true responder would not respond means that
a potential $28.40 was lost, so this is the cost of a false-negative. The total
profit for a particular model is then

profit = $26.40TP − $2.00FP − $28.40FN (11.2)

However, the prevalence of the classes should be taken into account. The
response rate in direct marketing is often very low (Ling and Li 1998) so
the expected profit for a given marketing application may be driven by the
false-negative costs since this value is likely to be larger than the other two
in Eq. 11.2.

Table 11.4 shows hypothetical confusion matrices for 20,000 customers
with a 10% response rate. The table on the left is the result of a predicted
model with a sensitivity of 75% and a specificity of 94.4%. The total profit
would be $23,400 or $1.17 per customer. Suppose another model had the same
sensitivity but 100% specificity. In this case, the total profit would increase
to $25,400, a marginal gain given a significant increase in model performance
(mostly due to the low cost of mailing the promotion).

The right side of Table 11.4 shows the results when a mass mailing for all
the customers is used. This approach has perfect sensitivity and the worst
possible specificity. Here, due to the low costs, the profit is $16,800 or $0.84
per customer. This should be considered the baseline performance for any
predictive model to beat. The models could alternatively be characterized
using the profit gain or lift, estimated as the model profit above and beyond
the profit from a mass mailing.

With two classes, a general outline for incorporating unequal costs with
performance measures is given by Drummond and Holte (2000). They define
the probability-cost function (PCF ) as

4 This depends on a few assumptions which may or may not be true. Section 20.1
discusses this aspect of the example in more detail in the context of net lift modeling.
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PCF =
P × C(+|−)

P × C(−|+) + (1− P )× C(+|−)

where P is the (prior) probability of the event, C(−|+) is the cost associated
with incorrectly predicting an event (+) as a nonevent, and C(+|−) is the
cost of incorrectly predicting a nonevent. The PCF is the proportion of the
total costs associated with a false-positive sample. They suggest using the
normalized expected cost (NEC) function to characterize the model

NEC = PCF × (1− TP ) + (1− PCF )× FP

for a specific set of costs. Essentially, the NEC takes into account the preva-
lence of the event, model performance, and the costs and scales the total
cost to be between 0 and 1. Note that this approach only assigns costs to
the two types of errors and might not be appropriate for problems where
there are other cost or benefits (such as the direct marketing costs shown in
Table 11.3).

11.3 Evaluating Class Probabilities

Class probabilities potentially offer more information about model predictions
than the simple class value. This section discussed several approaches to using
the probabilities to compare models.

Receiver Operating Characteristic (ROC) Curves

ROC curves (Altman and Bland 1994; Brown and Davis 2006; Fawcett 2006)
were designed as a general method that, given a collection of continuous data
points, determine an effective threshold such that values above the threshold
are indicative of a specific event. This tool will be examined in this context
in Chap. 19, but here, we describe how the ROC curve can be used for
determining alternate cutoffs for class probabilities.

For the credit model test set previously discussed, the sensitivity was poor
for the logistic regression model (40%), while the specificity was fairly high
(92.9%). These values were calculated from classes that were determined with
the default 50% probability threshold. Can we improve the sensitivity by
lowering the threshold5 to capture more true positives? Lowering the thresh-
old for classifying bad credit to 30% results in a model with improved sensi-

5 In this analysis, we have used the test set to investigate the effects of alternative
thresholds. Generally, a new threshold should be derived from a separate data set
than those used to train the model or evaluate performance.
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Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30% (i.e., probabilities greater than 0.30 are called events)

tivity (60%) but decrease specificity (79.3%). Referring to Fig. 11.3, we see
that decreasing the threshold begins to capture more of the customers with
bad credit but also begins to encroach on the bulk of the customers with
good credit.

The ROC curve is created by evaluating the class probabilities for the
model across a continuum of thresholds. For each candidate threshold, the
resulting true-positive rate (i.e., the sensitivity) and the false-positive rate
(one minus the specificity) are plotted against each other. Figure 11.6 shows
the results of this process for the credit data. The solid black point is the de-
fault 50% threshold while the green square corresponds to the performance
characteristics for a threshold of 30%. In this figure, the numbers in paren-
theses are (specificity, sensitivity). Note that the trajectory of the curve
between (0, 0) and the 50% threshold is steep, indicating that the sensitivity
is increasing at a greater rate than the decrease in specificity. However, when
the sensitivity is greater than 70%, there is a more significant decrease in
specificity than the gain in sensitivity.

This plot is a helpful tool for choosing a threshold that appropriately
maximizes the trade-off between sensitivity and specificity. However, altering
the threshold only has the effect of making samples more positive (or negative
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as the case may be). In the confusion matrix, it cannot move samples out
of both off-diagonal table cells. There is almost always a decrease in either
sensitivity or specificity as 1 is increased.

The ROC curve can also be used for a quantitative assessment of the model.
A perfect model that completely separates the two classes would have 100%
sensitivity and specificity. Graphically, the ROC curve would be a single step
between (0, 0) and (0, 1) and remain constant from (0, 1) to (1, 1). The area
under the ROC curve for such a model would be one. A completely ineffective
model would result in an ROC curve that closely follows the 45◦ diagonal
line and would have an area under the ROC curve of approximately 0.50. To
visually compare different models, their ROC curves can be superimposed
on the same graph. Comparing ROC curves can be useful in contrasting two
or more models with different predictor sets (for the same model), different
tuning parameters (i.e., within model comparisons), or complete different
classifiers (i.e., between models).

The optimal model should be shifted towards the upper left corner of the
plot. Alternatively, the model with the largest area under the ROC curve
would be the most effective. For the credit data, the logistic model had an
estimated area under the ROC curve of 0.78 with a 95% confidence inter-
val of (0.7, 0.85) determined using the bootstrap confidence interval method
(Hall et al. 2004). There is a considerable amount of research on methods
to formally compare multiple ROC curves. See Hanley and McNeil (1982),
DeLong et al. (1988), Venkatraman (2000), and Pepe et al. (2009) for more
information.

One advantage of using ROC curves to characterize models is that, since it
is a function of sensitivity and specificity, the curve is insensitive to disparities
in the class proportions (Provost et al. 1998; Fawcett 2006). A disadvantage
of using the area under the curve to evaluate models is that it obscures
information. For example, when comparing models, it is common that no
individual ROC curve is uniformly better than another (i.e., the curves cross).
By summarizing these curves, there is a loss of information, especially if
one particular area of the curve is of interest. For example, one model may
produce a steep ROC curve slope on the left but have a lower AUC than
another model. If the lower end of the ROC curve was of primary interest,
then AUC would not identify the best model. The partial area under the
ROC curve (McClish 1989) is an alternative that focuses on specific parts of
the curve.

The ROC curve is only defined for two-class problems but has been ex-
tended to handle three or more classes. Hand and Till (2001), Lachiche and
Flach (2003), and Li and Fine (2008) use different approaches extending the
definition of the ROC curve with more than two classes.
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Lift Charts

Lift charts (Ling and Li 1998) are a visualization tool for assessing the ability
of a model to detect events in a data set with two classes. Suppose a group
of samples with M events is scored using the event class probability. When
ordered by the class probability, one would hope that the events are ranked
higher than the nonevents. Lift charts do just this: rank the samples by
their scores and determine the cumulative event rate as more samples are
evaluated. In the optimal case, the M highest-ranked samples would contain
all M events. When the model is non-informative, the highest-ranked X%
of the data would contain, on average, X events. The lift is the number of
samples detected by a model above a completely random selection of samples.

To construct the lift chart we would take the following steps:

1. Predict a set of samples that were not used in the model building process
but have known outcomes.

2. Determine the baseline event rate, i.e., the percent of true events in the
entire data set.

3. Order the data by the classification probability of the event of interest.
4. For each unique class probability value, calculate the percent of true events

in all samples below the probability value.
5. Divide the percent of true events for each probability threshold by the

baseline event rate.

The lift chart plots the cumulative gain/lift against the cumulative percentage
of samples that have been screened. Figure 11.7 shows the best and worse
case lift curves for a data set with a 50% event rate. The non-informative
model has a curve that is close to the 45◦ reference line, meaning that the
model has no benefit for ranking samples. The other curve is indicative of
a model that can perfectly separate two classes. At the 50% point on the
x-axis, all of the events have been captured by the model.

Like ROC curves, the lift curves for different models can be compared to
find the most appropriate model and the area under the curve can be used as
a quantitative measure of performance. Also like ROC curves, some parts of
the lift curve are of more interest than others. For example, the section of the
curve associated with the highest-ranked samples should have an enriched
true-positive rate and is likely to be the most important part of the curve.

Consider the direct marketing application. Using this curve, a quasi-
threshold can be determined for a model. Again, suppose there is a 10%
response rate and that most of the responders are found in the top 7% of
model predictions. Sending the promotions to this subset of customers effec-
tively imposes a new threshold for customer response since samples below
the threshold will not be acted on.

In this application, recall that a predictive model would have to generate
more profit than the baseline profit associated with sending the promotion
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Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

to all customers. Using the lift plot, the expected profit can be calculated
for each point on the curve to determine if the lift is sufficient to beat the
baseline profit.

11.4 Computing

The R packages AppliedPredictiveModeling, caret, klaR, MASS, pROC, and
randomForest will be utilized in this section.

For illustration, the simulated data set shown in Fig. 11.1 will be used in
this section. To create these data, the quadBoundaryFunc function in the Ap-
pliedPredictiveModeling package is used to generate the predictors and out-
comes:

> library(AppliedPredictiveModeling)

> set.seed(975)

> simulatedTrain <- quadBoundaryFunc(500)

> simulatedTest <- quadBoundaryFunc(1000)

> head(simulatedTrain)

X1 X2 prob class
1 2.4685709 2.28742015 0.9647251 Class1
2 -0.1889407 -1.63949455 0.9913938 Class1
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3 -1.9101460 -2.89194964 1.0000000 Class1
4 0.3481279 0.06707434 0.1529697 Class1
5 0.1401153 0.86900555 0.5563062 Class1
6 0.7717148 -0.91504835 0.2713248 Class2

The random forest and quadratic discriminant models will be fit to the data:

> library(randomForest)

> rfModel <- randomForest(class ~ X1 + X2,

+ data = simulatedTrain,

+ ntree = 2000)

> library(MASS) ## for the qda() function

> qdaModel <- qda(class ~ X1 + X2, data = simulatedTrain)

The output of the predict function for qda objects includes both the predicted
classes (in a slot called class) and the associated probabilities are in a matrix
called posterior. For the QDA model, predictions will be created for the
training and test sets. Later in this section, the training set probabilities
will be used in an additional model to calibrate the class probabilities. The
calibration will then be applied to the test set probabilities:

> qdaTrainPred <- predict(qdaModel, simulatedTrain)

> names(qdaTrainPred)

[1] "class" "posterior"
> head(qdaTrainPred$class)

[1] Class1 Class1 Class1 Class2 Class1 Class2
Levels: Class1 Class2

> head(qdaTrainPred$posterior)

Class1 Class2
1 0.7313136 0.268686374
2 0.8083861 0.191613899
3 0.9985019 0.001498068
4 0.3549247 0.645075330
5 0.5264952 0.473504846
6 0.3604055 0.639594534

> qdaTestPred <- predict(qdaModel, simulatedTest)

> simulatedTrain$QDAprob <- qdaTrainPred$posterior[,"Class1"]

> simulatedTest$QDAprob <- qdaTestPred$posterior[,"Class1"]

The random forest model requires two calls to the predict function to get the
predicted classes and the class probabilities:

> rfTestPred <- predict(rfModel, simulatedTest, type = "prob")

> head(rfTestPred)

Class1 Class2
1 0.4300 0.5700
2 0.5185 0.4815
3 0.9970 0.0030
4 0.9395 0.0605
5 0.0205 0.9795
6 0.2840 0.7160

> simulatedTest$RFprob <- rfTestPred[,"Class1"]

> simulatedTest$RFclass <- predict(rfModel, simulatedTest)
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Sensitivity and Specificity

caret has functions for computing sensitivity and specificity. These functions
require the user to indicate the role of each of the classes:

> # Class 1 will be used as the event of interest

> sensitivity(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

[1] 0.8278867
> specificity(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ negative = "Class2")

[1] 0.8946396

Predictive values can also be computed either by using the prevalence found
in the data set (46%) or by using prior judgement:

> posPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

[1] 0.8695652
> negPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class2")

[1] 0.8596803
> # Change the prevalence manually

> posPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1",

+ prevalence = .9)

[1] 0.9860567

Confusion Matrix

There are several functions in R to create the confusion matrix. The
confusionMatrix function in the caret package produces the table and associ-
ated statistics:

> confusionMatrix(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,

+ positive = "Class1")

Confusion Matrix and Statistics

Reference
Prediction Class1 Class2

Class1 380 57
Class2 79 484
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Accuracy : 0.864
95% CI : (0.8412, 0.8846)

No Information Rate : 0.541
P-Value [Acc > NIR] : < 2e-16

Kappa : 0.7252
Mcnemar's Test P-Value : 0.07174

Sensitivity : 0.8279
Specificity : 0.8946

Pos Pred Value : 0.8696
Neg Pred Value : 0.8597

Prevalence : 0.4590
Detection Rate : 0.3800

Detection Prevalence : 0.4370

'Positive' Class : Class1

There is also an option in this function to manually set the prevalence. If there
were more than two classes, the sensitivity, specificity, and similar statistics
are calculated on a “one-versus-all”basis (e.g., the first class versus a pool of
classes two and three).

Receiver Operating Characteristic Curves

The pROC package (Robin et al. 2011) can create the curve and derive various
statistics.6 First, an R object must be created that contains the relevant
information using the pROC function roc. The resulting object is then used
to generate the ROC curve or calculate the area under the curve. For example,

> library(pROC)

> rocCurve <- roc(response = simulatedTest$class,

+ predictor = simulatedTest$RFprob,

+ ## This function assumes that the second

+ ## class is the event of interest, so we

+ ## reverse the labels.

+ levels = rev(levels(simulatedTest$class)))

From this object, we can produce statistics (such as the area under the ROC
curve and its confidence interval):

> auc(rocCurve)

Area under the curve: 0.9328
> ci.roc(rocCurve)

95% CI: 0.9176-0.948 (DeLong)

6 R has a number of packages that can compute the ROC curve, including ROCR,
caTools, PresenceAbsence, and others.
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Fig. 11.8: An example of an ROC curve produced using the roc and plot.roc

functions in the pROC package

We can also use the plot function to produce the ROC curve itself:

> plot(rocCurve, legacy.axes = TRUE)

> ## By default, the x-axis goes backwards, used

> ## the option legacy.axes = TRUE to get 1-spec

> ## on the x-axis moving from 0 to 1

>

> ## Also, another curve can be added using

> ## add = TRUE the next time plot.auc is used.

Figure 11.8 shows the results of this function call.

Lift Charts

The lift curve can be created using the lift function in the caret package.
It takes a formula as the input where the true class is on the left-hand side
of the formula, and one or more columns for model class probabilities are on
the right. For example, to produce a lift plot for the random forest and QDA
test set probabilities,
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> labs <- c(RFprob = "Random Forest",

+ QDAprob = "Quadratic Discriminant Analysis")

> liftCurve <- lift(class ~ RFprob + QDAprob, data = simulatedTest,

+ labels = labs)

> liftCurve

Call:
lift.formula(x = class ~ RFprob + QDAprob, data = simulatedTest, labels
= labs)

Models: Random Forest, Quadratic Discriminant Analysis
Event: Class1 (45.9%)

To plot two lift curves, the xyplot function is used to create a lattice plot:

> ## Add lattice options to produce a legend on top

> xyplot(liftCurve,

+ auto.key = list(columns = 2,

+ lines = TRUE,

+ points = FALSE))

See Fig. 11.9.

Calibrating Probabilities

Calibration plots as described above are available in the calibration.plot

function in the PresenceAbsence package and in the caret function calibration

(details below). The syntax for the calibration function is similar to the lift

function:

> calCurve <- calibration(class ~ RFprob + QDAprob, data = simulatedTest)

> calCurve

Call:
calibration.formula(x = class ~ RFprob + QDAprob, data = simulatedTest)

Models: RFprob, QDAprob
Event: Class1
Cuts: 11

> xyplot(calCurve, auto.key = list(columns = 2))

Figure 11.9 also shows this plot. An entirely different approach to calibration
plots that model the observed event rate as a function of the class probabilities
can be found in the calibrate.plot function of the gbm package.

To recalibrate the QDA probabilities, a post-processing model is created
that models the true outcome as a function of the class probability. To fit
a sigmoidal function, a logistic regression model is used (see Sect. 12.2 for
more details) via the glm function in base R. This function is an interface
to a broad set of methods called generalized linear models (Dobson 2002),
which includes logistic regression. To fit the model, the function requires the
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Fig. 11.9: Examples of lift and calibration curves for the random forest and
QDA models

family argument to specify the type of outcome data being modeled. Since
our outcome is a discrete category, the binomial distribution is selected:

> ## The glm() function models the probability of the second factor

> ## level, so the function relevel() is used to temporarily reverse the

> ## factors levels.
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> sigmoidalCal <- glm(relevel(class, ref = "Class2") ~ QDAprob,

+ data = simulatedTrain,

+ family = binomial)

> coef(summary(sigmoidalCal))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.701055 0.5005652 -11.38924 4.731132e-30
QDAprob 11.717292 1.0705197 10.94542 6.989017e-28

The corrected probabilities are created by taking the original model and
applying Eq. 11.1 with the estimated slope and intercept. In R, the predict

function can be used:

> sigmoidProbs <- predict(sigmoidalCal,

+ newdata = simulatedTest[,"QDAprob", drop = FALSE],

+ type = "response")

> simulatedTest$QDAsigmoid <- sigmoidProbs

The Bayesian approach for calibration is to treat the training set class prob-
abilities to estimate the probabilities Pr[X ] and Pr[X |Y = C�] (see Eq. 13.5
on page 354). In R, the näıve Bayes model function NaiveBayes in the klaR
package can be used for the computations:

> BayesCal <- NaiveBayes(class ~ QDAprob, data = simulatedTrain,

+ usekernel = TRUE)

> ## Like qda(), the predict function for this model creates

> ## both the classes and the probabilities

> BayesProbs <- predict(BayesCal,

+ newdata = simulatedTest[, "QDAprob", drop = FALSE])

> simulatedTest$QDABayes <- BayesProbs$posterior[, "Class1"]

> ## The probability values before and after calibration

> head(simulatedTest[, c(5:6, 8, 9)])

QDAprob RFprob QDAsigmoid QDABayes
1 0.3830767 0.4300 0.22927068 0.2515696
2 0.5440393 0.5185 0.66231139 0.6383383
3 0.9846107 0.9970 0.99708776 0.9995061
4 0.5463540 0.9395 0.66835048 0.6430232
5 0.2426705 0.0205 0.05428903 0.0566883
6 0.4823296 0.2840 0.48763794 0.5109129

The option usekernel = TRUE allows a flexible function to model the probabil-
ity distribution of the class probabilities.

These new probabilities are evaluated using another plot:

> calCurve2 <- calibration(class ~ QDAprob + QDABayes + QDAsigmoid,

+ data = simulatedTest)

> xyplot(calCurve2)



Chapter 12

Discriminant Analysis and Other Linear
Classification Models

In general, discriminant or classification techniques seek to categorize samples
into groups based on the predictor characteristics, and the route to achieving
this minimization is different for each technique. Some techniques take a
mathematical path [e.g., linear discriminant analysis (LDA)], and others take
an algorithmic path (e.g., k-nearest neighbors).

Classical methods such as LDA and its closely related mathematical
cousins (partial least squares discriminant analysis (PLSDA), logistic regres-
sion, etc.) will be discussed in this chapter and will focus on separating sam-
ples into groups based on characteristics of predictor variation.

12.1 Case Study: Predicting Successful Grant
Applications

These data are from a 2011 Kaggle competition sponsored by the University
of Melbourne where there was interest in predicting whether or not a grant
application would be accepted. Since public funding of grants had decreased
over time, triaging grant applications based on their likelihood of success
could be important for estimating the amount of potential funding to the
university. In addition to predicting grant success, the university sought to
understand factors that were important in predicting success. As we have dis-
cussed throughout the regression chapters, there is often a trade-off between
models that are developed for understanding and models that are developed
for prediction. The same is true for classification models; this will be illus-
trated in this and the following chapters.

In the contest, data on 8,708 grants between the years 2005 and 2008 were
available for model building and the test set contained applications from 2009
to 2010. The winning entry achieved an area under the ROC curve of 0.968
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on the test set. The first and second place winners discuss their approaches
to the data and modeling on the Kaggle blog.1

The data can be found at the Kaggle web site,2 but only the training set
data contain the outcomes for the grants. Many pieces of information were
collected across grants, including whether or not the grant application was
successful. The original data contained many predictors such as:

• The role of each individual listed on the grant. Possible values include
chief investigator (shortened to “CI” in the data), delegated researcher
(DR), principal supervisor (PS), external advisor (EA), external chief in-
vestigator (ECI), student chief investigator (SCI), student researcher (SR),
honorary visitor (HV), or unknown (UNK). The total number of individ-
uals listed on the grant ranged from 1 to 14.

• Several characteristics of each individual on the grant, such as their date of
birth, home language, highest degree, nationality, number of prior success-
ful (and unsuccessful) grants, department, faculty status, level of seniority,
length of employment at the university, and number of publications in four
different grades of journals.

• One or more codes related to Australia’s research fields, courses and dis-
ciplines (RFCD) classification. Using this, the grant can be classified into
subgroups, such as Applied Economics, Microbiology, and Librarianship.
There were 738 possible values of the RFCD codes in the data. If more
than one code was specified for a grant, their relative percentages were
recorded. The RFCD codes listed by the Australian Bureau of Statistics3

range from 210,000 to 449,999. There were many grants with nonsensical
codes (such as 0 or 999,999) that were grouped into an unknown category
for these analyses.

• One or more codes corresponding to the socio-economic objective (SEO)
classification. This classification describes the intended purpose of the
grant, such as developing construction activities or health services. If more
than one code was specified for a grant, their relative percentages were
recorded. Like the RFCD codes, there were some values in the data that
did not map to any of the codes listed by the Australian government and
were grouped into an unknown category.

• The submission date of the grant
• The monetary value of the grant, binned into 17 groups
• A grant category code which describes the type sponsor as well as a code

for the specific sponsor

One of the first steps in the model building process is to transform, or encode,
the original data structure into a form that is most informative for the model
(i.e., feature engineering). This encoding process is critical and must be done

1 http://blog.kaggle.com/.
2 http://www.kaggle.com/c/unimelb.
3 The RFCD codes can be found at http://tinyurl.com/25zvts while the SEO codes
can be found at http://tinyurl.com/8435ae4.

http://blog.kaggle.com/
http://www.kaggle.com/c/unimelb
http://tinyurl.com/25zvts
http://tinyurl.com/8435ae4
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with foresight into the analyses that will be performed so that appropriate
predictors can be elucidated from the original data. Failure to appropriately
format the predictors can prevent developing effective predictive models.

The original form of the grant data is not conducive to modeling. For
example, many fields are broken down for each individual involved in the
grant. As such, there are 15 columns in the data for each individual. Since
there could be as many as 14 individuals associated with a grant, there are a
large number of columns for a grant, many of which have no data.

How to encode these data is a primary first question. For example, since
there are often multiple individuals associated with the grant, how should
this information be represented in the data? Similarly, when there are mul-
tiple RFCD codes and associated percentages, in what manner should these
data enter the models? Additionally, these data contain many missing values
which we must also handle before building a predictive model. We must think
through all of these questions while keeping in mind the goal of predicting
the success of a grant application.

Given this goal, we took the following steps. First, a group of predictors
was created that describe how many investigators were on the grant broken
up by role (e.g., chief investigator). Second, groups of role-specific count vari-
ables were also created for the home language, nationality, degree, birth year,
department, and grant history. For example, one variable counts the number
of chief investigators from Australia while another counts the total number of
successful grants from all delegated researchers on the grant. For publication
data, the total number of publications in the four tiers of journals was aggre-
gated across all roles. The duration of employment was similarly aggregated
across all roles.

Indicator variables for each sponsor code and grant category were also
created. For the RFCD and SEO codes, the number of non-zero percentages
for each grant was used. Finally, indicators were generated for the month and
day or the week that the grant was submitted. In all, 1,784 possible predictors
were created using this encoding scheme.

As a result, the vast majority of these predictors are discrete in nature
(i.e., either 0/1 dummy variables or counts) with many 0 values. Since many
of the predictors are categorical in nature, missing values were encoded as
“unknown.” For example, 912 grants had missing category codes. A binary
predictor for missing grant categories was created to capture this information.

As described in Chap. 3, some predictive models have different constraints
on the type of predictors that they can utilize. For example, in these data,
a significant number of predictors had pair-wise absolute correlations that
were larger than 0.99. Because of this, a high-correlation filter was used on
the predictor set to remove these highly redundant predictors from the data.
In the end, 56 predictors were eliminated from the data for this reason. The
binary nature of many of predictors also resulted in many cases where the data
were very sparse and unbalanced. For the RFCD codes, 95% of the predictors
had less than 50 non-zero indicators. This high degree of class imbalance
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Fig. 12.1: The top two continuous predictors associated with grant success
based on the pre-2008 data. Prior success in receiving a grant by the chief
investigator as well as prior failure in receiving a grant are most highly as-
sociated with the success or failure of receiving a future grant. The x-axis
is truncated to 15 grants so that the long tails of the distribution do not
obfuscate the differences

indicates that many of the predictors could be classified as near-zero variance
predictors described in Chap. 3, which can lead to computational issues in
many of the models.

Since not all models are affected by this issue, two different sets of predic-
tors were used, depending on the model. The “full set” of predictors included
all the variables regardless of their distribution (1,070 predictors). The “re-
duced set” was developed for models that are sensitive to sparse and unbal-
anced predictors and contained 252 predictors. In subsequent chapters and
sections, the text will describe which predictor set was used for each model.4

As a reminder, the process of removing predictors without measuring their
association with the outcome is unsupervised feature selection. Although a few
models that use supervised feature selection are described in this chapter, a
broader discussion of feature selection is tabled until Chap. 19.

A cursory, univariate review of the newly encoded data uncovers a few
interesting relationships with the response. Two continuous predictors, the
number of prior successful and unsuccessful grant applications by the chief
investigator, were highly associated with grant application success. The distri-
butions of these predictors by current grant application success are displayed
in Fig. 12.1. Not surprisingly these histograms suggest that prior success or

4 However, there are several tree-based methods described in Chap. 14 that are more
effective if the categorical predictors are not converted to dummy variables. In these
cases, the full set of categories are used.
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Table 12.1: Statistics for the three categorical predictors with highest uni-
variate association with the success funding of a grant

Grant success
Yes No N Percent Odds Odds ratio

Contract value band
A 1, 501 818 2, 319 64.7 1.835 2.84
Other bands 2, 302 3, 569 5, 871 39.2 0.645

Sponsor
Unknown 732 158 890 82.2 4.633 6.38
Known 3, 071 4, 229 7, 300 42.1 0.726

Month
January 480 45 525 91.4 10.667 13.93
Other months 3, 323 4, 342 7, 665 43.4 0.765

failure shifts the respective distribution towards current success or failure.
Given this knowledge, we would expect these predictors to play significant
roles for most any classification model.

Three categorical predictors (Contract Value Band A, Sponsor Unknown,
and January) had the highest univariate associations with grant application
success. The associations for these three predictors were not strong but do
reveal some useful patterns. Table 12.1 shows the data and suggests that
grant submissions with a large monetary value, an unknown sponsor, or a
submission in January are associated with greater funding success. Looking
at the problem a different way, unsuccessful grant applications are likely to
have a smaller monetary value, to have a known sponsor, and are submitted
in a month other than January. The table has the success rates for each group
and also the odds, which is ratio of the probability of a success grant over
the probability of an unsuccessful grant. One common method for quanti-
fying the predictive ability of a binary predictor (such as these) is the odds
ratio. For example, when a grant is submitted in January the odds are much
higher (10.7) than other months (0.8). The ratio of the odds for this predictor
suggests that grants submitted in January are 13.9 times more likely to be
successful than the other months. Given the high odds ratios, we would ex-
pect that these predictors will also have impact on the development of most
classification models.

Finally, we must choose how to split the data which is not directly obvious.
Before deciding on the splitting approach, it is important to note that the per-
centage of successful grants varied over the years: 45% (2005), 51.7% (2006),
47.2% (2007), and 36.6% (2008). Although 2008 had the lowest percentage
in the data, there is not yet enough information to declare a downward trend.
The data splitting scheme should take into account the application domain of
the model: how will it be used and what should the criterion be to assess if it
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is fit for purpose? The purpose of the model exercise is to create a predictive
model to quantify the likelihood of success for new grants, which is why the
competition used the most recent data for testing purposes.

If the grant success rate were relatively constant over the years, a reason-
able data splitting strategy would be relatively straightforward: take all the
available data from 2005 to 2008, reserve some data for a test set, and use
resampling with the remainder of the samples for tuning the various models.
However, a random test sample across all of the years is likely to lead to a
substantially less relevant test set; in effect, we would be building models that
are focused on the past grant application environment.

An alternative strategy would be to create models using the data before
2008, but tune them based on how well they fit the 2008 data. Essentially,
the 2008 data would serve as a single test set that is more relevant in time
to the original test set of data from 2009 to 2010. However, this is a single
“look” at the data that do not provide any real measure of uncertainty for
model performance. More importantly, this strategy may lead to substantial
over-fitting to this particular set of 2008 data and may not generalize well
to subsequent years. For example, as with regression models, there are a
number of classification models that automatically perform feature selection
while building the model. One potential methodology error that may occur
with a single test set that is evaluated many times is that a set of predictors
may be selected that work only for these particular 2008 grant applications.
We would have no way of knowing if this is the case until another set of recent
grant applications are evaluated.

How do these two approaches compare for these data? Figure 12.2 shows
the results for a support vector machine classification model discussed in
detail in Sect. 13.4 but is similar to the support vector regression model
described in Sect. 7.3. Using the radial basis function kernel previously dis-
cussed, the tuning parameters are the kernel parameter, σ, and the cost value,
C, used to control for over-fitting. Several values of the radial basis function
kernel parameter were evaluated as well as several values of the cost function.

Figure 12.2 shows both approaches to tuning the model. Two tuning
parameter profiles for the support vector machine are shown:

• The first model is built on 8,189 grants that include all the pre-2008 data
and 25% of the 2008 data (n = 290). To choose the regularization and ker-
nel parameter(s), 10-fold cross-validation is used. The performance profile
across the cost parameter is shown as a blue line in Fig. 12.2 (this pro-
file uses the optimal value of the kernel parameter). A set of 2008 grants
(n = 1, 785) is held back to validate the choice of the final tuning param-
eter (blue profile).

• The second model is exclusively built on pre-2008 data, and the value of
the tuning parameter is chosen to maximize the area under the ROC curve
for the 2008 grants. No additional samples are held back for verifying the
parameter choice (red profile).
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Fig. 12.2: Two models for grant success based on the pre-2008 data but with
different data sets used to tune the model

The blue profile suggests that a value of 32 for the cost parameter will yield
an area under the ROC curve of 0.88. The red profile shows the results of
evaluating only the 2008 data (i.e., no resampling). Here, the tuning process
suggests that a smaller cost value is needed (4) to achieve an optimal model
with an area under the ROC curve of 0.89. Firstly, given the amount of data
to evaluate the model, it is problematic that the curves suggest different
tuning parameters. Secondly, when the cross-validated model is evaluated on
the 2008 data, the area under the ROC curve is substantially smaller (0.83)
than the cross-validation results indicate.

The compromise taken here is to build models on the pre-2008 data and
tune them by evaluating a random sample of 2,075 grants from 2008. Once
the optimal parameters are determined, final model is built using these pa-
rameters and the entire training set (i.e., the data prior to 2008 and the
additional 2,075 grants). A small holdout set of 518 grants from 2008 will be
used to ensure that no gross methodology errors occur from repeatedly eval-
uating the 2008 data during model tuning. In the text, this set of samples is
called the 2008 holdout set. This small set of year 2008 grants will be referred
to as the test set and will not be evaluated until set of candidate models are
identified (in Chap. 15). These strategies are summarized in Table 12.2.

To be clear, there is no single, clean approach to handling this issue for
data that appear to be evolving over time. Therefore the practitioner must
understand the modeling objectives and carefully craft a plan for training and
testing models. In this case, the grant data have the luxury of a moderate
amount of recent data; there are enough data to split out a small holdout set
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Table 12.2: A schematic for the data splitting strategy for the grant applica-
tion data used in this and subsequent chapters

Model tuning Final model

Training Holdout Training Holdout

Pre-2008 (n = 6, 633) × ×
2008 (n = 1, 557) × ×
2008 (n = 518) ×

without significantly impairing the tuning process. The disadvantages of this
approach are:

1. An assumption is being made that the model parameters derived from the
tuning process will be appropriate for the final model, which uses pre-2008
data as well as the 2,075 grants from 2008.

2. Since the final model uses some 2008 grants, the performance on the test
set is likely to be better than the results generated in the tuning process
(where the model parameters were not exposed to year 2008 grants).

In Chap. 15, the test set results will be compared to those generated during
model tuning.

12.2 Logistic Regression

Linear regression (Sect. 6.2) forms a model that is linear in the parameters,
and these parameters are obtained by minimizing the sum of the squared
residuals. It turns out that the model that minimizes the sum of the squared
residuals also producesmaximum likelihood estimates of the parameters when
it is reasonable to assume that the model residuals follow a normal (i.e.,
Gaussian) distribution.

Maximum likelihood parameter estimation is a technique that can be used
when we are willing to make assumptions about the probability distribution of
the data. Based on the theoretical probability distribution and the observed
data, the likelihood function is a probability statement that can be made
about a particular set of parameter values. If two sets of parameters values
are being identified, the set with the larger likelihood would be deemed more
consistent with the observed data.
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The probability distribution that is most often used when there are two
classes is the binomial distribution.5 This distribution has a single parameter,
p, that is the probability of an event or a specific class. For the grant data,
suppose p is the probability of a successful grant. In the pre-2008 grants,
there were a total of 6,633 grants and, of these, 3,233 were successful. Here,
the form of the binomial likelihood function would be

L(p) =

(
6633

3233

)
p3233(1− p)6633−3233, (12.1)

where the exponents for p and 1 − p reflect the frequencies of the classes in
the observed data. The first part of the equation is “n choose r” and accounts
for the possible ways that there could be 3,233 successes and 3,400 failures
in the data.

The maximum likelihood estimator would find a value of p that pro-
duces the largest value for f(p). It turns out that the sample proportion,
3233/6633 = 0.487, is the maximum likelihood estimate in this situation.

However, we know that the success rate is affected by multiple factors
and we would like to build a model that uses those factors to produce a
more refined probability estimate. In this case, we would re-parameterize the
model so that p is a function of these factors. Like linear regression, the
logistic regression model has an intercept in addition to slope parameters for
each model term. However, since the probability of the event is required to be
between 0 and 1, we cannot be guaranteed that a slope and intercept model
would constrain values within this range. As discussed earlier in the chapter,
if p is the probability of an event, the odds of the event are then p/(1 − p).
Logistic regression models the log odds of the event as a linear function:

log

(
p

1− p

)
= β0 + β1x1 + · · ·+ βPxP . (12.2)

Here, P is the number of predictors. The right-hand side of the equation is
usually referred to as the linear predictor. Since the log of the odds can range
from −∞ to ∞, there is no concern about the range of values that the linear
predictors may produce. By moving some terms around, we get back to a
function of the event probability:

p =
1

1 + exp [−(β0 + β1x1 + · · ·+ βPxP )]
(12.3)

This nonlinear function is a sigmoidal function of the model terms and con-
strains the probability estimates to between 0 and 1. Also, this model pro-
duces linear class boundaries, unless the predictors used in the model are

5 Data with three or more classes are usually modeled using the multinomial distri-
bution. See Agresti (2002) for more details.
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Fig. 12.3: Two logistic regression models that relate the probability of a
successful grant to the numeric day of the year. In this plot, the day values
were binned into 5-day periods. The model fits did not use the binned version
of the predictor; the log odds were modeled as a function of the day of the
year (e.g., 1, 2, . . . , 365)

nonlinear versions of the data (e.g., the squared values of a predictor are
used as one of the xj model terms).

Now that we have a way to relate our model to the parameter of the
binomial distribution, we can find candidate values of the parameters (β)
and, with our observed data, compute a value of the likelihood function.
Once we find β values that appear to maximize the likelihood for our data,
these values would be used to predict sample outcomes.

Logistic regression and ordinary linear regression fall into a larger class
of techniques called generalized linear models (GLMs) that encompass many
different probability distributions. Dobson (2002) provides an excellent in-
troduction to these models. They are linear in the sense that some function
of the outcome is modeled using the linear predictors, such as the log odds
in Eq. 12.2. They often produce nonlinear equations (such as the one for p
in Eq. 12.3). Again, note that even though the equation for p is nonlinear, it
produces linear classification boundaries.

For example, we could fit a simple logistic regression model to the grant
data using a single predictor, such as the numeric day of the year. Figure 12.3
shows the observed probability of a successful grant when the data are binned
into 5-day intervals. In this plot, there is a higher success rate associated with
the beginning and end of the year. In fact, for the data prior to 2008, there
were zero unsuccessful grants in the pool of 343 grants submitted on the first
day of the year. During the middle of the year the acceptance rate is roughly
decreasing but increases near the end of the year. A simple logistic regression
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model would try to estimate a slope corresponding to the day as well as an
intercept term. Using the training data, the model fitting routine searches
across different values of these two parameters to find a combination that,
given the observed training data, maximizes the likelihood of the binomial
distribution. In the end, the estimated intercept was 0.919 and the slope
parameter was determined to be −0.0042. This means that there was a per
day decrease in the log odds of 0.0042. The model fit is shown on the left
panel of Fig. 12.3. This does not adequately represent the trend in the later
part of the year. Another model can be created where a third parameter
corresponds to a squared day term. For this model, the estimated intercept
now becomes 1.88, the slope for the linear day term is −0.019, and the slope
for the quadratic term was estimated to be −0.000038. The right-hand panel
of Fig. 12.3 shows a clear improvement in the model but does not quite capture
the increase in the success rate at the end of the year. As evidence of the need
for an additional term, the area under the ROC curve for the linear model
was 0.56, which improves to 0.66 once the additional model term is utilized.

An effective logistic regression model would require an inspection of how
the success rate related to each of the continuous predictors and, based on
this, may parameterize the model terms to account for nonlinear effects. One
efficient method for doing this is discussed in Harrell (2001), where restricted
cubic splines are used to create flexible, adaptive versions of the predictors
that can capture many types of nonlinearities. The chapter’s Computing sec-
tion has more details on this methodology. Another approach is a generalized
additive model (Hastie and Tibshirani 1990; Hastie et al. 2008), which also
uses flexible regression methods (such as splines) to adaptively model the log
odds. We refer the reader to the reference texts to learn more about these
methods.

For the grant data, the full set of predictors was used in a logistic regres-
sion model. The other continuous predictors were evaluated for nonlineari-
ties. However, many of the predictors have few data points on one or more
extremes of the distributions, such as the two predictors shown in Fig. 12.1.
This increases the difficulty in prescribing an exact functional form for the
predictors. Using this predictor set, the logistic regression model was able to
achieve an area under the ROC curve of 0.78, a sensitivity of 77% and a
specificity of 76.1%, on the 2008 holdout set.

Many of the categorical predictors have sparse and unbalanced distribu-
tions. Because of this, we would expect that a model using the full set of
predictors would perform worse than the set that has near-zero variance pre-
dictors removed. For the reduced set of 253 variables, the area under the
ROC curve was 0.87, the sensitivity was 80.4%, and the specificity was 82.2%
(Fig. 12.4). The confusion matrix is shown in Table 12.3. With this partic-
ular model, there was a substantial improvement gained by removing these
predictors.

For logistic regression, formal statistical hypothesis tests can be conducted
to assess whether the slope coefficients for each predictor are statistically sig-
nificant. A Z statistic is commonly used for these models (Dobson 2002), and
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Table 12.3: The 2008 holdout set confusion matrix for the logistic regression
model

Observed class
Successful Unsuccessful

Successful 439 236
Unsuccessful 131 751

This model had an overall accuracy of 76.4%, a sensitivity of 77%, and a specificity
of 76.1%
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Fig. 12.4: The ROC curve for the grant data test set using a logistic regression
model. The AUC is 0.87

is essentially a measure of the signal-to-noise ratio: the estimated slope is
divided by its corresponding standard error. Using this statistic, the predic-
tors can be ranked to understand which terms had the largest effect on the
model. For these data, the five most important predictors were the number
of unsuccessful grants by chief investigators, the number of successful grants
by chief investigators, contract value band F, contract value band E, and
numeric day of the year (squared).

The logistic regression model is very popular due to its simplicity and
ability to make inferential statements about model terms. For example, a
researcher may want to formally evaluate whether the day of the calendar
year has a statistically significant relationship with the probability of grant
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acceptance. Harrell (2001) is an excellent resource for developing statistical
models for the purpose of making inferential statements about model param-
eters.

This model can also be effective when the goal is solely prediction, but, as
demonstrated above, it does require the user to identify effective representa-
tions of the predictor data that yield the best performance. As will be shown
in the later sections, there are other classification models that empirically
derive these relationships in the course of model training. If the model will
only be utilized for prediction, these techniques may be more advantageous.

12.3 Linear Discriminant Analysis

The roots of LDA date back to Fisher (1936) and Welch (1939). Each of these
researchers took a different perspective on the problem of obtaining optimal
classification rules. Yet, as we will see, each came to find the same rule in
the two-group classification setting. In this section we will provide highlights
of both of these approaches to capture their necessary technical details while
also discussing a few mathematical constructs required for connecting it with
other methods discussed later in this chapter.

For the classification problem, Welch (1939) took the approach of minimiz-
ing the total probability of misclassification, which depends on class probabil-
ities and multivariate distributions of the predictors. To see Welch’s approach,
we first need a basic understanding of Bayes’ Rule6 which is

Pr[Y = C�|X ] =
Pr[Y = C�]Pr[X |Y = C�]∑C
l=1 Pr[Y = Cl]Pr[X |Y = Cl]

(12.4)

Pr[Y = C�] is known as the prior probability of membership in class C�. In
practice these values are either known, are determined by the proportions of
samples in each class, or are unknown in which case all values of the priors
are set to be equal. Pr[X |Y = C�] is the conditional probability of observing
predictors X , given that the data stem from class C�. Here we assume that
the data are generated from a probability distribution (e.g., multivariate nor-
mal distribution), which then defines this quantity’s mathematical form. The
result of this equation is Pr[Y = C�|X ], which is commonly referred to as
the posterior probability that the sample, X , is a member of class C�. For a
more detailed description of this equation, we refer you to Sect. 13.6.

For a two-group classification problem, the rule that minimizes the total
probability of misclassification would be to classify X into group 1 if Pr[Y =
C1|X ] > Pr[Y = C2|X ] and into group 2 if the inequality is reversed. Using
Eq. 12.4, this rule directly translates to classifying X into group 1 if

Pr[Y = C1]Pr[X |Y = C1] > Pr[Y = C2]Pr[X |Y = C2]. (12.5)

6 Bayes’ Rule is examined in more detail in Sect. 13.6.
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Fig. 12.5: A single predictor is used to classify samples into two groups. The
blue figures above each group represent the probability density function for
a normal distribution determined by the class-specific means and variances

We can easily extend this rule to the more-than-two group case. In this set-
ting, we would classify X into group C� if Pr[Y = C�]Pr[X |Y = C�] has the
largest value across all of the C classes.

Figure 12.5 illustrates this with a single predictor and two classes (the
individual data points have been “jittered” to reduce their overlap). The blue
illustrations above each group of data points are the probability density func-
tion for the normal distribution for each of the classes (i.e., Pr[X |Y = C1]
and Pr[X |Y = C2]). Since there is a single predictor, a new sample is clas-
sified by finding its value on the x-axis, then determining the value for each
of the probability density functions for each class (in addition to the overall
probability, Pr[X ], found by pooling both groups). Suppose a new sample
had a value of 4 for the predictor. The probability for Class 2 is virtually 0,
so this sample would be predicted to belong to the first class.

Since a single predictor is used for this example, it belies the complexity of
using Bayes’ Rule in practice. For classification, the number of predictors is
almost always greater than one and can be extremely large. In more realistic
situations, how does one compute quantities such as Pr[X |Y = C�] in many
dimensions?7 What multivariate probability distributions can be used to this
effect?

One special, often used scenario is to assume that the distribution of the
predictors is multivariate normal. This distribution has two parameters: the
multidimensional mean vector µ� and covariance matrix Σ�. Further, if we
assume that the means of the groups are unique (i.e., a different µ� for each
group), but the covariance matrices are identical across groups, we can solve

7 This situation is addressed again for the näıve Bayes models in the next chapter.
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Eq. 12.5 or the more general multi-class problem to find the linear discrimi-
nant function of the �th group:

X ′Σ−1μ� − 0.5μ
′
�Σ

−1μ� + log (Pr[Y = C�]) . (12.6)

In practice, the theoretical means, μ�, are estimated by using the class-specific
means (x̄�). The theoretical covariance matrix, Σ, is likewise estimated by
the observed covariance matrix of the data, S, and X is replaced with an
observed sample, u. In the simple example in Fig. 12.5, the sample mean and
variance of the data were sufficient to produce the probability distributions
shown in blue. For two classes, the class-specific means and variances would
be computed along with the sample covariance between the two predictors
(to fill out the sample covariance matrix).

Notice that Eq. 12.6 is a linear function in X and defines the separat-
ing class boundaries. Hence the method’s name: LDA. A slight alteration in
the assumptions—that the covariance matrices are not identical across the
groups—leads to quadratic discriminant analysis, which will be described in
Sect. 13.1.

Fisher formulated the classification problem in a different way. In this
approach, he sought to find the linear combination of the predictors such
that the between-group variance was maximized relative to the within-group
variance. In other words, he wanted to find the combination of the predictors
that gave maximum separation between the centers of the data while at the
same time minimizing the variation within each group of data.

To illustrate this concept, Fig. 12.6 is an analog to Fig. 12.5. Here, the
blue bars indicate the class-specific means. Since there is a single predictor,
the between group variance is the square of the difference in these means.
The within-group variance would be estimated by a variance that pools the
variances of the predictor within each group (illustrated using the red bars
in the figure). Taking a ratio of these two quantities is, in effect, a signal-to-
noise ratio. Fisher’s approach determines linear combinations of the predic-
tors to maximize the signal-to-noise ratio. Similar to the previous discussion
of Welch’s approach, the situation becomes increasingly more complicated
by adding additional predictors. The between- and within-group variances
become complex calculations that involve the covariance structure of the
predictors, etc.

Mathematically, let B represent the between-group covariance matrix and
W represent the within-group covariance matrix. Then Fisher’s problem can
be formulated as finding the value of b such that

b′Bb

b′Wb
(12.7)

is maximized. The solution to this optimization problem is the eigenvector
corresponding to the largest eigenvalue of W−1B. This vector is a linear
discriminant, and subsequent discriminants are found through the same op-



290 12 Discriminant Analysis and Other Linear Classification Models

Predictor

Class 1

Class 2

4 6 8

Between

Within

Within

Fig. 12.6: The same data as shown in Fig. 12.5. Here, the between- and within-
class variances are illustrated. The within-class ranges are based on the mean
± two standard deviations

timization subject to the constraint that the new directions are uncorrelated
with the previous discriminants.

To make Fisher’s approach more concrete, let’s consider the two-group
setting. Solving Eq. 12.7 for two groups gives the discriminant function of
S−1 (x̄1 − x̄2), where S−1 is the inverse of the covariance matrix of the data
and is multiplied by the difference between the mean vectors of predictors for
each group (i.e., x̄1 contains the means of each predictor calculated from the
class 1 data). In practice, a new sample, u, is projected onto the discriminant
function as u′S−1 (x̄1 − x̄2), which returns a discriminant score. A new sam-
ple is then classified into group 1 if the sample is closer to the group 1 mean
than the group 2 mean in the projection:

∣∣∣b′ (u− x1)
∣∣∣− ∣∣∣b′ (u− x2)

∣∣∣ < 0. (12.8)

As a more complex illustration, Fig. 12.7 shows a data set with two classes
and two predictors, A and B. The line A = B easily separates these two sets
of points into distinct groups. However, this line is not the discriminant func-
tion. Rather, the discriminant function is instead orthogonal to the line that
separates them in space (see Fig. 12.8). With two predictors, the discriminant
function for an unknown sample u is
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Fig. 12.7: A simple example of two groups of samples that are clearly sepa-
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Fig. 12.8: The line at approximately A = B is the vector that visually sepa-
rates the two groups. Assessing class membership is determined by projecting
a sample onto the discriminant vector (red arrow) and then calculating its
distance from the mean for each group. The sample is then classified into the
group which mean is closer. The box plots are the distribution of the samples
for each class after LDA has been performed, illustrating the maximization
of between-to-within group variation
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D(u) = u′S−1(x̄1 − x̄2)

= uA

(
(x̄1A − x̄2A)s

2
B

s2As
2
B − s2AB

− (x̄1B − x̄2B)sAB

s2As
2
B − s2AB

)

+ uB

(
(x̄1B − x̄2B)s

2
A

s2As
2
B − s2AB

− (x̄1A − x̄2A)sAB

s2As
2
B − s2AB

)
.

Here, x̄1A is the sample mean for predictor A calculated using the data from
only the first class; x̄2A is the sample mean for A for the second class (the
notation is analogous for predictor B). Also, s2A is the sample variance for
predictorA (computed with data from both classes), s2B is the sample variance
for predictor B, and sAB is the sample covariance between the two predictors.

For this function, note that all of the predictor variances and the between-
predictor covariance are used in this equation. When the number of predictors
is large, the prediction equation requires a very large number of parameters
to be estimated. For P = 2 and two classes, this equation uses four means
and three variance parameters. In general, the model would require CP +
P (P + 1)/2 parameters with P predictors and C classes. In comparison to
logistic regression, a similar model would only estimate three parameters.
This difference between the models becomes more significant as the number of
predictors grow. However, the value of the extra parameters in LDA models is
that the between-predictor correlations are explicitly handled by the model.
This should provide some advantage to LDA over logistic regression when
there are substantial correlations, although both models will break down
when the multicollinearity becomes extreme.

Fisher’s formulation of the problem makes intuitive sense, is easy to solve
mathematically, and, unlike Welch’s approach, involves no assumptions about
the underlying distributions of the data. The mathematical optimization con-
strains the maximum number of discriminant functions that can be extracted
to be the lesser of the number of predictors or one less than the number of
groups. For example, if we have ten predictors and three groups, we can at
most extract two linear discriminant vectors. Similar to PCA, the eigenvalues
in this problem represent the amount of variation explained by each compo-
nent of W−1B. Hence, LDA is a member of the latent variable routines like
PCA and partial least squares (PLS). In practice, the number of discrimi-
nant vectors is a tuning parameter that we would estimate using the usual
approach of cross-validation or resampling with the appropriate performance
criteria.

Closely examining the linear discriminant function leads to two find-
ings which are similar to what we observed with multiple linear regression
(Sect. 6.2). First, the LDA solution depends on inverting a covariance matrix,
and a unique solution exists only when this matrix is invertible. Just like in
regression, this means that the data must contain more samples than pre-
dictors, and the predictors must be independent (see the computing section
for an approach to determining if the covariance matrix is invertible). When
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there are more samples than predictors, or when the predictors are extremely
correlated, then just like in regression, a popular approach is to first perform
PCA to reduce dimension and generate new uncorrelated predictor combina-
tions. While this approach has been shown to work, the dimension reduction
is uninformed about the class structure of the data. To incorporate the class
structure into the dimension reduction, we recommend using PLSDA or reg-
ularization methods (see following sections). Second, the linear discriminant
function is a P -dimensional vector, the values of which are directly paired to
the original predictors. The magnitudes of these values can be used to under-
stand the contribution of each predictor to the classification of samples and
provide some understanding and interpretation about the underlying system.

From the above discussion, practitioners should be particularly rigorous
in pre-processing data before using LDA. We recommend that predictors
be centered and scaled and that near-zero variance predictors be removed.
If the covariance matrix is still not invertible, then we recommend using
PLS or a regularization approach. Similarly, we recommend using PLS or
regularizationmethods (described in sections in this chapter) if there are more
predictors than samples. Along the same lines, the practitioner must be aware
of the number of samples relative to the number of predictors when using
cross-validation routines for methods that depend on inverting a covariance
matrix. For example, if the number of samples is 5% greater than the number
of predictors for the training set, and we choose 10-fold cross-validation, then
the covariance matrix will not be invertible for any of the folds since all of
the folds will have fewer samples than predictors.

We will now illustrate how LDA performs on the grant data. Since LDA
is sensitive to near zero variance predictors and collinear predictors,we have
reduced the predictor set to 253 predictors (including the squared day term
as in logistic regression). Using this subset of predictors, the area under the
ROC curve for the 2008 holdout set is 0.89. Table 12.4 shows the confusion
matrix for these data and Fig. 12.9 displays the corresponding ROC curve.
The light grey line in this plot also shows the ROC curve for the previous
logistic regression model.

As we mentioned above, examining the coefficients of the linear discrim-
inant function can provide an understanding of the relative importance of
predictors. The top 5 predictors based on absolute magnitude of discrimi-
nant function coefficient are numeric day of the year (squared) (2.2), numeric
day of the year (−1.9), the number of unsuccessful grants by chief investiga-
tors (−0.62), the number of successful grants by chief investigators (0.58), and
contract value band A (0.56). Note that this list contains several predictors
that the univariate approach identified as being associated with the success of
a grant submission. Here, the number of previous unsuccessful grant submis-
sions by the chief investigator is inversely related to the number of previous
successful grant submissions by the chief investigator and largest monetary
categorization, which is intuitive.



294 12 Discriminant Analysis and Other Linear Classification Models

1 − Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 12.9: The ROC curve for the 2008 holdout using LDA. The AUC is 0.89.
The lightly shaded line is the ROC curve for the previous logistic regression
model

Table 12.4: The 2008 holdout set confusion matrix for the LDA model

Observed class
Successful Unsuccessful

Successful 458 175
Unsuccessful 112 812

This model had an overall accuracy of 81.6%, a sensitivity of 80.4%, and a specificity
of 82.3%

We can then project the 2008 holdout grants onto this linear discriminant
vector and examine the distribution of the discriminant scores (Fig. 12.10).
While there is overlap of the distributions for successful and unsuccessful
grant applications, LDA yields decent classification performance—especially
given that LDA is summarizing the entirety of the underlying relationships
in one dimension (Table 12.4).

When we have more samples than predictors, the covariance matrix is in-
vertible, and the data can be decently separated by a linear hyperplane, then
LDA will produce a predictively satisfying model that also provides some un-
derstanding of the underlying relationships between predictors and response.
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Fig. 12.10: Box plots of the discriminant scores for the 2008 holdout set

The user should be aware, however, that there is a data set scenario that
meets these basic requirements but will yield class probability estimates that
are overly optimistic. Specifically, the user should be very cautious with LDA
predicted class probabilities when the number of samples begins to approach
the number of predictors. We will use a simple simulation to illustrate this
cautionary note. For 500 samples we have generated data sets containing 10,
100, 200, and 450 predictors all from a random normal population. The re-
sponse for the samples was also randomly generated placing 250 samples in
each category. Therefore, the predictors and response for each of these data
sets have no relationship with each other. We will then build LDA models
on each of these data sets and examine performance. As we would expect,
the test set classification accuracy for each data set is approximately 50%.
Since these data are completely random, we would also expect that the pre-
dicted class probabilities for the test set should also be around 0.5. This is
true when the number of predictors is small relative to the number of sam-
ples. But as the number of predictors grows, the predicted class probabilities
become closer to 0 and 1 (Fig. 12.11). At face value, these results seem coun-
terintuitive: test set performance tells us that the model performs as good as
a coin toss, but the model is extremely confident about classifying samples
into each category.

How can this be? It turns out that these seemingly contradictory conclu-
sions are due to LDA’s mathematical construction. Recall that LDA finds an
optimal discriminant vector. Geometrically, if the number of samples equals
the number of predictors (or dimensions), then we can find at least one vec-
tor that perfectly separates the samples. Consider the simplest case where
we have two samples and two dimensions. As long as those samples are not
in the same location, then we can find one vector (actually infinitely many)
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Fig. 12.11: Histograms of test set class probabilities for a simulated two-
class example where all predictors are non-informative. As the number of
predictors approaches the number of samples (500 in the training set), the
class probabilities begin to diverge towards the two extremes (however, the
overall accuracy remains near 50%)

that perfectly separates the two samples. Three samples (two in one class and
one in the other) in two dimensions can also be perfectly separated as long
as the points are not on a straight line and the single point is not in between
the other two from the other class.

Obviously, this data scenario can lead to class probability estimates that
are poorly calibrated (as discussed in Sect. 11.3). Due to this inherent problem
with LDA, as well as its other fundamental requirements, we recommend that
LDA be used on data sets that have at least 5–10 times more samples than
predictors. Caution should be applied to LDA results when the ratio dips
below 5.
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Finally, similar to logistic regression, any predictors used in an LDA model
can be transformed and included in the model, like what we observed with the
squared numeric value of day of the year in Fig. 12.3. In addition, the practi-
tioner can create cross-product (i.e., interaction) terms among the predictors.
Taking this approach is one way to enable LDA to find nonlinear discriminant
boundaries. Transforms of or interactions among predictors should only be in-
cluded, however, if there is good reason to believe that meaningful predictive
information exists through these additional predictors. Including additional
uninformative predictors will degrade the predictive ability of LDA and could
prevent the covariance matrix from being invertible. If the practitioner sus-
pects that nonlinear structure exists between predictors and the classification
outcome but is not sure which predictors are involved in this relationship,
then we recommend using methods presented in the next chapter.

12.4 Partial Least Squares Discriminant Analysis

As we have noted numerous times throughout the previous chapters, retro-
spectively or prospectively, measured predictors for any particular problem
can be highly correlated or can exceed the number of samples collected. If
either of these conditions is true, then the usual LDA approach cannot be
directly used to find the optimal discriminant function.

Just like in the regression setting, we can attempt to pre-process our data
in a way that removes highly correlated predictors. If more complex corre-
lation structure exist in the data or if the number of predictors still exceeds
the number of samples (or the ratio of samples to predictors is too low), then
PCA can be used to reduce the predictor-space dimension. However, as pre-
viously discussed in Sect. 6.3, PCA may not identify the predictor combina-
tions that optimally separate samples into groups. Recall that Fisher’s LDA
objective was to find the subspace that maximized the between-to-within
group variability. Since PCA does not take into consideration any of the re-
sponse classification information, we would not expect it to find the optimal
subspace for classification. Instead of taking this stepwise approach (PCA-
then-LDA) to the overdetermined problem, we recommend using PLS for the
purpose of discrimination.

The application of PLS to a classification problem dates back to at least the
mid 1980s (Berntsson and Wold 1986). As noted in the regression section, the
original NIPALS algorithm was developed and refined in the chemometrics
community. Not surprisingly, this community explored and extended the use
of PLS to the classification setting and termed this technique PLS discrimi-
nant analysis (or PLSDA). Dunn and Wold (1990), for example, illustrated
PLSDA on a chemometrics pattern recognition example and showed that it
provided a better separation of the samples into groups than the traditional
PCA-then-LDA approach.
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To build intuition for why PLS would naturally extend to the classifica-
tion setting, let’s briefly return to PLS for regression. Recall that PLS finds
latent variables that simultaneously reduce dimension and maximize corre-
lation with a continuous response value (see Fig. 6.9). In the classification
setting for a two-group problem, we could näıvely use the samples’ class
value (represented by 0’s and 1’s) as the response for this model. Given what
we know about PLS for regression, we would then expect that the latent
variables would be selected to reduce dimension while optimizing correlation
with the categorical response vector. Of course, optimizing correlation isn’t
the natural objective if classification is the goal—rather, minimizing misclas-
sification error or some other objective related to classification would seem
like a better approach. Despite this fact, PLSDA should do better since the
group information is being considered while trying to reduce the dimension
of the predictor space.

Even though a correlation criterion is being used by PLS for dimension
reduction with respect to the response, it turns out that this criterion happens
to be doing the right thing. Before getting to the reason why that is true, we
first must discuss a practical matter: coding of the response. For a two-group
problem, the classes are encoded into a set of 0/1 dummy variables. With C
classes, the results would be a set of C dummy variables where each sample
has a one in the column representing the corresponding class.8 As a result, the
response in the data is represented by a matrix of dummy variables. Because
of this, the problem cannot be solved by the PLS regression approach dis-
played in Fig. 6.9 and must move to the paradigm for a multivariate response.

Applying PLS in the classification setting with a multivariate response
has strong mathematical connections to both canonical correlation analysis
and LDA [see Barker and Rayens (2003) for technical details]. Assuming the
above coding structure for the outcome, Barker and Rayens (2003) showed
that the PLS directions in this context were the eigenvectors of a slightly
perturbed between-groups covariance matrix (i.e. B from LDA).9 PLS is,
therefore, seeking to find optimal group separation while being guided by
between-groups information. In contrast, PCA seeks to reduce dimension
using the total variation as directed by the overall covariance matrix of the
predictors.

This research provides a clear rationale for choosing PLS over PCA when
dimension reduction is required when attempting classification. However, Liu

8 Mathematically, if we know C − 1 of the dummy variables, then the value of the
last dummy variable is directly implied. Hence, it is also possible to only use C − 1
dummy variables.
9 The perturbed covariance structure is due to the optimality constraints for the
response matrix. Barker and Rayens (2003) astutely recognized that the response
optimality constraint in this setting did not make sense, removed the constraint, and
resolved the problem. Without the response-space constraint, the PLS solution is one
that involves exactly the between-group covariance matrix.
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Table 12.5: The 2008 holdout set confusion matrix for the PLS model

Observed class
Successful Unsuccessful

Successful 490 220
Unsuccessful 80 767

This model had an overall accuracy of 80.7%, a sensitivity of 86%, and a specificity
of 77.7%. The reduced set of predictors were used to generate this matrix

and Rayens (2007) point out that if dimension reduction is not necessary and
classification is the goal, then LDA will always provide a lower misclassifica-
tion rate than PLS. Hence, LDA still has a necessary place in the classification
toolbox.

Exactly like PLS for regression, there is one tuning parameter: the num-
ber of latent variables to be retained. When performing LDA on the grant
data, the reduced set of predictors described on page 278 was used (which
eliminated near zero variance predictors and predictors that caused extreme
collinearity) with the additional squared term for the day of the year. PLS,
however, can produce a model under these conditions. Performance of PLS,
as we will shortly see, is affected when including predictors that contain lit-
tle or no predictive information. Running PLS on the full set of predictors
produces an optimal model with an area under the curve ROC of 0.87 based
on six components (see Fig. 12.12), a sensitivity of 83.7%, and a specificity of
77%. These ROC results are slightly worse than the LDA model, so should
we be surprised by this? After all, we included more predictors. Actually,
including predictors that contain very little or no information about the re-
sponse degrades the performance of a PLS model. For more details on this
phenomenon, see Sect. 19.1.

If PLS performs worse than LDA using a larger set of predictors, then the
next logical step would be to examine PLS performance using the reduced
set of predictors (also used by LDA).10 We know from the work of Liu and
Rayens (2007) that LDA should outperform PLS in terms of minimizing
misclassification errors. For this problem we have chosen to optimize ROC.
Using this criterion will LDA still outperform PLS? The optimal number of
PLS components with the reduced set of predictors is 4, with a corresponding
ROC of 0.89 (Fig. 12.12) and confusion matrix presented in Table 12.5. The
smaller set of predictors improves the ROC, uses fewer components to get
to that value, and attains a value that is equivalent to the LDA model’s
performance.

10 As a reminder, the set of predictors is not being selected on the basis of their asso-
ciation with the outcome. This unsupervised selection should not produce selection
bias, which is an issue described in Sect. 19.5.
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Fig. 12.12: ROC values by component for PLS for the grant data using two
sets of predictors. The ROC curve has a maximum area with six components
when using all predictors. When using the reduced subset of predictors, the
ROC curve has a maximum area with four components

Recall that PLSDA encodes the response as a set of 0/1 dummy variables.
Since PLS is a linear model, the predictions for the PLSDA model are not
constrained to lie between 0 and 1. The final class is determined by the class
with the largest model prediction. However, the raw model predictions require
post-processing if class probabilities are required. The softmax approach pre-
viously described in Sect. 11.1 can be used for this purpose. However, our
experience with this technique is that it does not produce meaningful class
probabilities—the probabilities are not usually close to 0 or 1 for the most
confident predictions. An alternative approach is to use Bayes’ Rule to con-
vert the original model output into class probabilities (Fig. 12.13). This tends
to yield more meaningful class probabilities. One advantage of using Bayes’
Rule is that the prior probability can be specified. This can be important
when the data include one or more rare classes. In this situation, the training
set may be artificially balanced and the specification of the prior probability
can be used to generate more accurate probabilities. Figure 12.14 shows the
class probabilities for the year 2008 grants.11 While there is overlap between

11 Recall that the models are built on the pre-2008 data and then tuned based on
the year 2008 holdout set. These predictions are from the PLSDA model with four
components created using only the pre-2008 data.
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Fig. 12.13: The ROC curve for the 2008 holdout data using PLS (black). The
AUC is 0.89. The ROC curve for LDA and logistic regression are overlaid
(grey) for comparison. All three methods perform similarly
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Fig. 12.14: Box plots for the PLSDA class probabilities of the 2008 holdout
set calculated using Bayes’ Rule
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Fig. 12.15: Partial least squares variable importance scores for the grant data

the classes, the distributions are properly shifted; probabilities tend to be
higher for the truly successful grants and low for the unsuccessful grants.

As in the regression setting, we can identify PLS predictor importance
(Fig. 12.15). For the data at hand, the unknown contract value band has a
relatively large importance as compared with the other predictors. Similar to
LDA, the success or lack of success of the chief investigator float towards the
top of the importance list. Other important predictors to the PLS classifica-
tion model are contract values, a number of other grant categories, and the
months of January and August. Interestingly, Sunday falls towards the top
of the list also.

Finally, if nonlinear relationships between the predictors and response exist
and the practitioner desires to use PLS to find these relationships then the
approaches presented in Sect. 6.3 can be employed.

12.5 Penalized Models

Similar to the regularization methods discussed in Sect. 6.4, many classifica-
tion models utilize penalties (or regularization) to improve the fit to the data,
such as the lasso. In later sections, penalties for inherently nonlinear models,
such as support vector machines and neural networks, are discussed.

For example, one might include a penalty term for the logistic regression
model in a manner that is very similar to ridge regression. Recall that logis-
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tic regression finds parameter values that maximizes the binomial likelihood
function, L(p) (see Eq. 12.1). A simple approach to regularizing this model
would be to add a squared penalty function to the log likelihood and find
parameter estimates that maximize

logL(p)− λ

P∑
j=1

β2
j .

Eilers et al. (2001) and Park and Hastie (2008) discuss this model in the con-
text of data where there are a large number of predictors and a small training
set sample. In these situations, the penalty term can stabilize the logistic re-
gression model coefficients.12 As with ridge regression, adding a penalty can
also provide a countermeasure against highly correlated predictors.

Recall that another method for regularizing linear regression models is to
add a penalty based on the absolute values of the regression coefficients (sim-
ilar to the lasso model of Sect. 6.4). The glmnet model (Friedman et al. 2010)
uses a lasso-like penalty on the binomial (or multinomial) likelihood function.
Like the lasso, this results in regression coefficients with values of absolute 0,
thus simultaneously accomplishing regularization and feature selection at the
same time. The glmnet models uses ridge and lasso penalties simultaneously,
like the elastic net, but structures the penalty slightly differently:

logL(p)− λ

⎡
⎣(1− α)

1

2

P∑
j=1

β2
j + α

P∑
j=1

|βj |
⎤
⎦ .

Here, the α value is the “mixing proportion” that toggles between the pure
lasso penalty (when α = 1) and a pure ridge-regression-like penalty (α = 0).
The other tuning parameter λ controls the total amount of penalization.

For the grant data, the glmnet model was tuned over seven values of the
mixing parameter α and 40 values of the overall amount of penalization. The
full set of predictors was used in the model. Figure 12.16 shows a heat map
of the area under the ROC curve for these models. The data favor models
with a larger mix of the ridge penalty than the lasso penalty, although there
are many choices in this grid that are comparable. The bottom row of the
heat map indicates that a complete ridge solution is poor regardless of the
magnitude of the penalty. In the end, the numerically optimal settings are a
mixing percentage of 0.1 and a value of 0.19 for the regularization amount.
These settings had the effect of using only 44 predictors out of 1,070 in
the final glmnet model, which achieved an area under the ROC curve of

12 Another method for adding this penalty is discussed in the next chapter using
neural networks . In this case, a neural network with weight decay and a single hidden
unit constitutes a penalized logistic regression model. However, neural networks do
not necessarily use the binomial likelihood when determining parameter estimates
(see Sect. 13.2).
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Fig. 12.16: Top: A heat map of the area under the ROC curve for the two
glmnet tuning parameters. The numerically optimal settings are a mixing
percentage of 0.1 and a value of 0.19 for the regularization amount. Bottom:
The ROC curve for 2008 holdout data using glmnet the model (area under
the ROC curve: 0.91)
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Fig. 12.17: Top: The tuning parameter profile for the sparse LDA model
Bottom: The ROC curve for the model (AUC = 0.901)

0.91. The previous logistic regression model which used the reduced set of
predictors resulted in an AUC of 0.87, indicating that the methodical removal
of noninformative predictors increased the effectiveness of the model. Other
approaches to supervised feature selection are discussed in Chap. 19.

Alternatively, penalization strategies can be applied to LDA models. For
example, Clemmensen et al. (2011) use this technique with LDA models using



306 12 Discriminant Analysis and Other Linear Classification Models

the flexible discriminant analysis (FDA) framework described in Sects. 13.1
and 13.3. In this model, an elastic-net strategy is used; L1 penalties have the
effect of eliminating predictors while an L2 penalty shrinks the coefficients of
the discriminant functions towards 0. Other approaches to penalizing LDA
models are described by Witten and Tibshirani (2009) and Witten and Tib-
shirani (2011), which contain references to many earlier works. The same
lasso penalty has also been applied to PLS discriminant models so that some
of the PLS loadings are also eliminated (Chung and Keles 2010).

The penalized LDA model of Clemmensen et al. (2011) was applied to the
grant data. The software for this model allows the user to specify the number
of retained predictors as a tuning parameter (instead of the value of the L1

penalty). The model was tuned over this parameter as well as the value of
the L2 penalty. Figure 12.17 shows the results for a single value of the ridge
penalty (there was very little difference in performance across a range of
values for this penalty). There is moderate performance when the number of
predictors is close to the maximum. As the penalty increases and predictors
are eliminated, performance improves and remains relatively constant until
important factors are removed. At this point, performance falls dramatically.
As a result of the tuning process, six predictors were used in the model which
is competitive to other models (an AUC of 0.9).

12.6 Nearest Shrunken Centroids

The nearest-shrunken centroid model (also known as PAM, for predictive
analysis for microarrays) is a linear classification model that is well suited for
high-dimensional problems (Tibshirani et al. 2002, 2003; Guo et al. 2007). For
each class, the centroid of the data is found by taking the average value of
each predictor (per class) in the training set. The overall centroid is computed
using the data from all of the classes.

If a predictor does not contain much information for a particular class, its
centroid for that class is likely to be close to the overall centroid. Consider
the three class data shown in the left panel of Fig. 12.18. This data set is
the famous Fisher/Anderson iris data where four measurements of iris sepals
and petals are used to classify flowers into one of three different iris species:
setosa, versicolor, and virginica. In this plot, the data for the versicolor and
virginica classes overlap but are well separated from the setosa irises. The
centroids for the sepal width dimension are shown as grey symbols above the
x-axis. The virginica centroid (for sepal width) is very close to the overall
centroid, and the versicolor centroid is slightly closer to the overall centroid
than the setosa flowers. This indicates that the sepal width predictor is most
informative for distinguishing the setosa species from the other two. For sepal
length (shown adjacent to the y-axis), the versicolor centroid is very close to
the center of the data and the other two species are on the extremes.
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Fig. 12.18: Left: An example with three classes, their class-specific centroids
(in black), and the overall centroid (×). The grey symbols along the axes are
the centroids projected down into a single dimension. Right: The paths of the
class centroids when shrunken to the center of the distributions

One approach to classifying unknown samples would be to find the closest
class centroid in the full dimensional space and choose that class for prediction
(i.e., a “nearest centroid”model). It turns out that this approach would result
in linear class boundaries.

The approach taken by Tibshirani et al. (2002) is to shrink the class cen-
troids closer to the overall centroid. In doing this, centroids that start off
closer to the overall centroid move to that location before others. For exam-
ple, in the sepal width dimension, the virginica centroid will reach the center
before the other two. For this model, once the class centroid meets the overall
centroid, it no longer influences the classification of samples for that class.
Again, for sepal width, once the virginica centroid reaches the center, the
sepal width can only be used to classify flowers that are versicolor or setosa.
With enough shrinkage, it is possible for all the classes to be shrunken to the
center. In the case that a predictor reaches the centroid, it has no effect on
the model. Consequently, the nearest shrunken centroid model also conducts
feature selection during the model training process.

The nearest shrunken centroid method has one tuning parameter: shrink-
age. The right panel in Fig. 12.18 shows the path of the centroids over dif-
ferent shrinkage values. Note that each predictor moves diagonally towards
the center until one of the class-specific centroids reaches the center. At this
point, the classes move in a single dimension towards the center. Centering
and scaling the predictors is recommended for this model.
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This model works well for problems with a large number of predictors
since it has built-in feature selection that is controlled by the shrinkage tun-
ing parameter. Nearest shrunken centroids were originally developed for RNA
profiling data, where the number of predictors is large (in the many thou-
sands) and the number of samples is small. Most RNA profiling data sets
have less than one or two hundred samples. In this low n, high P scenario,
the data probably cannot support a highly nonlinear model and linear classi-
fication boundaries are a good choice. Also, the prior class probabilities along
with the distances between the class centroids and the overall centroid can be
used to produce class probabilities. Variable importance scores are calculated
using the difference between the class centroids to the overall centroid (larger
absolute values implying higher model importance).

For the grant data, the full set of 1,070 predictors was evaluated. The
model was tuned over 30 values of the shrinkage parameter, ranging from 0
(implying very little shrinkage and feature selection) to 25 (Fig. 12.19). With
large amounts of shrinkage, almost no predictors are retained and the area
under the ROC curve is very poor. When the threshold is lowered to ap-
proximately 17, five predictors have been added: the number of unsuccessful
grants by chief investigators, unknown sponsor, contract value band A, un-
known contract value band, and submission month of January. The addition
of these predictors clear has a large impact on the model fit. At the curve’s
apex (a shrinkage value of 2.59), important variables begin to be removed
and under-fitting commences as the amount of shrinkage is increased. The
sharp peak at a threshold of 8.6 is curious. The increase is associated with
the removal of two predictors: sponsor code 2B and contract value band F.
However, the next shrinkage value removes three additional predictors (con-
tract value band D, contract value band E, and contract value band G) but
this results in a appreciable drop in the area under the ROC curve. This spu-
rious jump in performance is likely due to the fact that only a single holdout
is used to measure performance. The true relationship between performance
and shrinkage is likely to be more smooth than is demonstrated by this fig-
ure. At the best threshold, the area under the ROC curve was 0.87 using 36
predictors. The sensitivity was 83.7% and the specificity was 77% for the
year 2008 holdout data. The ROC curve is also shown in Fig. 12.19.

12.7 Computing

This section discussed the following R packages: AppliedPredictiveModeling,
caret, glmnet, MASS, pamr, pls, pROC, rms, sparseLDA, and subselect.
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Fig. 12.19: Top: The tuning parameter profile for the nearest shrunken cen-
troid model. Bottom: The ROC curve for the model (AUC = 0.873)

The grant application data can be found at the Kaggle web site.13 The R
package AppliedPredictiveModeling contains scripts that can be used to repro-
duce the objects and analyses given here.

13 http://www.kaggle.com/c/unimelb.

http://www.kaggle.com/c/unimelb
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Following the data splitting approach described in the first section, there
are two data frames with grant data: training contains the pre-2008 data
and 2008 holdout set used to tune the model while the data frame testing

has only year 2008 grant data and is not used until a later chapter. A vector
called pre2008 has the row indices of the 6,633 training set grants prior to
2008 (see Table 12.2 for a summary of the data splitting strategy).

Most of the predictors in this set are binary. For example the RFCD
codes, SEO codes, sponsors, and contract value band categories are con-
tained in individual binary values with identifying prefixes, such as RFCD or
ContractValueBand.14 When the value was unknown, a specific dummy vari-
able is created for this situation, such as SponsorUnk. Binary dummy variables
also exist for the submission month and day of the week.

In addition, there exist count and continuous predictors such as the fre-
quencies of each role associated with the grant. For example, NumCI and NumEA

are the number of chief investigators and external advisors on the grant, re-
spectively. The number of persons with unspecified roles is captured in the
predictor numUnk. Similar count predictors are also in the data, such as the
number of people born within a time frame (e.g., CI.1925 for chief investiga-
tors born between 1925 and 1930), the number born in a certain region (e.g.,
HV.Australia), and their degree status (e.g., ECI.PhD). The number of previ-
ously successful and unsuccessful grants are enumerated with the predictors
Unsuccess.PS or Success.CI. The publication information is represented in two
ways. First, the totals for each role, such as B.CI or Astar.CI, are available as
well as the total counts across all the individuals (AstarTotal) or all journal
types (allPub).

The calendar day of the year is stored as a numeric variable.
Finally, the class outcome is contained in a column called Class with levels

successful and unsuccessful.
As was illustrated in the regression sections of this book, different models

have different constraints on the types of data that can be used. As pre-
viously discussed, two general groupings of predictors were created: the set
of predictors that contain the full set of binary dummy variables and count
data and the reduced set that was filtered for near-zero variance predictors
and extremely correlated predictors. For example, the columns AstarTotal,
ATotal, BTotal, and CTotal all add up to the column allPub. In the reduced
set, allPub was removed. Similarly, one dummy variable for month and one
for a day of the week should also be removed from the reduced set. The two
columns with the lowest frequencies, Mar and Sun, were eliminated from the
reduced set.

14 In a later chapter, several models are discussed that can represent the categorical
predictors in different ways. For example, trees can use the dummy variables in splits
but can often create splits based on one or more groupings of categories. In that
chapter, factor versions of these predictors are discussed at length.
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Two character vectors were created for the purpose of specifying either
group: fullSet and reducedSet:

> length(fullSet)

[1] 1070
> head(fullSet)

[1] "NumCI" "NumDR" "NumEA" "NumECI" "NumHV" "NumPS"

> length(reducedSet)

[1] 252
> head(reducedSet)

[1] "NumCI" "NumDR" "NumECI" "NumPS" "NumSR" "NumSCI"

How can extreme collinearity problems (such as linear combinations) be di-
agnosed? The trim.matrix function in subselect takes a square, symmetric
matrix (such as the covariance matrix) and uses an algorithm to eliminate
linear combinations. For example, the reduced set has no such issues:

> reducedCovMat <- cov(training[, reducedSet])

> library(subselect)

> trimmingResults <- trim.matrix(reducedCovMat)

> names(trimmingResults)

[1] "trimmedmat" "numbers.discarded" "names.discarded"
[4] "size"

> ## See if any predictors were eliminated:

> trimmingResults$names.discarded

character(0)

However, when we apply the same function to the full set, several predictors
are identified:

> fullCovMat <- cov(training[, fullSet])

> fullSetResults <- trim.matrix(fullCovMat)

> ## A different choices for the day to exclude was

> ## made by this function

> fullSetResults$names.discarded

[1] "NumDR" "PS.1955" "CI.Dept1798" "PS.Dept3268" "PS.Faculty1"
[6] "DurationUnk" "ATotal" "Nov" "Sun"

Another function in the caret package called findLinearCombos follows a similar
methodology but does not require a square matrix.

When developing models, train is used to tune parameters on the basis
of the ROC curve. To do this, a control function is needed to obtain the
results of interest. The caret function trainControl is used for this purpose.
First, to compute the area under the ROC curve, the class probabilities must
be generated. By default, train only generates class predictions. The option
classProbs can be specified when probabilities are needed. Also by default,
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overall accuracy and the Kappa statistic are used to evaluate the model.
caret contains a built-in function called twoClassSummary that calculates the
area under the ROC curve, the sensitivity, and the specificity. To achieve
these goals, the syntax would be:

> ctrl <- trainControl(summaryFunction = twoClassSummary,

+ classProbs = TRUE)

However, at the start of the chapter, a data splitting scheme was developed
that built the model on the pre-2008 data and then used the 2008 holdout
data (in the training set) to tune the model. To do this, train must know
exactly which samples to use when estimating parameters. The index argu-
ment to trainControl identifies these samples. For any resampling method,
a set of holdout samples can be exactly specified. For example, with 10-fold
cross-validation, the exact samples to be excluded for each of the 10-folds
are identified with this option. In this case, index identifies the rows that
correspond to the pre-2008 data. The exact syntax should package these row
numbers in a list (in case there is more than one holdout). Recall that the
vector pre2008 contains the locations of the grants submitted prior to 2008.
The call to trainControl is:
ctrl <- trainControl(method = "LGOCV",

summaryFunction = twoClassSummary,

classProbs = TRUE,

index = list(TrainSet = pre2008))

Note that, once the tuning parameters have been chosen using year 2008
performance estimates, the final model is fit with all the grants in the training
set, including those from 2008.

Finally, for illustrative purposes, we need to save the predictions of the year
2008 grants based on the pre-2008 model (i.e., before the final model is re-fit
with all of the training data). The savePredictions argument accomplishes
this goal:
ctrl <- trainControl(method = "LGOCV",

summaryFunction = twoClassSummary,

classProbs = TRUE,

index = list(TrainSet = pre2008),

savePredictions = TRUE)

Since many of the models described in this text use random numbers, the
seed for the random number generator is set prior to running each model so
that the computations can be reproduced. A seed value of 476 was randomly
chosen for this chapter.

Logistic Regression

The glm function (for GLMs) in base R is commonly used to fit logistic re-
gression models. The syntax is similar to previous modeling functions that
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work from the formula method. For example, to fit the model shown in the
left panel of Fig. 12.3 for the pre-2008 data:

> levels(training$Class)

[1] "successful" "unsuccessful"
> modelFit <- glm(Class ~ Day,

+ ## Select the rows for the pre-2008 data:

+ data = training[pre2008,],

+ ## 'family' relates to the distribution of the data.

+ ## A value of 'binomial' is used for logistic regression

+ family = binomial)

> modelFit

Call: glm(formula = Class ~ Day, family = binomial, data = training[pre2008,
])

Coefficients:
(Intercept) Day

-0.91934 0.00424

Degrees of Freedom: 6632 Total (i.e. Null); 6631 Residual
Null Deviance: 9190
Residual Deviance: 8920 AIC: 8920

The glm function treats the second factor level as the event of interest. Since
the slope is positive for the day of the year, it indicates an increase in the
rate of unsuccessful grants. To get the probability of a successful grant, we
subtract from one:

> successProb <- 1 - predict(modelFit,

+ ## Predict for several days

+ newdata = data.frame(Day = c(10, 150, 300,

350)),

+ ## glm does not predict the class, but can

+ ## produce the probability of the event

+ type = "response")

> successProb

1 2 3 4
0.70619 0.57043 0.41287 0.36262

To add the nonlinear term for the day of the year, the previous formula is
augmented as follows:

> daySquaredModel <- glm(Class ~ Day + I(Day^2),

+ data = training[pre2008,],

+ family = binomial)

> daySquaredModel

Call: glm(formula = Class ~ Day + I(Day^2), family = binomial,
data = training[pre2008,
])

Coefficients:
(Intercept) Day I(Day^2)
-1.881341 0.018622 -0.000038
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Degrees of Freedom: 6632 Total (i.e. Null); 6630 Residual
Null Deviance: 9190
Residual Deviance: 8720 AIC: 8730

The glm function does not have a non-formula method, so creating models
with a large number of predictors takes a little more work. An alternate
solution is shown below.

Another R function for logistic model is in the package associated with Har-
rell (2001), called rms (for Regression Modeling Strategies). The lrm function
is very similar to glm and includes helper functions. For example, a restricted
cubic spline is a tool for fitting flexible nonlinear functions of a predictor. For
the day of the year:

> library(rms)

> rcsFit <- lrm(Class ~ rcs(Day), data = training[pre2008,])

> rcsFit

Logistic Regression Model

lrm(formula = Class ~ rcs(Day), data = training[pre2008, ])

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 6633 LR chi2 461.53 R2 0.090 C 0.614
successful 3233 d.f. 4 g 0.538 Dxy 0.229
unsuccessful 3400 Pr(> chi2) <0.0001 gr 1.713 gamma 0.242
max |deriv| 2e-06 gp 0.122 tau-a 0.114

Brier 0.234

Coef S.E. Wald Z Pr(>|Z|)
Intercept -1.6833 0.1110 -15.16 <0.0001
Day 0.0124 0.0013 9.24 <0.0001
Day' -0.0072 0.0023 -3.17 0.0015
Day'' 0.0193 0.0367 0.52 0.6001
Day''' -0.0888 0.1026 -0.87 0.3866

The lrm function, like glm, models the probability of the second factor level.
The bottom table in the output shows p-values for the different nonlinear
components of the restricted cubic spline. Since the p-values for the first three
nonlinear components are small, this indicates that a nonlinear relationship
between the class and day should be used. The package contains another
function, Predict, which quickly create a prediction profile across one or more
variables. For example, the code

> dayProfile <- Predict(rcsFit,

+ ## Specify the range of the plot variable

+ Day = 0:365,

+ ## Flip the prediction to get the model for

+ ## successful grants

+ fun = function(x) -x)

> plot(dayProfile, ylab = "Log Odds")
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Fig. 12.20: A restricted cubic spline fit for the day of the year produce gen-
erated by the rms package. The grey bands are confidence limits on the log
odds

produces the image in Fig. 12.20. The fun argument changes the signs of the
prediction so that the plot reflects the probability of a successful grant. From
this plot, it is apparent that a quadratic term for the day of the year would
approximate the trends shown by the spline.

The rms package contains many more relevant functions, including resam-
pling techniques for model validation and model visualization functions. See
Harrell (2001) for details of the methodologies and R code.

For a large set of predictors, the formula method for specifying models can
be cumbersome. As in previous chapters, the train function can efficiently
fit and validate models. For logistic regression, train provides an interface
to the glm function that bypasses a model formula, directly produces class
predictions, and calculates the area under the ROC curve and other metrics.

Prior to fitting the model, we augment the data set and predictor groups
with the squared day variable:

> training$Day2 <- training$Day^2

> fullSet <- c(fullSet, "Day2")

> reducedSet <- c(reducedSet, "Day2")

For the grant data, the code that fits a model with the full predictor set
is:

> library(caret)

> set.seed(476)

> lrFull <- train(training[,fullSet],

+ y = training$Class,

+ method = "glm",

+ metric = "ROC",

+ trControl = ctrl)



316 12 Discriminant Analysis and Other Linear Classification Models

> lrFull

8190 samples
1071 predictors

2 classes: 'successful', 'unsuccessful'

No pre-processing
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results

ROC Sens Spec
0.78 0.77 0.76

Note that the top of this output reflects that 8,190 grants were used, but
the “Summary of sample sizes” lists a value of 6,633 data points. This lat-
ter number reflects the single set of pre-2008 samples (see Table 12.2). The
“Resampling Results”is actually the performance estimate of the 2008 hold-
out set.

To create a model with the smaller predictor set:

> set.seed(476)

> lrReduced <- train(training[,reducedSet],

+ y = training$Class,

+ method = "glm",

+ metric = "ROC",

+ trControl = ctrl)

> lrReduced

8190 samples
253 predictors

2 classes: 'successful', 'unsuccessful'

No pre-processing
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results

ROC Sens Spec
0.87 0.8 0.82

Like the LDA analysis, removal of the near-zero variance predictors has a
positive effect on the model fit. The predictions for the holdout set (of year
2008 grants) is contained in the sub-object pred:
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> head(lrReduced$pred)

pred obs successful unsuccessful rowIndex .parameter
6634 successful successful 0.99878 0.0012238 6634 none
6635 successful successful 0.85151 0.1484924 6635 none
6636 successful successful 0.92019 0.0798068 6636 none
6637 successful successful 0.96694 0.0330572 6637 none
6639 successful successful 0.98928 0.0107160 6638 none
6642 successful successful 0.57563 0.4243729 6639 none

Resample
6634 TrainSet
6635 TrainSet
6636 TrainSet
6637 TrainSet
6639 TrainSet
6642 TrainSet

Note the column in the output labeled .parameter. When train saves predic-
tions, it does so for every tuning parameter. This column in the output is
used to label which model generated the predictions. This version of logistic
regression has no tuning parameters, so .parameter has a single value ("none").

From these data, the confusion matrix can be computed:

> confusionMatrix(data = lrReduced$pred$pred,

+ reference = lrReduced$pred$obs)

Confusion Matrix and Statistics

Reference
Prediction successful unsuccessful
successful 458 176
unsuccessful 112 811

Accuracy : 0.815
95% CI : (0.795, 0.834)

No Information Rate : 0.634
P-Value [Acc > NIR] : < 2e-16

Kappa : 0.611
Mcnemar's Test P-Value : 0.000205

Sensitivity : 0.804
Specificity : 0.822

Pos Pred Value : 0.722
Neg Pred Value : 0.879

Prevalence : 0.366
Detection Rate : 0.294

Detection Prevalence : 0.407

'Positive' Class : successful
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These results match the values shown above for lrReduced. The ROC curve
can also be computed and plotted using the pROC package:

> reducedRoc <- roc(response = lrReduced$pred$obs,

+ predictor = lrReduced$pred$successful,

+ levels = rev(levels(lrReduced$pred$obs)))

> plot(reducedRoc, legacy.axes = TRUE)

> auc(reducedRoc)

Area under the curve: 0.872

Linear Discriminant Analysis

A popular function for creating LDA models is lda in the MASS package. The
input to this function can either be a formula and data frame or a matrix
of predictors and a grouping variable as a factor which contains the class
membership information. We can fit the LDA model as follows:

> library(MASS)

> ## First, center and scale the data

> grantPreProcess <- preProcess(training[pre2008, reducedSet])

> grantPreProcess

Call:
preProcess.default(x = training[pre2008, reducedSet])

Created from 6,633 samples and 253 variables
Pre-processing: centered, scaled

> scaledPre2008 <- predict(grantPreProcess,

+ newdata = training[pre2008, reducedSet])

> scaled2008HoldOut <- predict(grantPreProcess,

+ newdata = training[-pre2008, reducedSet])

> ldaModel <- lda(x = scaledPre2008,

+ grouping = training$Class[pre2008])

Recall that because these data involve two classes, only one discriminant
vector can be obtained. This discriminant vector is contained in the object
ldaModel$scaling; the first six entries of this matrix are:

> head(ldaModel$scaling)

LD1
NumCI 0.1301673
NumDR 0.0017275
NumECI 0.1219478
NumPS 0.0042669
NumSR -0.0642209
NumSCI -0.0655663
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This information provides an interpretation about the predictors, relation-
ships among predictors, and, if the data have been centered and scaled, then
relative importance values. The discriminant vector is involved in the pre-
diction of samples, and the MASS package simplifies this process through the
predict function. For the grant data test set, the predictions are produced
with the syntax:

> ldaHoldOutPredictions <- predict(ldaModel, scaled2008HoldOut)

The predicted class, posterior probability, and linear discriminant value are
all contained in this object, thus enabling the user to create (1) a confusion
matrix of the observed versus predicted values, (2) the distribution of poste-
rior probabilities, and/or (3) the distribution of linear discriminant values.

A direct implication of the two-class setting is that there is no training over
the number of discriminant vectors to retain for prediction. When working
with data that contain more than two classes, the optimal number of linear
discriminant vectors can be determined through the usual validation process.
Through the lda function, the number of linear discriminants to retain for
prediction can be set with the dimen option of the predict function. Conve-
niently, this optimization process is automated with the train function in the
caret package:

> set.seed(476)

> ldaFit1 <- train(x = training[, reducedSet],

+ y = training$Class,

+ method = "lda",

+ preProc = c("center","scale"),

+ metric = "ROC",

+ ## Defined above

+ trControl = ctrl)

> ldaFit1

8190 samples
253 predictors

2 classes: 'successful', 'unsuccessful'

Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results

ROC Sens Spec
0.89 0.8 0.82

No formal tuning occurs because there are only two classes and thus only one
discriminant vector. We can generate predicted classes and probabilities for
the test set in the usual manner:
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> ldaTestClasses <- predict(ldaFit1,

+ newdata = testing[,reducedSet])

> ldaTestProbs <- predict(ldaFit1,

+ newdata = testing[,reducedSet],

+ type = "prob")

When the problem involves more than two classes and we desire to optimize
over the number of discriminant vectors, then the train function can still be
used with method set to "lda2" and tuneLength set to the maximum number
of dimensions that the practitioner desires to evaluate.

Partial Least Squares Discriminant Analysis

PLSDA can be performed using the plsr function within the pls package by
using a categorical matrix which defines the response categories. We refer
the reader to Sect. 6.3 for a description of the algorithmic variations of PLS,
which directly extend to the classification setting.

The caret package contains a function (plsda) that can create the appro-
priate dummy variable PLS model for the data and then post-process the raw
model predictions to return class probabilities. The syntax is very similar to
the regression model code for PLS given in Sect. 6.3. The main difference is
a factor variable is used for the outcome.

For example, to fit the model with the reduced predictor set:

> plsdaModel <- plsda(x = training[pre2008,reducedSet],

+ y = training[pre2008, "Class"],

+ ## The data should be on the same scale for PLS. The

+ ## 'scale' option applies this pre-processing step

+ scale = TRUE,

+ ## Use Bayes method to compute the probabilities

+ probMethod = "Bayes",

+ ## Specify the number of components to model

+ ncomp = 4)

> ## Predict the 2008 hold-out set

> plsPred <- predict(plsdaModel,

+ newdata = training[-pre2008, reducedSet])

> head(plsPred)

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

> plsProbs <- predict(plsdaModel,

+ newdata = training[-pre2008, reducedSet],

+ type = "prob")

> head(plsProbs)

[1] 0.98842 0.88724 0.83455 0.88144 0.94848 0.53991

The plsdaModel object inherits all of the same functions that would have
resulted from the object coming directly from the plsr function. Because of
this, other functions from the pls package can be used, such as loadings or
scoreplot.
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The train function can also be used with PLS in the classification setting.
The following code evaluates the first ten PLS components with respect to
the area under the ROC curve as well as automatically centers and scales the
predictors prior to model fitting and sample prediction:

> set.seed(476)

> plsFit2 <- train(x = training[, reducedSet],

+ y = training$Class,

+ method = "pls",

+ tuneGrid = expand.grid(.ncomp = 1:10),

+ preProc = c("center","scale"),

+ metric = "ROC",

+ trControl = ctrl)

The basic predict call evaluates new samples, and type = "prob" returns
the class probabilities. Computing variable importance as illustrated in
Fig. 12.15 can be done with the following code:

> plsImpGrant <- varImp(plsFit2, scale = FALSE)

> plsImpGrant

pls variable importance

only 20 most important variables shown (out of 253)

Overall
ContractValueBandUnk 0.0662
SponsorUnk 0.0383
Jan 0.0338
Unsuccess.CI 0.0329
ContractValueBandA 0.0316
Day 0.0266
Aug 0.0257
Success.CI 0.0219
GrantCat10A 0.0211
Day2 0.0209
GrantCat30B 0.0202
ContractValueBandE 0.0199
ContractValueBandD 0.0193
ContractValueBandF 0.0188
ContractValueBandG 0.0184
Sponsor24D 0.0172
Sponsor21A 0.0169
Sponsor2B 0.0147
NumSR 0.0144
Jul 0.0124

> plot(plsImpGrant, top = 20, scales = list(y = list(cex = .95)))
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Penalized Models

The primary package for penalized logistic regression is glmnet (although
the next chapter describes how to fit similar models using neural networks).
The glmnet function is very similar to the enet function described previously
in Sect. 6.5. The main arguments correspond to the data: x is a matrix of
predictors and y is a factor of classes (for logistic regression). Additionally,
the family argument is related to the distribution of the outcome. For two
classes, using family="binomial" corresponds to logistic regression, and, when
there are three or more classes, family="multinomial" is appropriate.

The function will automatically select a sequence of values for the amount
of regularization, although the user can select their own values with the lambda
option. Recall that the type of regularization is determined by the mixing
parameter α. glmnet defaults this parameter to alpha = 1, corresponding to a
complete lasso penalty.

The predict function for glmnet predicts different types of values, includ-
ing: the predicted class, which predictors are used in the model, and/or the
regression parameter estimates. For example:

> library(glmnet)

> glmnetModel <- glmnet(x = as.matrix(training[,fullSet]),

+ y = training$Class,

+ family = "binomial")

> ## Compute predictions for three difference levels of regularization.

> ## Note that the results are not factors

> predict(glmnetModel,

+ newx = as.matrix(training[1:5,fullSet]),

+ s = c(0.05, 0.1, 0.2),

+ type = "class")

1 2 3
1 "successful" "successful" "unsuccessful"
2 "successful" "successful" "unsuccessful"
3 "successful" "successful" "unsuccessful"
4 "successful" "successful" "unsuccessful"
5 "successful" "successful" "unsuccessful"

> ## Which predictors were used in the model?

> predict(glmnetModel,

+ newx = as.matrix(training[1:5,fullSet]),

+ s = c(0.05, 0.1, 0.2),

+ type = "nonzero")

$`1`
[1] 71 72 973 1027 1040 1045 1055

$`2`
[1] 1027 1040

$`3`
[1] 1040
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As a side note, the glmnet package has a function named auc. If the pROC
package is loaded prior to loading glmnet, this message will appear: “The
following object(s) are masked from ‘package:pROC’: auc.” If this function is
invoked at this point, R will be unclear on which to use. There are two
different approaches to dealing with this issue:

• If one of the packages is no longer needed, it can be detached using
detach(package:pROC).

• The appropriate function can be called using the namespace convention
when invoking the function. For example, pROC:::auc and glmnet:::auc

would reference the specific functions.

Another potential instance of this issue is described below.
Tuning the model using the area under the ROC curve can be accomplished

with train. For the grant data:

> ## Specify the tuning values:

> glmnGrid <- expand.grid(.alpha = c(0, .1, .2, .4, .6, .8, 1),

+ .lambda = seq(.01, .2, length = 40))

> set.seed(476)

> glmnTuned <- train(training[,fullSet],

+ y = training$Class,

+ method = "glmnet",

+ tuneGrid = glmnGrid,

+ preProc = c("center", "scale"),

+ metric = "ROC",

+ trControl = ctrl)

The heat map in the top panel of Fig. 12.16 was produced using the code
plot(glmnTuned, plotType = "level"). Penalized LDA functions can be found
in the sparseLDA and PenalizedLDA packages. The main function in the
sparseLDA package is called sda.15 This function has an argument for the
ridge parameter called lambda. The lasso penalty can be stated in two pos-
sible ways with the argument stop. The magnitude of the lasso penalty is
controlled using a positive number (e.g., stop = 0.01) or, alternatively, the
number of retained predictors can be chosen using a negative integer (e.g.,
stop = -6 for six predictors). For example:

> library(sparseLDA)

> sparseLdaModel <- sda(x = as.matrix(training[,fullSet]),

+ y = training$Class,

+ lambda = 0.01,

+ stop = -6)

The argument method = "sparseLDA" can be used with train. In this case, train
will tune the model over lambda and the number of retained predictors.

15 Another duplicate naming issue may occur here. A function called sda in the sda
package (for shrinkage discriminant analysis) may cause confusion. If both packages
are loaded, using sparseLDA:::sda and sda:::sda will mitigate the issue.
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Nearest Shrunken Centroids

The original R implementation for this model is found in the pamr package
(for“PredictiveAnalysis ofMicroarrays in R”). Another package, rda, contains
extensions to the model described in Guo et al. (2007).

The syntax of the functions in the pamr package is somewhat nonstandard.
The function to train the model is pamr.train, which takes the input data in
a single list object with components x and y. The usual convention for data
sets is to have samples in rows and different columns for the predictors.
pamr.train requires the training set predictors to be encoded in the opposite
format where rows are predictors and columns are samples.16 For the grant
data, the input data would be in the format shown below:

> ## Switch dimensions using the t() function to transpose the data.

> ## This also implicitly converts the training data frame to a matrix.

> inputData <- list(x = t(training[, fullSet]), y = training$Class)

The basic syntax to create the model is:

> library(pamr)

> nscModel <- pamr.train(data = inputData)

By default, the function chooses 30 appropriate shrinkage values to evalu-
ate. There are options to use specific values for the shrinkage amount, the
prior probabilities and other aspects of the model. The function pamr.predict

generates predictions on new samples as well as determines which specific
predictors were used in the model for a given shrinkage value. For example,
to specify a shrinkage value of 5:

> exampleData <- t(training[1:5, fullSet])

> pamr.predict(nscModel, newx = exampleData, threshold = 5)

[1] successful unsuccessful successful unsuccessful successful
Levels: successful unsuccessful

> ## Which predictors were used at this threshold? The predict

> ## function shows the column numbers for the retained predictors.

> thresh17Vars <- pamr.predict(nscModel, newx = exampleData,

+ threshold = 17, type = "nonzero")

> fullSet[thresh17Vars]

[1] "Unsuccess.CI" "SponsorUnk" "ContractValueBandA"
[4] "ContractValueBandUnk" "Jan"

The package also contains functions for K-fold cross-validation to choose an
appropriate amount of shrinkage but is restricted to a single type of resam-
pling and tunes the model with overall accuracy. The train syntax is:

16 In microarray data, the number of predictors is usually much larger than the
number of samples. Because of this, and the limited number of columns in popular
spreadsheet software, the convention is reversed.
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> ## We chose the specific range of tuning parameters here:

> nscGrid <- data.frame(.threshold = 0:25)

> set.seed(476)

> nscTuned <- train(x = training[,fullSet],

+ y = training$Class,

+ method = "pam",

+ preProc = c("center", "scale"),

+ tuneGrid = nscGrid,

+ metric = "ROC",

+ trControl = ctrl)

This approach provides more options for model tuning (e.g., using the area
under the ROC curve) as well as a consistent syntax. The predict function
for train does not require the user to manually specify the shrinkage amount
(the optimal value determined by the function is automatically used).

The predictors function will list the predictors used in the prediction equa-
tion (at the optimal threshold determined by train). In the tuned model, 36
were selected:

> predictors(nscTuned)

[1] "NumSR" "Success.CI" "Unsuccess.CI"
[4] "CI.Faculty13" "CI.Faculty25" "CI.Faculty58"
[7] "DurationGT15" "Astar.CI" "AstarTotal"
[10] "allPub" "Sponsor21A" "Sponsor24D"
[13] "Sponsor2B" "Sponsor34B" "Sponsor4D"
[16] "Sponsor62B" "Sponsor6B" "Sponsor89A"
[19] "SponsorUnk" "ContractValueBandA" "ContractValueBandC"
[22] "ContractValueBandD" "ContractValueBandE" "ContractValueBandF"
[25] "ContractValueBandG" "ContractValueBandUnk" "GrantCat10A"
[28] "GrantCat30B" "Aug" "Dec"
[31] "Jan" "Jul" "Fri"
[34] "Sun" "Day" "Day2"

Also, the function varImp will return the variable importance based on the
distance between the class centroid and the overall centroid:

> varImp(nscTuned, scale = FALSE)

pam variable importance

only 20 most important variables shown (out of 1071)

Importance
ContractValueBandUnk -0.2260
SponsorUnk 0.1061
Jan 0.0979
ContractValueBandA 0.0948
Unsuccess.CI -0.0787
Day -0.0691
Aug -0.0669
Sun 0.0660
GrantCat10A -0.0501
Success.CI 0.0413
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Day2 -0.0397
ContractValueBandE 0.0380
GrantCat30B -0.0379
ContractValueBandD 0.0344
Sponsor21A 0.0340
ContractValueBandF 0.0333
ContractValueBandG 0.0329
Sponsor24D -0.0299
Sponsor2B -0.0233
NumSR 0.0224

In these data, the sign of the difference indicates the direction of the impact
of the predictor. For example, when the contractor band is unknown, only a
small percentage of grants are successful (19.4% versus the baseline success
rate of 46.4%). The negative sign for this predictor indicates a drop in the
event rate. Conversely, when the sponsor is unknown, the success rate is high
(82.2%; see Table 12.1). The distance for this predictor is positive, indicating
an increase in the event rate.

Exercises

12.1. The hepatic injury data set was described in the introductory chapter
and contains 281 unique compounds, each of which has been classified as
causing no liver damage, mild damage, or severe damage (Fig. 1.2). These
compounds were analyzed with 184 biological screens (i.e., experiments) to
assess each compound’s effect on a particular biologically relevant target in
the body. The larger the value of each of these predictors, the higher the
activity of the compound. In addition to biological screens, 192 chemical
fingerprint predictors were determined for these compounds. Each of these
predictors represent a substructure (i.e., an atom or combination of atoms
within the compound) and are either counts of the number of substructures
or an indicator of presence or absence of the particular substructure. The
objective of this data set is to build a predictive model for hepatic injury so
that other compounds can be screened for the likelihood of causing hepatic
injury. Start R and use these commands to load the data:

> library(caret)

> data(hepatic)

> # use ?hepatic to see more details

The matrices bio and chem contain the biological assay and chemical fin-
gerprint predictors for the 281 compounds, while the vector injury contains
the liver damage classification for each compound.

(a) Given the classification imbalance in hepatic injury status, describe how
you would create a training and testing set.
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(b) Which classification statistic would you choose to optimize for this exer-
cise and why?

(c) Split the data into a training and a testing set, pre-process the data,
and build models described in this chapter for the biological predictors
and separately for the chemical fingerprint predictors. Which model has
the best predictive ability for the biological predictors and what is the
optimal performance? Which model has the best predictive ability for
the chemical predictors and what is the optimal performance? Based on
these results, which set of predictors contains the most information about
hepatic toxicity?

(d) For the optimal models for both the biological and chemical predictors,
what are the top five important predictors?

(e) Now combine the biological and chemical fingerprint predictors into one
predictor set. Retrain the same set of predictive models you built from
part (c). Which model yields best predictive performance? Is the model
performance better than either of the best models from part (c)? What
are the top five important predictors for the optimal model? How do these
compare with the optimal predictors from each individual predictor set?

(f) Which model (either model of individual biology or chemical fingerprints
or the combined predictor model), if any, would you recommend using to
predict compounds’ hepatic toxicity? Explain.

12.2. In Exercise 4.4, we described a data set which contained 96 oil sam-
ples each from one of seven types of oils (pumpkin, sunflower, peanut, olive,
soybean, rapeseed, and corn). Gas chromatography was performed on each
sample and the percentage of each type of 7 fatty acids was determined. We
would like to use these data to build a model that predicts the type of oil
based on a sample’s fatty acid percentages.

(a) Like the hepatic injury data, these data suffer from extreme imbalance.
Given this imbalance, should the data be split into training and test sets?

(b) Which classification statistic would you choose to optimize for this exer-
cise and why?

(c) Of the models presented in this chapter, which performs best on these
data? Which oil type does the model most accurately predict? Least
accurately predict?

12.3. The web site17 for the MLC++ software package contains a number of
machine learning data sets. The “churn” data set was developed to predict
telecom customer churn based on information about their account. The data
files state that the data are “artificial based on claims similar to real world.”

The data consist of 19 predictors related to the customer account, such
as the number of customer service calls, the area code, and the number of
minutes. The outcome is whether the customer churned.

17 http://www.sgi.com/tech/mlc.

http://www.sgi.com/tech/mlc
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The data are contained in the C50 package and can be loaded using:

> library(C50)

> data(churn)

> ## Two objects are loaded: churnTrain and churnTest

> str(churnTrain)

> table(churnTrain$Class)

(a) Explore the data by visualizing the relationship between the predictors
and the outcome. Are there important features of the predictor data
themselves, such as between-predictor correlations or degenerate distri-
butions? Can functions of more than one predictor be used to model the
data more effectively?

(b) Fit some basic models to the training set and tune them via resampling.
What criteria should be used to evaluate the effectiveness of the models?

(c) Use lift charts to compare models. If you wanted to identify 80% of the
churning customers, how many other customers would also be identified?



Chapter 13

Nonlinear Classification Models

The previous chapter described models that were intrinsically linear—the
structure of the model would produce linear class boundaries unless nonlinear
functions of the predictors were manually specified. This chapter deals with
some intrinsically nonlinear models. As in the regression sections, there are
other nonlinear models that use trees or rules for modeling the data. These
are discussed in the next chapter.

With a few exceptions (such as FDA models, Sect. 13.3), the techniques
described in this chapter can be adversely affected when a large number
of non-informative predictors are used as inputs. As such, combining these
models with feature selection tools (described in Chap. 19) can significantly
increase performance. The analyses shown in this chapter are conducted with-
out supervised removal of non-informative predictors, so performance is likely
to be less than what could be achieved with a more comprehensive approach.

13.1 Nonlinear Discriminant Analysis

We saw in the previous chapter that the linear boundaries of linear discrim-
inant analysis came about by making some very specific assumptions for the
underlying distributions of the predictors. In this section, we will explore
ways that linear discriminant methods as described in the previous chapter
are modified in order to handle data that are best separated by nonlinear
structures. These methods include quadratic discriminant analysis (QDA),
regularized discriminant analysis (RDA), and mixture discriminant analysis
(MDA).

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 13,
© Springer Science+Business Media New York 2013
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Quadratic and Regularized Discriminant Analysis

Recall that linear discriminant analysis could be formulated such that the
trained model minimized the total probability of misclassification. The con-
sequence of the assumption that the predictors in each class shared a common
covariance structure was that the class boundaries were linear functions of
the predictors.

In quadratic discriminant models, this assumption is relaxed so that a
class-specific covariance structure can be accommodated. The primary reper-
cussion of this change is that the decision boundaries now become quadrati-
cally curvilinear in the predictor space. The increased discriminant function
complexity may improve model performance for many problems. However,
another repercussion of this generalization is that the data requirements be-
come more stringent. Since class-specific covariance matrices are utilized, the
inverse of the matrices must exist. This means that the number of predictors
must be less than the number of cases within each class. Also, the predictors
within each class must not have pathological levels of collinearity. Addition-
ally, if the majority of the predictors in the data are indicators for discrete
categories, QDA will only to able to model these as linear functions, thus
limiting the effectiveness of the model.

In pure mathematical optimization terms, LDA and QDA each minimize
the total probability of misclassification assuming that the data can truly
be separated by hyperplanes or quadratic surfaces. Reality may be, however,
that the data are best separated by structures somewhere between linear and
quadratic class boundaries. RDA, proposed by Friedman (1989), is one way
to bridge the separating surfaces between LDA and QDA. In this approach,
Friedman advocated the following covariance matrix:

˜Σ� (λ) = λΣ� + (1− λ)Σ, (13.1)

where Σ� is the covariance matrix of the �th class and Σ is the pooled covari-
ance matrix across all classes. It is easy to see that the tuning parameter, λ,
enables the method to flex the covariance matrix between LDA (when λ = 0)
and QDA (when λ = 1). If a model is tuned over λ, a data-driven approach
can be used to choose between linear or quadratic boundaries as well as
boundaries that fall between the two.

RDA makes another generalization of the data: the pooled covariance
matrix can be allowed to morph from its observed value to one where the
predictors are assumed to be independent (as represented by an identity
matrix):

Σ (γ) = γΣ+ (1− γ)σ2I, (13.2)

where σ2 is the common variance of all predictors and I is the identity matrix
(i.e., the diagonal entries of the matrix are 1 and all other entries are 0),
which forces the model to assume that all of the predictors are independent.
Recall the familiar two-class example with two predictors, last seen in Chap. 4
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(p. 69). There is a high correlation between these predictors indicating that γ
values near 1 are most likely to be appropriate. However, in higher dimensions,
it becomes increasingly more difficult to visually recognize such patterns, so
tuning an RDA model over λ and γ enables the training set data to decide
the most appropriate assumptions for the model. Note, however, that unless
γ is one or λ is zero, the more stringent data standards of QDA must be
applied.

Mixture Discriminant Analysis

MDA was developed by Hastie and Tibshirani (1996) as an extension of
LDA. LDA assumes a distribution of the predictor data such that the class-
specific means are different (but the covariance structure is independent of the
classes). MDA generalizes LDA in a different manner; it allows each class to be
represented bymultiplemultivariate normal distributions. These distributions
can have different means but, like LDA, the covariance structures are assumed
to be the same. Figure 13.1 presents this idea with a single predictor. Here,
each class is represented by three normal distributions with different means
and common variances. These are effectively sub-classes of the data. The
modeler would specify how many different distributions should be used and
the MDA model would determine their optimal locations in the predictor
space.

How are the distributions aggregated so that a class prediction can be cal-
culated? In the context of Bayes’ Rule (Eq. 12.4), MDA modifies Pr[X |Y =
C�]. The class-specific distributions are combined into a single multivariate
normal distribution by creating a per-class mixture. Suppose D�k(x) is the
discriminant function for the kth subclass in the �th class, the overall dis-
criminant function for the �th class would be proportional to

D�(x) ∝
L�
∑

k=1

φ�kD�k(x),

where L� is the number of distributions being used for the �th class and the
φ�k are the mixing proportions that are estimated during training. This over-
all discriminant function can then produce class probabilities and predictions.

For this model, the number of distributions per class is the tuning
parameter for the model (they need not be equal per class). Hastie and
Tibshirani (1996) describe algorithms for determining starting values for
the class-specific means required for each distribution, along with numerical
optimization routines to solve the nontrivial equations. Also, similar to LDA,
Clemmensen et al. (2011) describe using ridge- and lasso-like penalties to
MDA, which would integrate feature selection into the MDA model.
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Fig. 13.1: For a single predictor, three distinct subclasses are determined
within each class using mixture discriminant analysis
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Fig. 13.2: The tuning parameter profile for the MDA model for the grants
data. The optimal number of subclasses is 1, which is identical to performing
LDA

For the grant data, MDA was tuned over the number of subclasses per
group with possible values ranging from 1 to 8 (Fig. 13.2). The areas under
the ROC curve was optimized using one subclass per group, which is the same
as performing LDA. MDA may be adverse to more complex discriminant
boundaries in these data due to the large number of binary predictors.
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13.2 Neural Networks

As we have seen with other classification methods, such as partial least
squares discriminant analysis, the C classes can be encoded into C binary
columns of dummy variables and then used as the outcomes for the model.
Although the previous discussion on neural networks for regression used a
single response, the model can easily handle multiple outputs for both regres-
sion and classification. For neural network classification, this is the approach
discussed here.

Figure 13.3 shows a diagram of the model architecture for classification.
Instead of a single output (as in Fig. 7.1 for regression), the bottom layer has
multiple nodes for each class. Note that, unlike neural networks for regression,
an additional nonlinear transformation is used on the combination of hidden
units. Each class is predicted by a linear combination of the hidden units that
have been transformed to be between zero and one (usually by a sigmoidal
function). However, even though the predictions are between zero and one
(due the extra sigmoidal function), they aren’t “probability-like” since they
do not add up to one. The softmax transformation described in Sect. 11.1 is
used here to ensure that the outputs of the neural network comply with this
extra constraint:

f∗
i�(x) =

efi�(x)
∑

l e
fil(x)

,

where fi�(x) is the model prediction of the �th class and the ith sample.
What should the neural network optimize to find appropriate parameter

estimates? For regression, the sum of the squared errors was the focus and,
for this case, it would be altered to handle multiple outputs by accumulating
the errors across samples and the classes:

C
∑

�=1

n
∑

i=1

(yii − f∗
i�(x))

2 ,

where yi� is the 0/1 indicator for class �. For classification, this can be ef-
fective method for determining parameter values. The class with the largest
predicted value would be used to classify the sample.

Alternatively, parameter estimates can be found that can maximize the
likelihood of the Bernoulli distribution, which corresponds to a binomial like-
lihood function (Eq. 12.1) with a sample size of n = 1:

C
∑

�=1

n
∑

i=1

yii ln f
∗
i�(x). (13.3)

This function also goes by then names entropy or cross-entropy, which is used
in some of the tree-based models discussed in the next chapter (Sect. 14). The
likelihood has more theoretical validity than the squared error approach,
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Fig. 13.3: A diagram of a neural network for classification with a single hidden
layer. The hidden units are linear combinations of the predictors that have
been transformed by a sigmoidal function. The output is also modeled by a
sigmoidal function

although studies have shown that differences in performance tend to be neg-
ligible (Kline and Berardi 2005). However, Bishop (1995) suggests that the
entropy function should more accurately estimate small probabilities than
those generated by the squared-error function.
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Fig. 13.4: Classification boundaries for neural networks with varying levels
of smoothing and regularization. As weight decay and number of models
increase, the boundaries become smoother

Like their regression counterparts, neural networks for classification have
a significant potential for over-fitting. When optimizing the sums of squares
error or entropy, weight decay attenuates the size of the parameter estimates.
This can lead to much smoother classification boundaries. Also, as previously
discussed, model averaging helps reduce over-fitting. In this case, the class
probability estimates (f∗

i�(x)) would be averaged across networks and these
average values would be used to classify samples.

Figure 13.4 shows examples of models fit with different amounts of weight
decay and model averaging. Each model was initiated with the same random
seed, used three hidden units, and was optimized for the sums of squared
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errors. The first row of models without weight decay shows significant over-
fitting, and, in these cases, model averaging has a marginal impact. The small
amount of decay shown in the second row shows an improvement (as does the
model averaging) but is still over-adapting to the training data when a single
network is used. The highest amount of weight decay showed the best results
with virtually no impact of model averaging. For these data, a single model
with weight decay is probably the best choice since it is computationally least
expensive.

Many other aspects of neural network classification models mirror their
regression counterparts. Increasing the number of predictors or hidden units
will still give rise to a large number of parameters in the model and the
same numerical routines, such as back-propagation, can be used to estimate
these parameters. Collinearity and non-informative predictors will have a
comparable impact on model performance.

Several types of neural networks were fit to the grant data. First, single
network models (i.e., no model averaging) were fit using entropy to estimate
the model coefficients. The models were tuned over the number of units in
the hidden layer (ranging from 1 to 10), as well as the amount of weight decay
(λ = 0, 0.1, 1, 2). The best model used eight hidden units with λ = 2 and
had an area under the ROC curve of 0.884. The tuning parameter profiles
show a significant amount of variation, with no clear trend across the tuning
parameters.

To counter this variation, the same tuning process was repeated, but 10
networks were fit to the data and their results averaged. Here, the best model
had six hidden units with λ = 2 and had an area under the ROC curve of
0.884.

To increase the effectiveness of the model, various transformations of the
data were evaluated. One in particular, the spatial sign transformation, had
a significant positive impact on the performance of the neural networks for
these data. When combined with a single network model, the area under the
curve was 0.903. When model averaging was used, the area under the ROC
curve was 0.911.

Figure 13.5 visualizes the tuning parameter profiles across the various
models. When no data transformations are used, model averaging increases
the performance of the models across all of the tuning parameters. It also
has the effect of smoothing out differences between the models; the profile
curves are much closer together. When the spatial sign transformation is used
with the single network model, it shows an improvement over the model with-
out the transformation. However, performance appears to be optimized when
using both model averaging and the spatial sign.
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Fig. 13.5: Top: The models for grant success were tuned under four different
conditions: with and without a transformation on the predictors and with and
without model averaging. Bottom: The ROC curve for the 2008 holdout set
when a model averaged network is used with the spatial sign transformation
(area under the curve: 0.911)
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1 Create a new response matrix of binary dummy variable columns for
each of the C classes

2 Create a multivariate regression model using any method that
generates slopes and intercepts for predictors or functions of the
predictors (e.g. linear regression, MARS, etc)

3 Post-process the model parameters using the optimal scoring
technique

4 Use the adjusted regression coefficients as discriminant values

Algorithm 13.1: The flexible discriminant analysis algorithm for
generalizing LDA model (Hastie et al. 1994)

13.3 Flexible Discriminant Analysis

In the last chapter, the motivation for classical linear discriminant analysis
was based on minimizing the total probability of misclassification. It turns
out that the same model can be derived in a completely different manner.
Hastie et al. (1994) describe a process where, for C classes, a set of C linear
regression models can be fit to binary class indicators and show that the
regression coefficients from these models can be post-processed to derive the
discriminant coefficients (see Algorithm 13.1). This allows the idea of linear
discriminant analysis to be extended in a number of ways. First, many of the
models in Chaps. 6 and 7, such as the lasso, ridge regression, or MARS, can be
extended to create discriminant variables. For example, MARS can be used
to create a set of hinge functions that result in discriminant functions that are
nonlinear combinations of the original predictors. As another example, the
lasso can create discriminant functions with feature selection. This conceptual
framework is referred to as flexible discriminant analysis (FDA).

We can illustrate the nonlinear nature of the flexible discriminant algo-
rithm using MARS with the example data in Fig. 4.1 (p. 63). Recall that
MARS has two tuning parameters: the number of retained terms and the de-
gree of predictors involved in the hinge functions. If we use an additive model
(i.e., a first-degree model), constrain the maximum number of retained terms
to 2 and have a binary response of class membership, then discriminant func-
tion is

D(A,B) = 0.911− 19.1× h(0.2295−B)

In this equation, h(·) is the hinge function described in Eq. 7.1 on p. 146. If
the discriminant function is greater than zero, the sample would be predicted
to be the first class. In this model, the prediction equation only used the
one variable, and the left-hand panel in Fig. 13.6 shows the resulting class
boundaries. The class boundary is a horizontal line since predictor B is the
only predictor in the split.



13.3 Flexible Discriminant Analysis 339

Predictor A

P
re

di
ct

or
 B

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.911
− 19.1 * h(0.2295−B)

2 MARS Terms

0.2 0.4 0.6 0.8

−0.242
+ 11.6 * h(A−0.1322)
− 13.9 * h(A−0.2621)
− 12.1 * h(0.2295−B)

4 MARS Terms

Class 1 Class 2

Fig. 13.6: Classification boundaries for two FDA models of different complex-
ities

The effectiveness of FDA is not apparent when MARS is so severely re-
stricted. If the maximum number of retained terms is relaxed to 4, then the
discriminant equation is estimated to be

D(A,B) =− 0.242

+ 11.6× h(A− 0.1322)

− 13.9× h(A− 0.2621)

− 12.1× h(0.2295−B).

This FDA model uses both predictors and its class boundary is shown in
the right-hand panel of Fig. 13.6. Recall that the MARS hinge function h
sets one side of the breakpoint to zero. Because of this, the hinge functions
isolate certain regions of the data. For example, if A < 0.1322 and B >
0.2295, none of the hinge functions affect the prediction and the negative
intercept in the model indicates that all points in this region correspond to
the second class. However, if A > 0.2621 and B < 0.2295, the prediction
is a function of all three hinge functions. Essentially, the MARS features
isolate multidimensional polytopal regions of the predictor space and predict
a common class within these regions.

An FDA model was tuned and trained for the grant application model.
First-degree MARS hinge functions were evaluated where the number of re-
tained terms ranged from 2 to 25. Performance increases as the number of
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Fig. 13.7: Top: The parameter tuning profile for the FDA model. Bottom:
The FDA ROC curve (area under the curve: 0.924) is shown in relation to
the curve for the previous neural network model (in grey)

terms increases and plateaus around 15 terms (see Fig. 13.7). The numeri-
cally optimal value was 19 although there is clearly some flexibility in this
parameter. For this model, the area under the ROC curve for the 2008 data
was estimated to be 0.924, with a sensitivity of 82.5% and a specificity of
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86.4%. Although the FDA model contained 19 terms, 14 unique predictors
were used (of a possible 1,070). Also, nine of the model terms were simple
linear functions of binary categorical predictors. The discriminant equation
for the model is

D(x) = 0.85

− 0.53 × h(1− number of chief investigators)

+ 0.11 × h(number of successful grants by chief investigators− 1)

− 1.1× h(1 − number of successful grants by chief investigators)

− 0.23 × h(number of unsuccessful grants by chief investigators− 1)

+ 1.4× h(1 − number of unsuccessful grants by chief investigators)

+ 0.18 × h(number of unsuccessful grants by chief investigators− 4)

− 0.035 × h(8 − number of A journal papers by all investigators)

− 0.79 × sponsor code 24D

− 1× sponsor code 59C

− 0.98 × sponsor code 62B

− 1.4× sponsor code 6B

+ 1.2× unknown sponsor

− 0.34 × contract value band B

− 1.5× unknown contract value band

− 0.34 × grant category code 30B

+ 0.3× submission day of Saturday

+ 0.022 × h(54 − numeric day of the year)

+ 0.076 × h(numeric day of the year− 338).

From this equation, the exact effect of the predictors on the model can be
elucidated. For example, as the number of chief investigators increases from
zero to one, the probability of a successful grant increases. Having more than
one chief investigator does not affect the model since the opposite hinge func-
tion was eliminated. Also, the probability of success increases with the num-
ber of successful grants by chief investigators and decreases with the number
of unsuccessful grants by chief investigators; this is a similar result to what
was found with previous models. For the day of the year, the probability of
a successful grant decreases as the year proceeds and has no affect on the
model until late in the year when the probability of success increases.

The discriminant function shown above can be additionally transformed to
produce class probability estimates. Visually, the probability trends for the
continuous predictors are shown in Fig. 13.8. Recall that since an additive
model was used, the probability profile for each variable can be considered
independently of the others. Here, the terms for the number of chief inves-
tigators and the number of publications in A-level journals only affect the
prediction up to a point. This is the result of the pruning algorithm elimi-
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nating one of each predictor’s reflective pairs. The profile for the day of the
year has two terms that remain from two different reflected pairs. As a re-
sult, this predictor only affects the model in the early and late periods of the
year. In the last chapter, there was good evidence that this predictor had a
nonlinear relationship with the outcome that was approximated by adding
a quadratic function of the predictor. Here, FDA also tries to approximate
the same relationship. One predictor, the number of unsuccessful grants by
chief investigators, has multiple terms in the model, which is reflected in the
smoother probability profile. Of the binary terms, the predictors for contract
value band B, unknown contract value band, grant category code 30B, spon-
sor code 24D, sponsor code 59C, sponsor code 62B, and sponsor code 6B had
a positive effect on the probability of success while the terms for submission
day of Saturday and unknown sponsor were associated with a decrease in the
success rate.

Bagging the model coerces FDA to produce smoother relationships
between the predictors and the outcome. MARS models are moderately un-
stable predictors since they use exhaustive searches of the data and the splits
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are based on specific data points in the training set.1 Bagging the FDA model
will have the effect of adding more splits for the important predictors, leading
to a better approximation. However, our experience is that bagging MARS
or FDA models has a marginal impact on model performance and increased
number of terms diminishes the interpretation of the discriminant equation
(similar to the trend shown in Fig. 8.16).

Since many of the predictors in the FDA model are on different scales, it
is difficult to use the discriminant function to uncover which variables have
the most impact on the outcome. The same method of measuring variable
importance described in Sect. 7.2 can be employed here. The five most im-
portant predictors are, in order: unknown contract value band, the number
of unsuccessful grants by chief investigators, the number of successful grants
by chief investigators, unknown sponsor, and numeric day of the year.

As an alternative to using MARS within the FDA framework, Milborrow
(2012) describes a two-phase approach with logistic regression when there
are two classes. Here, an initial MARS model is created to predict the binary
dummy response variable (i.e., the first two steps in Algorithm 13.1). After
this, a logistic regression model is created with the MARS features produced
by the original dummy variable model. Our preliminary experiences with this
approach are that it yields results very similar to the FDA model.

13.4 Support Vector Machines

Support vector machines are a class of statistical models first developed in
the mid-1960s by Vladimir Vapnik. In later years, the model has evolved
considerably into one of the most flexible and effective machine learning
tools available, and Vapnik (2010) provides a comprehensive treatment. The
regression version of these models was previously discussed in Sect. 7.3, which
was an extension of the model from its original development in the classifica-
tion setting. Here we touch on similar concepts from SVM for regression and
layout the case for classification.

Consider the enviable problem shown in the left panel of Fig. 13.9 where
two variables are used to predict two classes of samples that are completely
separable. As shown on the left, there are a multitude (in fact an infinite)
number of linear boundaries that perfectly classify these data. Given this,
how would we choose an appropriate class boundary? Many performance
measures, such as accuracy, are insufficient since all the curves would be
deemed equivalent. What would a more appropriate metric be for judging
the efficacy of a model?

Vapnik defined an alternate metric called the margin. Loosely speaking,
the margin is the distance between the classification boundary and the closest

1 However, MARS and FDA models tend to be more stable than tree-based models
since they use linear regression to estimate the model parameters.
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Fig. 13.9: Left: A data set with completely separable classes. An infinite
number of linear class boundaries would produce zero errors. Right: The class
boundary associated with the linear maximum margin classifier. The solid
black points indicate the support vectors

training set point. For example, the right-hand panel of Fig. 13.9 shows one
possible classification boundary as a solid line. The dashed lines on both sides
of the boundary are at the maximum distance from the line to the closest
training set data (equidistant from the boundary line). In this example the
three data points are equally closest to the classification boundary and are
highlighted with solid black symbols. The margin defined by these data points
can be quantified and used to evaluate possible models. In SVM terminology,
the slope and intercept of the boundary that maximize the buffer between
the boundary and the data is known as the maximum margin classifier.

Let’s explore a few of the mathematical constructs of SVM in the context
of a simple example in order to better understand the inner workings of the
method. Suppose we have a two-class problem and we code the class #1
samples with a value of 1 and the class #2 samples with −1. Also, let the
vectors xi contain the predictor data for a training set sample. The maximum
margin classifier creates a decision valueD(x) that classifies samples such that
if D(x) > 0 we would predict a sample to be class #1, otherwise class #2.
For an unknown sample u, the decision equation can be written in a similar
form as a linear discriminant function that is parameterized in terms of an
intercept and slopes as

D(u) = β0 + β′u

= β0 +

P
∑

j=1

βjuj .
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Notice that this equation works from the viewpoint of the predictors. This
equation can be transformed so that the maximum margin classifier can be
written in terms of each data point in the sample. This changes the equa-
tion to

D(u) = β0 +

P
∑

j=1

βjuj

= β0 +
n
∑

i=1

yiαix
′
iu (13.4)

with αi ≥ 0 (similar to Eq. 7.2). It turns out that, in the completely separable
case, the α parameters are exactly zero for all samples that are not on the
margin. Conversely, the set of nonzero α values are the points that fall on
the boundary of the margin (i.e., the solid black points in Fig. 13.9). Because
of this, the predictor equation is a function of only a subset of the training
set points and these are referred to as the support vectors. Interestingly, the
prediction function is only a function of the training set samples that are
closest to the boundary and are predicted with the least amount of certainty.2

Since the prediction equation is supported solely by these data points, the
maximum margin classifier is the usually called the support vector machine.

On first examination, Eq. 13.4 may appear somewhat arcane. However, it
can shed some light on how support vector machines classify new samples.
Consider Fig. 13.10 where a new sample, shown as a solid grey circle, is pre-
dicted by the model. The distances between each of the support vectors and
the new sample are as grey dotted lines.

For these data, there are three support vectors, and therefore contain
the only information necessary for classifying the new sample. The meat of
Eq. 13.4 is the summation of the product of: the sign of the class, the model
parameter, and the dot product between the new sample and the support
vector predictor values. The following table shows the components of this
sum, broken down for each of the three support vectors:

True Dot
class product yi αi Product

SV 1 Class 2 −2.4 −1 1.00 2.40
SV 2 Class 1 5.1 1 0.34 1.72
SV 3 Class 1 1.2 1 0.66 0.79

The dot product, x′
iu, can be written as a product of the distance of xi from

the origin, the distance of u from the origin, and the cosine of the angle
between xi and u (Dillon and Goldstein 1984).

2 Recall a similar situation with support vector regression models where the prediction
function was determined by the samples with the largest residuals.
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Fig. 13.10: Prediction of a new sample using a support vector machine. The
final value of the decision equation is D(u) = 0.583. The grey lines indicate
the distance of the new sample to the support vectors

Based on the parameter estimates αi, the first support vector has the
largest single effect on the prediction equation (all other things being equal)
and it has a negative slope. For our new sample, the dot product is negative,
so the total contribution of this point is positive and pushes the prediction
towards the first class (i.e., a positive value of the decision function D(u)).
The remaining two support vectors have positive dot products and an over-
all product that increases the decision function value for this sample. For
this model, the intercept is −4.372; D(u) for the new sample is therefore
0.583. Since this value is greater than zero, the new sample has the highest
association with the first class.

What happens when the classes are not completely separable? Cortes and
Vapnik (1995) develop extensions to the early maximum margin classifier to
accommodate this situation. Their formulation puts a cost on the sum of the
training set points that are on the boundary or on the wrong side of the
boundary. When determining the estimates of the α values, the margin is
penalized when data points are on the wrong side of the class boundary or
inside the margin. The cost value would be a tuning parameter for the model
and is the primary mechanism to control the complexity of the boundary.
For example, as the cost of errors increases, the classification boundary will
shift and contort itself so that it correctly classifies as many of the training
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set points as possible. Figure 4.2 in Chap. 4 demonstrated this; the panel on
the right-hand side of this figure used an inappropriately high cost value,
resulting in severe over-fitting.

Echoing the comments in Sect. 7.3, most of the regularization models dis-
cussed in this book add penalties to the coefficients, to prevent over-fitting.
Large penalties, similar to costs, impose limits on the model complexity. For
support vector machines, cost values are used to penalize number of errors;
as a consequence, larger cost values induce higher model complexity rather
than restrain it.

Thus far, we have considered linear classification boundaries for these mod-
els. In Eq. 13.4, note the dot product x′

iu. Since the predictors enter into this
equation in a linear manner, the decision boundary is correspondingly linear.
Boser et al. (1992) extended the linear nature of the model to nonlinear clas-
sification boundaries by substituting the kernel function instead of the simple
linear cross product:

D(u) = β0 +

n
∑

i=1

yiαix
′
iu

= β0 +
n
∑

i=1

yiαiK(xi,u),

where K(·, ·) is a kernel function of the two vectors. For the linear case, the
kernel function is the same inner product x′

iu. However, just as in regression
SVMs, other nonlinear transformations can be applied, including:

polynomial = (scale (x′u) + 1)
degree

radial basis function = exp(−σ‖x− u‖2)
hyperbolic tangent = tanh (scale (x′u) + 1) .

Note that, due to the dot product, the predictor data should be centered and
scaled prior to fitting so that attributes whose values are large in magnitude
do not dominate the calculations.

The kernel trick allows the SVM model produce extremely flexible decision
boundaries. The choice of the kernel function parameters and the cost value
control the complexity and should be tuned appropriately so that the model
does not over-fit the training data. Figure 13.11 shows examples of the classi-
fication boundaries produced by several models using different combinations
of the cost and tuning parameter values. When the cost value is low, the
models clearly underfit the data. Conversely, when the cost is relatively high
(say a value of 16), the model can over-fit the data, especially if the kernel
parameter has a large value. Using resampling to find appropriate estimates
of these parameters tends to find a reasonable balance between under- and
over-fitting. Section 4.6 used the radial basis function support vector machine
as an example for model tuning.
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Fig. 13.11: Classification boundaries for nine radial basis function support
vector machine models varied over the cost parameter and the kernel param-
eter (σ)

Support vector machines fall into a more general category of kernel
methods and this has been an extremely active area of research for some
time. Here, we have discussed extensions to the original model to allow
for misclassified samples and nonlinear class boundaries. Still more exten-
sions have been developed for support vector machines, such as handling
more than two classes (Hsu and Lin 2002; Duan and Keerthi 2005). Also,
the original motivation of the model is to create a hard decision bound-
ary for the purpose of classifying samples, as opposed to estimating class
probabilities. However, Platt (2000) describes methods of post-processing
the output of the SVM model to estimate class probabilities. Alternate
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versions of the support vector machine model also exist, such as least squares
support vector machines (Suykens and Vandewalle 1999), relevance vector
machines (Tipping 2001), and import vector machines (Zhu and Hastie 2005).

Specialized kernels have also been developed. For example, the QSAR ap-
plication discussed in Sect. 6.1 and used throughout the regression chapters
used chemical descriptors as predictors. Figure 6.1 shows the chemical formula
of aspirin. Rather than deriving descriptors from a molecular formula, the for-
mula can be converted to a graph (or network) representation. A specialized
class of kernel functions, called graph kernels, can directly relate the content
of the chemical formula to the model without deriving descriptor variables
(Mahé et al. 2005; Mahé and Vert 2009). Similarly, there are different kernels
that can be employed in text mining problems. The “bag-of-words”approach
summarizes a body of text by calculating frequencies of specific words. These
counts are treated as predictor variables in classification models. There are
a few issues with this approach. First, the additional computational burden
of deriving the predictor variables can be taxing. Secondly, this term-based
approach does not consider the ordering of the text. For example, the text
“Miranda ate the bear” and “the bear ate Miranda” would score the same
in the bag-of-words model but have very different meanings. String kernels
(Lodhi et al. 2002; Cancedda et al. 2003) can use the entire text of a doc-
ument directly and has more potential to find important relationships than
the bag-of-words approach.

For the grant data, there are several approaches to using SVMs. We eval-
uated the radial basis function kernel as well as the polynomial kernel (con-
figured to be either linear or quadratic). Also, both the full and reduced
predictor sets were evaluated. As will be shown in Chap. 19, support vector
machines can be negatively affected by including non-informative predictors
in the model.

For the radial basis function kernel, the analytical approach for deter-
mining the radial basis function parameter was assessed. For the full set of
predictors, the estimate was σ = 0.000559 and for the reduced set, the value
was calculated to be σ = 0.00226. However, these models did not show good
performance, so this parameter was varied over values that were smaller than
analytical estimates. Figure 13.12 shows the results of these models. The
smaller predictor set yields better results than the more comprehensive set,
with an optimal area under the ROC curve of 0.895, a sensitivity of 84%, and
a specificity of 80.4%. Also, for the reduced set, smaller values of σ produced
better results, although values below 0.001167 did not improve the model fit.

For the polynomial models, a fair amount of trial and error was used
to determine appropriate values for this kernel’s scaling factor. Inappropriate
values would result in numerical difficulties for the models and feasible values
of this parameter depended on the polynomial degree and the cost parameter.
Figure 13.13 shows the results for the holdout set. Models built with the
reduced set of predictors did uniformly better than those utilizing the full
set. Also, the optimal performance for linear and quadratic models was about
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Fig. 13.12: Tuning parameter profile of the radial basis function SVM model
for the grant data

the same. This suggests that the models are mostly picking up on linear
relationships in the data. Given that many of the predictors are binary, this
makes sense. Of these models, the best area under the ROC curve was 0.898.

Overall, the support vector machine models did not have competitive per-
formance in comparison to models created thus far. Many of the linear models
shown in Chap. 12 had similar (or better) performance; the FDA model in this
chapter, so far, is more effective. However, in our experience, SVM models
tend to be very competitive for most problems.

13.5 K-Nearest Neighbors

We first met the K-nearest neighbors (KNNs) model for classification in
Sect. 4.2 when discussing model tuning and the problem of over-fitting. We
have also learned extensively about KNN in the context of regression in
Sect. 7.4. While many of the ideas from KNN for regression directly apply
here, we will highlight the unique aspects of how this method applies to
classification.

The classification methods discussed thus far search for linear or nonlinear
boundaries that optimally separate the data. These boundaries are then used
to predict the classification of new samples. KNN takes a different approach
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Fig. 13.13: Top: Performance profiles for the quadratic SVM model. Bottom:
The ROC curve for the optimal model (area under the curve: 0.895)

by using a sample’s geographic neighborhood to predict the sample’s classi-
fication. Similar to the regression context, KNN for classification predicts a
new sample using the K-closest samples from the training set. “Closeness” is
determined by a distance metric, like Euclidean and Minkowski (Sect. 7.4),
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and choice of metric depends on predictor characteristics. For any distance
metric, it is important to recall that the original measurement scales of the
predictors affect the resulting distance calculations. This implies that if pre-
dictors are on widely different scales, the distance value between samples will
be biased towards predictors with larger scales. To allow each predictor to
contribute equally to the distance calculation, we recommend centering and
scaling all predictors prior to performing KNN.

As in the regression context, to determine the classification of a new sam-
ple, theK-closest training set samples are determined via the distance metric.
Class probability estimates for the new sample are calculated as the propor-
tion of training set neighbors in each class. The new sample’s predicted class
is the class with the highest probability estimate; if two or more classes are
tied for the highest estimate, then the tie is broken at random or by looking
ahead to the K + 1 closest neighbor.

Any method with tuning parameters can be prone to over-fitting, and
KNN is especially susceptible to this problem as was shown in Fig. 4.2. Too
few neighbors leads to highly localized fitting (i.e., over-fitting), while too
many neighbors leads to boundaries that may not locate necessary separating
structure in the data. Therefore, we must take the usual cross-validation or
resampling approach for determining the optimal value of K.

For the grant data the neighborhood range evaluated for tuning was
between 1 and 451. Figure 13.14 illustrates the tuning profile for area under
the ROC curve for the 2008 holdout data. There is a distinct jump in pre-
dictive performance from 1 to 5 neighbors and a continued steady increase
in performance through the range of tuning. The initial jump in predictive
performance indicates that local geographic information is highly informative
for categorizing samples. The steady incremental increase in predictive per-
formance furthermore implies that neighborhoods of informative information
for categorizing samples are quite large. This pattern is somewhat unusual for
KNN in that as the number of neighbors increases we begin to underfit and a
corresponding decrease in predictive performance occurs like was illustrated
by Fig. 7.10. In most data sets, we are unlikely to use this many neighbors in
the prediction. This example helps to identify a numerical instability problem
with KNN: as the number of neighbor increases, the probability of ties also
increases. For this example, a neighborhood size greater than 451 leads to too
many ties. The optimal area under the ROC curve was 0.81, which occurred
at K = 451. The bottom plot in Fig. 13.14 compares the KNN ROC profile
with those of SVM and FDA. For these data, the predictive ability of KNN
is inferior to the other tuned nonlinear models. While geographic information
is predictive, it is not as useful as models that seek to find global optimal
separating boundaries.
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Fig. 13.14: Top: The parameter tuning profile for the KNN model. Bottom:
The ROC curve for the test set data. The area under the curve was 0.81

13.6 Näıve Bayes

Bayes’ Rule was previously discussed in the context of linear discriminant
analysis in a previous chapter. This section expands on that discussion and
focuses on a specific classification model that, like the previous LDA, QDA,
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and RDA models, is defined in terms of how the multivariate probability
densities are created.

Bayes’ Rule answers the question “based on the predictors that we have
observed, what is the probability that the outcome is class C�?”More math-
ematically, let Y be the class variable and X represent the collection of pre-
dictor variables. We are trying to estimate Pr[Y = C�|X ], which is “given
X , what is the probability that the outcome is the �th class?” Bayes’ Rule
provides the machinery to answer this:

Pr[Y = C�|X ] =
Pr[Y ]Pr[X |Y = C�]

Pr[X ]
(13.5)

Pr[Y = C�|X ] is typically referred to as the posterior probability of the class.
The components are:

• Pr[Y ] is the prior probability of the outcome. Essentially, based on what
we know about the problem, what would we expect the probability of
the class to be? For example, when predicting customer churn, companies
typically have a good idea of the overall turnover rate of customers. For
problems related to diseases, this prior would be the disease prevalence
rate in the population (see Sect. 11.2 on p. 254 for a discussion).

• Pr[X ] is the probability of the predictor values. For example, if a new
sample is being predicted, how likely is this pattern in comparison to the
training data? Formally, this probability is calculated using a multivariate
probability distribution. In practice, significant assumptions are usually
made to reduce the complexity of this calculation.

• Pr[X |Y = C�] is the conditional probability. For the data associated with
class C�, what is the probability of observing the predictor values? Similar
to Pr[X ], this can be a complex calculation unless strict assumptions are
made.

The näıve Bayes model simplifies the probabilities of the predictor values by
assuming that all of the predictors are independent of the others. This is an
extremely strong assumption. For most of the case studies and illustrative
examples in this text, it would be difficult to claim that this assumption
were realistic. However, the assumption of independence yields a significant
reduction in the complexity of the calculations.

For example, to calculate the conditional probability Pr[X |Y = C�], we
would use a product of the probability densities for each individual predictor:

Pr[X |Y = C�] =

P
∏

j=1

Pr[Xj |Y = C�]

The unconditional probability Pr[X ] results in a similar formula when assum-
ing independence. To estimate the individual probabilities, an assumption of
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Fig. 13.15: Left: A plot of two class illustrative data where a new sample (the
solid triangle) is being predicted. Right: Conditional density plots of predictor
A created using a nonparametric density estimate. The value of predictor A
for the new sample is shown by the vertical black line

normality might be made for continuous predictors (using the sample mean
and variance from the training set). Other methods, such as nonparametric
kernel density estimators (Hardle et al. 2004), can more flexibly estimate the
probability densities. For categorical predictors, the probability distribution
can be determined with the observed frequencies in the training set data.

For example, Fig. 13.15 shows the familiar two-class illustrative example.
In the left panel, the training data are shown. Clearly, the two predictors
are unlikely to be independent (their correlation is 0.78). Suppose a new
sample (shown as a solid black triangle) requires prediction. To compute the
overall conditional probability Pr[X |Y = C�], each predictor is considered
separately. For predictor A, the two conditional densities are shown in the
right panel of Fig. 13.15 with a vertical black line indicating the value of the
new sample for this predictor. For the training set data, using this predictor
alone, the first class appears to be much more likely.

To produce the class probability Pr[X |Y = C�] for the first class, two
conditional probability values are determined for predictors A and B then
multiplied together to calculate the overall conditional probability for the
class.

For Pr[X ] a similar procedure would occur except the probabilities for
predictors A and B would be determined from the entire training set (i.e.,
both classes). For the example in Fig. 13.15, the correlation between the pre-
dictors is fairly strong, which indicates that the new sample is highly unlikely.
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Table 13.1: The frequencies and conditional probabilities Pr[X |Y = C�] for
the day of the week

Day Count Percent of total
Successful Unsuccessful Successful Unsuccessful

Mon 749 803 9.15 9.80
Tues 597 658 7.29 8.03
Wed 588 752 7.18 9.18
Thurs 416 358 5.08 4.37
Fri 606 952 7.40 11.62
Sat 619 861 7.56 10.51
Sun 228 3 2.78 0.04

However, using the assumption of independence, this probability is likely to
be overestimated.

The prior probability allows the modeler to tilt the final probability to-
wards one or more classes. For example, when modeling a rare event, it is
common to selectively sample the data so that the class distribution in the
training set is more balanced. However, the modeler may wish to specify that
the event is indeed rare by assigning it a low prior probability. If no prior is
explicitly given, the convention is to use the observed proportions from the
training set to estimate the prior.

Given such a severe and unrealistic assumption, why would one consider
this model? First, the näıve Bayes model can be computed quickly, even
for large training sets. For example, when the predictors are all categorical,
simple lookup tables with the training set frequency distributions are all that
are required. Secondly, despite such a strong assumption, the model performs
competitively in many cases.

Bayes’ Rule is essentially a probability statement. Class probabilities are
created and the predicted class is the one associated with the largest class
probability. The meat of the model is the determination of the conditional
and unconditional probabilities associated with the predictors. For continu-
ous predictors, one might choose simple distributional assumptions, such as
normality. The nonparametric densities (such as those shown in Fig. 13.16)
can produce more flexible probability estimates. For the grant application
data, the predictor for the numeric day of the year has several time frames
where an inordinate number of grants were submitted. In this figure, the black
curve for the normal distribution is extremely broad and does not capture
the nuances of the data. The red curve is the nonparametric estimate and
appears produce the trends in the data with higher fidelity.

For categorical predictors, the frequency distribution of the predictor in
the training set is used to estimate Pr[X ] and Pr[X |Y = C�]. Table 13.1



13.6 Näıve Bayes 357

Numeric Day of Year

D
en

si
ty

0.000

0.002

0.004

0.006

0.008

0 100 200 300

Fig. 13.16: Two approaches to estimating the density function Pr[X ] for the
day of the year. The blue line is based on a normal distribution while the red
line is generated using a nonparametric density estimator

shows the observed frequencies for the day of the week in which the grant
was submitted. The columns showing the percent of total are the estimates
of Pr[X |Y = C�] for each class. When a new sample is predicted, a simple
lookup on this table is used to estimate the probabilities.

An obvious issue, especially for small samples sizes, occurs when one or
more frequencies are zero. If a predictor has no training set samples for a
specific class, the conditional probability would be zero and, since the prob-
abilities are multiplied together, one predictor would coerce the posterior
probability to be zero. One method for avoiding this issue is to use a Laplace
correction or Laplace smoothing (Niblett 1987; Zadrozny and Elkan 2001;
Provost and Domingos 2003) where the same correction factor, usually be-
tween one and two, is added to the numerator. For the denominator, the
frequencies are increase by the correction factor times the number of val-
ues of the predictor. For example, there are very low frequencies for grants
submitted on Sunday. To correct for the extreme probabilities, a correction
factor of one would changes the observed frequencies to 229 and 4, but the
denominator would be increased by seven. Given the large sample size for
the training set, this correction only has a small impact (the estimated suc-
cess rate on Sunday is increased from 2.78% to 2.79%). However, all of the
three unsuccessful grants in the table were submitted after 2008. Training on
pre-2008 data would generate zero probabilities. In this case, a correction of
value of one would change the probability for grants to 0.02% while a cor-
rection factor of two would increase the value to 0.03%. For smaller training
set sizes, the correction can have a substantial positive effect on the missing
cells in the table.
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For the grant data, many of the predictors were counts. Although these
are numbers, they are discrete values and could be treated as categories. In
many cases, the observed frequency distribution is compact. For example, in
the training set, the number of chief investigators in department 2,678 takes
on the four values between 0 and 3 and has a very right-skewed distribution.
Treating such a granular predictor as if it was generated by a symmetric nor-
mal distribution may produce poor probability estimates. For this analysis,
the reduced set of predictors was evaluated such that all predictors with less
than 15 possible values were treated as discrete and their probabilities were
calculated using their frequency distribution (such as the day of the week
shown in Table 13.1. There were 14 predictors with more than 15 unique
values, including the number of successful grants by chief investigators, the
number of A∗ journal papers by chief investigators, and numeric day of the
year.

These predictors were modeled using either a normal distribution or a
nonparametric density (the density type was treated as a tuning parameter),
and a Laplace correction of 2 was used. When using a normal distribution
for the continuous predictors, the area under the curve was estimated to be
0.78, a sensitivity of 58.8%, and a specificity of 79.6%. Using nonparamet-
ric estimation of the probability densities, the area under the ROC curve
improves to 0.81, which corresponding increases in sensitivity (64.4%) and
specificity (82.4%). Unfortunately, the performance for this model is on par
with KNNs, which is substantially below the results of the other models in
this chapter.

Section 11.1 showed that Bayes’ Rule can be used to calibrate class proba-
bility estimates. To do this, the true classes are used as Y , but the class proba-
bility values for the training set are used as the“predictor”and Pr[X |Y = C�]
is determined from the model predictions on the training set. When new sam-
ples are predicted, the class probabilities that are generated by the model are
post-processed using Bayes’ Rule to improve the calibration. Ironically, class
probabilities created by apply Bayes’ Rule in the normal fashion tend not to
be well-calibrated themselves. As the number of predictors increases (rela-
tive to the sample size), the posterior probabilities will become more extreme
(similar to the observation related to linear discriminant analysis shown in
Fig. 12.11). Recall that QDA is based on Bayes’ Rule (using multivariate nor-
mality for the predictors) and the QDA results shown in Fig. 11.1 showed poor
calibration with two predictor variables (but was improved by recalibrating
using another application of Bayes’ Rule).

13.7 Computing

The following R packages are discussed in this chapter: caret, earth, kernlab,
klaR, MASS, mda, nnet, and rrcov. This section also uses the same R objects
created in the last chapter that contain the data (such as the data frame
training).
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Nonlinear Discriminant Analysis

A number of packages are available to perform the varieties of nonlinear
discriminant analysis described earlier in this chapter. QDA is implemented
in the qda function in the MASS as well as an outlier-resistant version in the
QdaCov function in the rrcov package. RDA is available in the rda function in
the klaR package, and MDA can be found in the mda package. The syntax for
these models is very similar and we will demonstrate their usage by fitting
an MDA model to the grant data.

The mda function has a model formula interface. The tuning parameter is
the number of subclasses per class, which do not have to be the same for
each class. For example, to fit an MDA model to the grant data with three
subpopulations per class:

> library(mda)

> mdaModel <- mda(Class ~ .,

+ ## Reduce the data to the relevant predictors and the

+ ## class variable to use the formula shortcut above

+ data = training[pre2008, c("Class", reducedSet)],

+ subclasses = 3)

> mdaModel

Call:
mda(formula = Class ~ ., data = training[pre2008, c("Class",

reducedSet)], subclasses = 3)

Dimension: 5

Percent Between-Group Variance Explained:
v1 v2 v3 v4 v5

72.50 92.57 96.10 98.66 100.00

Degrees of Freedom (per dimension): 253

Training Misclassification Error: 0.18709 ( N = 6633 )

Deviance: 6429.499
> predict(mdaModel,

+ newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

Each of these nonlinear discriminant models can be built and optimal
tuning parameters can be found using the caret package. The trControl option
for the grants data is set as described in Sect. 12.7 and will be used here:

> set.seed(476)

> mdaFit <- train(training[,reducedSet], training$Class,

+ method = "mda",

+ metric = "ROC",

+ tuneGrid = expand.grid(.subclasses = 1:8),

+ trControl = ctrl)
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Similar syntax can be used for RDA (using method = "rda") and QDA (method
values of either "rda" or "QdaCov" for the outlier-resistant version in the rrcov
package).

A penalized version of MDA is also available in the sparseLDA package
with the smda function. See Clemmensen et al. (2011) for more details.

Neural Networks

There are many R packages for neural networks, including nnet, RSNNS, qrnn,
and neuralnet. Two resources for using neural networks in R are Venables and
Ripley (2002) and Sect. 7 of Bergmeir and Benitez (2012).

The analyses here focus on the nnet package. The syntax is extremely
similar to that of the regression models with a few exceptions. The linout

argument should be set to FALSE since most classification models use a sig-
moidal transformation to relate the hidden units to the outputs. The sums
of squared errors or entropy estimates model parameters and the logical ar-
guments softmax and entropy toggle between the two.

The package has both a formula interface and an interface for passing
matrices or data frames for the predictors and the outcome. For the latter,
the outcome cannot be a factor variable and must be converted to a set of C
binary indicators. The package contains a function, class.ind, that is useful
in making this conversion:

> head(class.ind(training$Class))

successful unsuccessful
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 0 1
[6,] 1 0

Using the formula interface to fit a simple model:

> set.seed(800)

> nnetMod <- nnet(Class ~ NumCI + CI.1960,

+ data = training[pre2008,],

+ size = 3, decay = .1)

# weights: 13
initial value 4802.892391
iter 10 value 4595.629073
iter 20 value 4584.893054
iter 30 value 4582.614616
iter 40 value 4581.010289
iter 50 value 4580.866146
iter 60 value 4580.781092
iter 70 value 4580.756342
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final value 4580.756133
converged

> nnetMod

a 2-3-1 network with 13 weights
inputs: NumCI CI.1960
output(s): Class
options were - entropy fitting decay=0.1

> predict(nnetMod, newdata = head(testing))

[,1]
6641 0.5178744
6647 0.5178744
6649 0.5138892
6650 0.5837029
6655 0.4899851
6659 0.5701479

> predict(nnetMod, newdata = head(testing), type = "class")

[1] "unsuccessful" "unsuccessful" "unsuccessful" "unsuccessful"
[5] "successful" "unsuccessful"

When three or more classes are modeled, the basic call to predict produces
columns for each class.

As before, train provides a wrapper to this function to tune the model
over the amount of weight decay and the number of hidden units. The same
model code is used (method = "nnet") and either model interface is available,
although train does allow factor vectors for the classes (using class.ind in-
ternally do encode the dummy variables). Also, as in regression, model av-
eraging can be used via the stand-alone avNNet function or using train (with
method = "avNNet").

The final model for the grant data has the following syntax:

> nnetGrid <- expand.grid(.size = 1:10,

+ .decay = c(0, .1, 1, 2))

> maxSize <- max(nnetGrid$.size)

> numWts <- 1*(maxSize * (length(reducedSet) + 1) + maxSize + 1)

> set.seed(476)

> nnetFit <- train(x = training[,reducedSet],

+ y = training$Class,

+ method = "nnet",

+ metric = "ROC",

+ preProc = c("center", "scale", "spatialSign"),

+ tuneGrid = nnetGrid,

+ trace = FALSE,

+ maxit = 2000,

+ MaxNWts = numWts,

+ ## ctrl was defined in the previous chapter

+ trControl = ctrl)
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Flexible Discriminant Analysis

The mda package contains a function (fda) for building this model. The model
accepts the formula interface and has an option (method) that specifies the
exact method for estimating the regression parameters. To use FDA with
MARS, there are two approaches. method = mars uses the MARS implemen-
tation in the mda package. However, the earth package, previously described
in Sect. 7.5, fits the MARS model with a wider range of options. Here, load
the earth package and then specify method = earth. For example, a simple
FDA model for the grant application data could be created as

> library(mda)

> library(earth)

> fdaModel <- fda(Class ~ Day + NumCI, data = training[pre2008,],

+ method = earth)

Arguments to the earth function, such as nprune, can be specified when calling
fda and are passed through to earth. The MARS model is contained in a sub-
object called fit:

> summary(fdaModel$fit)

Call: earth(x=x, y=Theta, weights=weights)

coefficients
(Intercept) 1.41053449
h(Day-91) -0.01348332
h(Day-202) 0.03259400
h(Day-228) -0.02660477
h(228-Day) -0.00997109
h(Day-282) -0.00831905
h(Day-319) 0.17945773
h(Day-328) -0.51574151
h(Day-332) 0.50725158
h(Day-336) -0.20323060
h(1-NumCI) 0.11782107

Selected 11 of 12 terms, and 2 of 2 predictors
Importance: Day, NumCI
Number of terms at each degree of interaction: 1 10 (additive model)
GCV 0.8660403 RSS 5708.129 GRSq 0.1342208 RSq 0.1394347

Note that the model coefficients shown here have not been post-processed.
The final model coefficients can be found with coef(fdaModel). To predict:

> predict(fdaModel, head(training[-pre2008,]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

The train function can be used with method = "fda" to tune this model over
the number of retained terms. Additionally, the varImp function from this
package determines predictor importance in the same manner as for MARS
models (described in Sect. 7.2).
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Support Vector Machines

As discussed in the regression chapter, there are a number of R packages
with implementations for support vector machine and other kernel methods,
including e1071, kernlab, klaR, and svmPath. The most comprehensive of these
is the kernlab package.

The syntax for SVM classification models is largely the same as the re-
gression case. Although the epsilon parameter is only relevant for regression,
a few other parameters are useful for classification:

• The logical prob.model argument triggers ksvm to estimate an additional
set of parameters for a sigmoidal function to translate the SVM decision
values to class probabilities using the method of Platt (2000). If this option
is not set to TRUE, class probabilities cannot be predicted.

• The class.weights argument assigns asymmetric costs to each class (Osuna
et al. 1997). This can be especially important when one or more specific
types of errors are more harmful than others or when there is a severe class
imbalance that biases the model to the majority class (see Chap. 16). The
syntax here is to use a named vector of weights or costs. For example, if
there was a desire to bias the grant model to detect unsuccessful grants,
then the syntax would be

class.weights = c(successful = 1, unsuccessful = 5)

This makes a false-negative error five times more costly than a false-
positive error. Note that the implementation of class weights in ksvm affects
the predicted class, but the class probability model is unaffected by the
weights (in this implementation). This feature is utilized in Chap. 17.

The following code fits a radial basis function to the reduced set of predictors
in the grant data:

> set.seed(202)

> sigmaRangeReduced <- sigest(as.matrix(training[,reducedSet]))

> svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1],

+ .C = 2^(seq(-4, 4)))

> set.seed(476)

> svmRModel <- train(training[,reducedSet], training$Class,

+ method = "svmRadial",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = svmRGridReduced,

+ fit = FALSE,

+ trControl = ctrl)

> svmRModel

8190 samples
252 predictors

2 classes: 'successful', 'unsuccessful'
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Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results across tuning parameters:

C ROC Sens Spec
0.0625 0.866 0.775 0.787
0.125 0.88 0.842 0.776
0.25 0.89 0.867 0.772
0.5 0.894 0.851 0.784
1 0.895 0.84 0.804
2 NaN 0.814 0.814
4 0.887 0.814 0.812
8 0.885 0.804 0.814
16 0.882 0.805 0.818

Tuning parameter 'sigma' was held constant at a value of 0.00117
ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.00117.

When the outcome is a factor, the function automatically uses prob.model =

TRUE.
Other kernel functions can be defined via the kernel and kpar arguments.

Prediction of new samples follows the same pattern as other functions:

> library(kernlab)

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]),

+ type = "prob")

successful unsuccessful
1 0.9522587 0.04774130
2 0.8510325 0.14896755
3 0.8488238 0.15117620
4 0.9453771 0.05462293
5 0.9537204 0.04627964
6 0.5009338 0.49906620

K-Nearest Neighbors

Fitting a KNN classification model has similar syntax to fitting a regression
model. In this setting, the caret package with method set to "knn" generates
the model. The syntax used to produce the top of Fig. 13.14 is

> set.seed(476)

> knnFit <- train(training[,reducedSet], training$Class,



13.7 Computing 365

+ method = "knn",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = c(4*(0:5)+1,

+ 20*(1:5)+1,

+ 50*(2:9)+1)),

+ trControl = ctrl)

The following code predicts the test set data and the corresponding ROC
curve:

> knnFit$pred <- merge(knnFit$pred, knnFit$bestTune)

> knnRoc <- roc(response = knnFit$pred$obs,

+ predictor = knnFit$pred$successful,

+ levels = rev(levels(knnFit$pred$obs)))

> plot(knnRoc, legacy.axes = TRUE)

Näıve Bayes

The two main functions for fitting the näıve Bayes models in R are naiveBayes

in the e1071 package and NaiveBayes in the klaR package. Both offer Laplace
corrections, but the version in the klaR package has the option of using con-
ditional density estimates that are more flexible.

Both functions accept the formula and non-formula approaches to specify-
ing the model terms. However, feeding these models binary dummy variables
(instead of a factor variable) is problematic since the individual categories
will be treated as numerical data and the model will estimate the probabil-
ity density function (i.e., Pr[X ]) from a continuous distribution, such as the
Gaussian.

To follow the strategy described above where many of the predictors are
converted to factor variables, we create alternate versions of the training and
test sets:

> ## Some predictors are already stored as factors

> factors <- c("SponsorCode", "ContractValueBand", "Month", "Weekday")

> ## Get the other predictors from the reduced set

> nbPredictors <- factorPredictors[factorPredictors %in% reducedSet]

> nbPredictors <- c(nbPredictors, factors)

> ## Leek only those that are needed

> nbTraining <- training[, c("Class", nbPredictors)]

> nbTesting <- testing[, c("Class", nbPredictors)]

> ## Loop through the predictors and convert some to factors

> for(i in nbPredictors)

+ {

+ varLevels <- sort(unique(training[,i]))
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+ if(length(varLevels) <= 15)

+ {

+ nbTraining[, i] <- factor(nbTraining[,i],

+ levels = paste(varLevels))

+ nbTesting[, i] <- factor(nbTesting[,i],

+ levels = paste(varLevels))

+ }

+ }

Now, we can use the NaiveBayes function’s formula interface to create a model:

> library(klaR)

> nBayesFit <- NaiveBayes(Class ~ .,

+ data = nbTraining[pre2008,],

+ ## Should the non-parametric estimate

+ ## be used?

+ usekernel = TRUE,

+ ## Laplace correction value

+ fL = 2)

> predict(nBayesFit, newdata = head(nbTesting))

$class
6641 6647 6649 6650 6655 6659

successful successful successful successful successful successful
Levels: successful unsuccessful

$posterior
successful unsuccessful

6641 0.9937862 6.213817e-03
6647 0.8143309 1.856691e-01
6649 0.9999078 9.222923e-05
6650 0.9992232 7.768286e-04
6655 0.9967181 3.281949e-03
6659 0.9922326 7.767364e-03

In some cases, a warning appears: “Numerical 0 probability for all classes
with observation 1.” The predict function for this model has an argument
called threshold that replaces the zero values with a small, nonzero number
(0.001 by default).

The train function treats the density estimate method (i.e., usekernel)
and the Laplace correction as tuning parameters. By default, the function
evaluates probabilities with the normal distribution and the nonparametric
method (and no Laplace correction).

Exercises

13.1. Use the hepatic injury data from the previous exercise set (Exer-
cise 12.1). Recall that the matrices bio and chem contain the biological assay
and chemical fingerprint predictors for the 281 compounds, while the vector
injury contains the liver damage classification for each compound.
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(a) Work with the same training and testing sets as well as pre-processing
steps as you did in your previous work on these data. Using the same
classification statistic as before, build models described in this chapter
for the biological predictors and separately for the chemical fingerprint
predictors. Which model has the best predictive ability for the biological
predictors and what is the optimal performance? Which model has the
best predictive ability for the chemical predictors and what is the opti-
mal performance? Does the nonlinear structure of these models help to
improve the classification performance?

(b) For the optimal models for both the biological and chemical predictors,
what are the top five important predictors?

(c) Now combine the biological and chemical fingerprint predictors into one
predictor set. Re-train the same set of predictive models you built from
part (a). Which model yields best predictive performance? Is the model
performance better than either of the best models from part (a)? What
are the top 5 important predictors for the optimal model? How do these
compare with the optimal predictors from each individual predictor set?
How do these important predictors compare the predictors from the linear
models?

(d) Which model (either model of individual biology or chemical fingerprints
or the combined predictor model), if any, would you recommend using to
predict compounds’ hepatic toxicity? Explain.

13.2. Use the fatty acid data from the previous exercise set (Exercise 12.2).

(a) Use the same data splitting approach (if any) and pre-processing steps
that you did in the previous chapter. Using the same classification statistic
as before, build models described in this chapter for these data. Which
model has the best predictive ability? How does this optimal model’s
performance compare to the best linear model’s performance? Would you
infer that the data have nonlinear separation boundaries based on this
comparison?

(b) Which oil type does the optimal model most accurately predict? Least
accurately predict?



Chapter 14

Classification Trees and Rule-Based
Models

Classification trees fall within the family of tree-based models and, similar
to regression trees, consist of nested if-then statements. For the familiar
two-class problem shown in the last two chapters, a simple classification tree
might be

if Predictor B >= 0.197 then

| if Predictor A >= 0.13 then Class = 1

| else Class = 2

else Class = 2

In this case, two-dimensional predictor space is cut into three regions (or
terminal nodes) and, within each region, the outcome categorized into either
“Class 1” or “Class 2.” Figure 14.1 presents the tree in the predictor space.
Just like in the regression setting, the nested if-then statements could be
collapsed into rules such as

if Predictor A >= 0.13 and Predictor B >= 0.197 then Class = 1

if Predictor A >= 0.13 and Predictor B < 0.197 then Class = 2

if Predictor A < 0.13 then Class = 2

Clearly, the structure of trees and rules is similar to the structure we saw
in the regression setting. And the benefits and weaknesses of trees in the
classification setting are likewise similar: they can be highly interpretable,
can handle many types of predictors as well as missing data, but suffer from
model instability and may not produce optimal predictive performance. The
process for finding the optimal splits and rules, however, is slightly different
due to a change in the optimization criteria, which will be described below.

Random forests, boosting, and other ensemble methodologies using classi-
fication trees or rules are likewise extended to this setting and are discussed
in Sects. 14.3 through 14.6.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 14,
© Springer Science+Business Media New York 2013
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Fig. 14.1: An example of the predicted classes within regions defined by a
tree-based model

14.1 Basic Classification Trees

As with regression trees, the aim of classification trees is to partition the data
into smaller, more homogeneous groups. Homogeneity in this context means
that the nodes of the split are more pure (i.e., contain a larger proportion
of one class in each node). A simple way to define purity in classification
is by maximizing accuracy or equivalently by minimizing misclassification
error. Accuracy as a measure of purity, however, is a bit misleading since the
measure’s focus is on partitioning the data in a way that minimizes misclas-
sification rather than a focus on partitioning the data in a way that place
samples primarily in one class.

Two alternative measures, the Gini index (Breiman et al. 1984) and cross
entropy, which is also referred to as deviance or information (defined later
in this section), shift the focus from accuracy to purity. For the two-class
problem, the Gini index for a given node is defined as

p1 (1− p1) + p2 (1− p2) , (14.1)

where p1 and p2 are the Class 1 and Class 2 probabilities, respectively. Since
this is a two-class problem p1+p2 = 1, and therefore Eq. 14.1 can equivalently
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be written as 2p1p2. It is easy to see that the Gini index is minimized when
either of the class probabilities is driven towards zero, meaning that the
node is pure with respect to one of the classes. Conversely, the Gini index is
maximized when p1 = p2, the case in which the node is least pure.

When working with a continuous predictor and a categorical response, the
process for finding the optimal split point is similar to the process we saw in
Sect. 8.1. First, the samples are sorted based on their predictor values. The
split points are then the midpoints between each unique predictor value. If
the response is binary, then this process generates a 2×2 contingency table
at each split point. This table can be generally represented as

Class 1 Class 2

> split n11 n12 n+1

≤ split n21 n22 n+2

n1+ n2+ n

The Gini index prior to the split would be

Gini(prior to split) = 2
(n1+

n

)(n2+

n

)
.

And the Gini index can be calculated after the split within each of the new

nodes with values 2
(

n11

n+1

)(
n12

n+1

)
and 2

(
n21

n+2

)(
n22

n+2

)
for greater than and

less than or equal to the split, respectively. These values are combined using
the proportion of samples in each part of the split as weights with

(n+1

n

)
and(n+2

n

)
representing the respective weights for greater than and less than or

equal to the split. After some simplification, the Gini index to evaluate the
split would be:

Gini(after split) = 2

[(n11

n

)(
n12

n+1

)
+
(n21

n

)(
n22

n+2

)]
.

Now consider the simple example presented in Fig. 14.1, where the contin-
gency table for the Predictor B split is as follows:

Class 1 Class 2

B > 0.197 91 30 121
B ≤ 0.197 20 67 87

The Gini index for the samples in the B > 0.197 split would be 0.373 and for
the samples with B ≤ 0.197 would be 0.354. To determine if this is a good
overall split, these values must be combined which is done by weighting each
purity value by the proportion of samples in the node relative to the total
number of samples in the parent node. In this case, the weight for the B >
0.197 split would be 0.582 and 0.418 when B ≤ 0.197. The overall Gini index
measure for this split would then be (0.582)(0.373)+ (0.418)(0.354) = 0.365.
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Here we have evaluated just one possible split point; partitioning algorithms,
however, evaluate nearly all split points1 and select the split point value that
minimizes the purity criterion. The splitting process continues within each
newly created partition, therefore increasing the depth of the tree, until the
stopping criteria is met (such as the minimum number of samples in a node
or the maximum tree depth).

Trees that are constructed to have the maximum depth are notorious for
over-fitting the training data. A more generalizable tree is one that is a pruned
version of the initial tree and can be determined by cost-complexity tuning,
in which the purity criterion is penalized by a factor of the total number of
terminal nodes in the tree. The cost-complexity factor is called the complexity
parameter and can be incorporated into the tuning process so that an optimal
value can be estimated. More details about this process can be found in
Sect. 8.1.

After the tree has been pruned, it can be used for prediction. In classifi-
cation, each terminal node produces a vector of class probabilities based on
the training set which is then used as the prediction for a new sample. In the
simple example above, if a new sample has a value of Predictor B = 0.10,
then predicted class probability vector would be (0.23, 0.77) for Class 1 and
Class 2, respectively.

Similar to regression trees, classification trees can handle missing data. In
tree construction, only samples with non-missing information are considered
for creating the split. In prediction, surrogate splits can be used in place
of the split for which there are missing data. Likewise, variable importance
can be computed for classification trees by assessing the overall improvement
in the optimization criteria for each predictor. See Sect. 8.1 for the parallel
explanation in regression.

When the predictor is continuous, the partitioning process for determining
the optimal split point is straightforward. When the predictor is categorical,
the process can take a couple of equally justifiable paths, one of which dif-
fers from the traditional statistical modeling approach. For example, consider
a logistic regression model which estimates slopes and intercepts associated
with the predictors. For categorical predictors, a set of binary dummy vari-
ables (Sect. 3.6) is created that decomposes the categories to independent bits
of information. Each of these dummy variables is then included separately in
the model. Tree models can also bin categorical predictors. Evaluating pu-
rity for each of these new predictors is then simple, since each predictor has
exactly one split point.

For tree models, the splitting procedure may be able to make more dynamic
splits of the data, such as groups of two or more categories on either side of the
split. However, to do this, the algorithm must treat the categorical predictors
as an ordered set of bits. Therefore, when fitting trees and rule-based models,
the practitioner must make a choice regarding the treatment of categorical
predictor data:

1 See Breiman (1996c) for a discussion of the technical nuances of splitting algorithms.
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1. Each categorical predictor can be entered into the model as a single entity
so that the model decides how to group or split the values. In the text,
this will be referred to as using grouped categories.

2. Categorical predictors are first decomposed into binary dummy variables.
In this way, the resulting dummy variables are considered independently,
forcing binary splits for the categories. In effect, splitting on a binary
dummy variable prior to modeling imposes a “one-versus-all” split of the
categories. This approach will be labelled as using independent categories.

Which approach is more appropriate depends on the data and the model.
For example, if a subset of the categories are highly predictive of the out-
come, the first approach is probably best. However, as we will see later, this
choice can have a significant effect on the complexity of the model and, as
a consequence, the performance. In the following sections, models will be
created using both approaches described above to assess which approach is
model advantageous. A summary of the differences in the two approaches are
summarized in Fig. 14.14 on p. 402 of this chapter.

To illustrate the partitioning process for a categorical predictor, consider
the CART model of the grant data illustrated in Fig. 14.3. The first split
for these data is on contract value band, which has 17 possible categories,
and places values I, J, P, and Unknown into one partition and the remaining
categories in the other. From a combinatorial standpoint, as the number
of possible categories increase, the number of possible category orderings
increases factorially. The algorithmic approach must therefore take a rational
but greedy path to ordering the categories prior to determining the optimal
split. One approach is to order the categories based on the proportion of
samples in a selected class. The top plot in Fig. 14.2 displays the probability
of successful grant application within each contract value band, ordered from
least successful to most successful. To calculate the Gini index, the split points
are the divisions between each of the ordered categories, with the categories
to the left placed into one group and the categories to the right placed into
the other group. The results from these sequential partitions are presented
in the bottom plot. Clearly, adding samples from the Unknown category to
the samples from categories P and J greatly reduces the Gini index. While
it is difficult to see from the figure, the minimum value occurs at the split
point between categories I and M. Therefore, the algorithm chooses to place
samples from contract value band I, J, P, and Unknown into one partition
and the remaining samples into the other. Using only this split, the model
would classify a new sample as unsuccessful if it had a contract value band
of I, J, P, or Unknown and successful otherwise.

Continuing the tree building process treating the predictors as grouped
categories and pruning via cost complexity produces the tree in Fig. 14.3.
Because the predictors are encoded, it is difficult to interpret the tree
without an in-depth knowledge of the data. However, it is still possible to
use the tree structure to gain insight to the relevance of the predictors to the
response. We can also see that grouped category variables such as sponsor
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Fig. 14.2: Top: A scatter plot of the ordered probability of success (y-axis) for
each contract value band. Bottom: The Gini index profile across each ordered
split. The Gini index for the split points between categories Unknown, I, M, O,
and B are nearly equivalent, with the minimum occurring between categories
I and M

code, weekday, and month are relevant to the success of grant funding. The
grouped categories model has an area under the ROC curve of 0.91 using 16
terminal nodes.

A CART model was also built using independent category predictors.
Because this approach creates many more predictors, we would expect that
the pruned tree would have more terminal nodes. Counter to intuition, the
final pruned tree has 16 nodes and is illustrated in Fig. 14.4. This tree has
an AUC of 0.912, and Fig. 14.5 compares its performance with the grouped
category predictors. For classification trees using CART, there is no prac-
tical difference in predictive performance when using grouped categories or
independent categories predictors for the grant data.

A comparison of Figs. 14.3 and 14.4 highlights a few interesting similarities
and differences between how a tree model handles grouped category versus
independent predictors. First, notice that the upper levels of the trees are gen-
erally the same with each selecting contract value band, sponsor code, and
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Fig. 14.5: The CART ROC curves for the holdout data. When using grouped
categories, the area under the curve was 0.89. With independent categories,
the AUC was also 0.89

number of unsuccessful and successful grants by chief investigators within the
first four levels. Although the trees are identifying similarly important infor-
mation, the independent category tree is much easier to interpret than the
grouped category tree. For example, while the contract value band predictor
is chosen as the first split in each tree, the independent category tree indicates
that the value of Unknown is most critical for creating subsequent nodes that
are more pure. Without producing a purity plot of the ordered categories, the
importance of the Unknown band is masked within the grouping of bands I, J,
P, and Unknown for the grouped category tree. Similar contrasts can be made
with predictors of Month and Weekday, where the independent category tree
provides further insight into the importance of specific months and weekdays.
In the case of trees, therefore, creating independent category predictors may
provide valuable interpretation about the relationship between predictors and
the response that is not readily available when treating predictors as grouped
categories.

Another approach for classification trees is the C4.5 model (Quinlan
1993b). Here, the splitting criteria is based on information theory (Wallace
2005; Cover and Thomas 2006). Suppose we want to communicate some piece
of information, such as the probability distribution of the classes in the ter-
minal node of a tree, in a series of messages. If the probability distribution is
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extremely unbalanced, there is a high likelihood of the sample belonging to
the majority class, thus less uncertainty when guessing. However, if the class
probabilities in the node were even, there is high uncertainty of a sample’s
true class. If we were trying to communicate the content of the probability
distribution in a series of messages, on average, more information needs to be
conveyed when there is a high degree of uncertainty in the message. Shannon
(1948) and others developed a theory for the communication of information.
The quantity that they call the information statistic represents the average
number of bits needed to communicate in a message.

In our context, suppose there are C = 2 classes and the probability of the
first class is p. The formal definition of the information statistic is

info = −[p log2p+ (1− p) log2(1 − p)].

When p = 0, it is customary to have 0 log2(0) = 0. As previously mentioned,
the units are called bits.

For the two class data shown in Fig. 14.1, the classes are almost even. If
p is the proportion of samples in the first class, then p = 0.53. From this,
the average number of bits of information to guess the true class (i.e., the
information) would be 0.997. Now consider an unbalanced situation where
fewer of the samples were in class 1 (p = 0.10). In this case, the information
would be 0.46 bits, which is smaller because the class imbalance makes it
easier to randomly guess the true class.2 This metric has been previously
discussed twice: as an objective function for neural networks (Eq. 13.3) and
logistic regression (in Eq. 12.1 with a single data point).

How does this relate to determining splits? Using the general contingency
table notation from above, the total information content of the data prior to
splitting would be

info(prior to split) = −
[n1+

n
× log2

(n1+

n

)]
−
[n2+

n
× log2

(n2+

n

)]
.

Again, when n1+ = 0 or n2+ = 0, it is traditional to set the terms inside the
brackets to zero.

We can measure the improvement in the information criteria that would
be induced by creating splits in a classification tree. The information gain3

(or simply the gain) would be

gain(split) = info(prior to split)− info(after split).

2 An alternate way to think of this is in terms of entropy, a measure of uncertainty.
When the classes are balanced 50/50, we have no real ability to guess the outcome:
it is as uncertain as possible. However, if ten samples were in class 1, we would have
less uncertainty since it is more likely that a random data point would be in class 1.
3 Also known as the mutual information statistic. This statistic is discussed again in
Chap. 18.
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Splits with larger information gains are more attractive than those with
smaller gains.

For the binary split shown in the table above, the information after the
split would be the sum of the information values from each of the resulting
partitions. For example, the information for the data with values greater than
the split value is

info(greater) = −
[
n11

n+1
× log2

(
n11

n+1

)]
−
[
n12

n+1
× log2

(
n12

n+1

)]
.

The formula for the data on the other side of the split is analogous. The total
information after the split is a weighted average of these values where the
weights are related to the number of samples in the leaves of the split

info(after split) =
n+1

n
info(greater) +

n+2

n
info(less than).

Going back to the two class data, consider the predictor B split at a value of
0.197. The information when B > 0.197 is 0.808 and, on the other side of the
split, the value is 0.778 when weighted by the proportion of samples on each
side of the split, the total information is 0.795, a gain of 0.997−0.795 = 0.201
Suppose, on the other hand, another split chosen that was completely non-
informative, the information after the split would be the same as prior to the
split, so the gain would be zero.

For continuous predictors, a tree could be constructed by searching for the
predictor and single split that maximizes the information gain.4 For these
data, this gain is the largest when splitting predictor B at 0.197 and this is
the split shown in Fig. 14.1. It also turns out that this split is also the best
split for the Gini criterion used by CART.

There is one issue with this strategy. Since the predictors might have differ-
ent numbers of possible values, the information gain criteria is biased against
predictors that have a large number of possible outcomes (i.e., would fa-
vor categorical predictors with only a few distinct values over continuous
predictors). This phenomenon is similar to the previously discussed bias for
regression trees in Sect. 8.1. In this case, the bias is related to the ability
of the algorithm to split the categorical predictors many ways (instead of
a binary split on continuous predictors). The multi-way splits are likely to
have larger gains. To correct for the bias, the gain ratio is used, which di-
vides the gain by a measure of the amount of information in the split itself.
Quinlan (1993b) shows additional examples of these calculations while Quin-
lan (1996b) describes refinements to this procedure for continuous predictors
using the minimum description length (MDL) principle.

4 By default, C4.5 uses simple binary split of continuous predictors. However, Quinlan
(1993b) also describes a technique called soft thresholding that treats values near the
split point differently. For brevity, this is not discussed further here.
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When evaluating splits of categorical predictors, one strategy is to repre-
sent the predictor using multi-way splits such that there is a separate split for
each category. When a predictor has a large number of possible values, this
can lead to overly complex trees. For example, the sponsor code predictor
in the grant data have 298 unique values. If this predictor were considered
important, an initial 298-way split of the data would be created (prior to
pruning). After the pruning process described below, some of these splits are
likely to be combined and simplified.

Chapter 7 of Quinlan (1993b) describes a modified approach for creat-
ing multi-way splits that have the ability to group two or more categories.
Prior to evaluating a categorical predictor as a split variable, the model first
enumerates the gain ratio when the predictor is represented as:

• A multi-way split with as many splits as distinct values (i.e., the default
approach where each category is a separate split).

• Multi-way splits for all possible combinations when two categories are
grouped together and the others are split separately.

Based on the results of these representations of the predictor, a greedy al-
gorithm is used to find the best categories to merge. As a result, there are
many possible representations of the categorical predictor. Once the model
constructs the final groupings, the gain ratio is calculated for this configura-
tion. The ratio is compared to the other predictors when searching for the
best split variable. This process is repeated each time the model conducts
a search for a new split variable. This option is computationally expensive
and may have a minimal impact on the tree if the categorical predictors
have only a few possible levels. Unfortunately, this option is not available in
the implementation of C4.5 that is currently available (in the Weka software
suite under the name J48). The effect of this option on the data cannot be
directly demonstrated here, but will be shown later when describing C5.0 (the
descendent of C4.5). Since this can have a profound impact on the model, we
will label this version of C4.5 as J48 to differentiate the versions.

When constructing trees with training sets containing missing predictor
values, C4.5 makes several adjustments to the training process:

• When calculating the information gain, the information statistics are calcu-
lated using the non-missing data then scaled by the fraction of non-missing
data at the split.

• Recall that C4.5 deals with selection bias by adjusting the gain statistic
by the information value for the predictor. When the predictor contains
missing values, the number of branches is increased by one; missing data
are treated as an “extra” category or value of the predictor.

• Finally, when the class distribution is determined for the resulting splits,
missing predictor values contribute fractionally to each class. The frac-
tional contribution of the data points are based on the class distribution
of the non-missing values. For example, suppose 11 samples are being split
and one value was missing. If three samples are Class #1 and the rest are
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Class #2, the missing value would contribute 0.30 to Class #1 and 0.70
to Class #2 (on both sides of the split).

Because of this accounting, the class frequency distribution in each node may
not contain whole numbers. Also, the number of errors in the terminal node
can be fractional.

Like CART, C4.5 builds a large tree that is likely to over-fit the data then
prunes the tree back with two different strategies:

• Simple elimination of a sub-tree.
• Raising a sub-tree so that it replaces a node further up the tree.

Whereas CART uses cost complexity pruning, pessimistic pruning evaluates
whether the tree should be simplified. Consider the case where a sub-tree is
a candidate for removal. Pessimistic pruning estimates the number of errors
with and without the sub-tree. However, it is well-known that the apparent
error rate is extremely optimistic. To counteract this, pessimistic pruning
calculates an upper confidence bound on the number of errors—this is the
pessimistic estimate of the number of errors. This is computed with and
without the sub-tree. If the estimated number of errors without the sub-tree
is lower than the tree that includes it, the sub-tree is pruned from the model.

When determining the estimated error rate, C4.5 uses a default confidence
level for the interval of 0.25 (called the confidence factor). This can be con-
sidered a tuning parameter for the model, as increasing the confidence factor
leads larger trees. While intuitive, this approach stands on shaky statistical
grounds, Quinlan (1993b) acknowledges this, saying that the approach

“does violence to statistical notions of sampling and confidence limits, so the
reasoning should be taken with a grain of salt.”

That said, this technique can be very effective and is more computationally
efficient than using cross-validation to determine the appropriate size of the
tree.

Once the tree has been grown and pruned, a new sample is classified by
moving down the appropriate path until it reaches the terminal node. Here,
the majority class for the training set data falling into the terminal node is
used to predict a new sample. A confidence value, similar to a class proba-
bility, can also be calculated on the basis of the class frequencies associated
with the terminal nodes. Quinlan (1993b) describes how upper and lower
ranges for the confidence factors can be derived from calculations similar to
the pessimistic pruning algorithm described above.

When predicting a sample with one or more missing values, the sample is
again treated fractionally. When a split is encountered for a variable that is
missing in the data, each possible path down the tree is determined. Ordinar-
ily, the predicted class would be based on the class with the largest frequency
from a single terminal node. Since the missing value could have possibly
landed in more than one terminal node, each class receives a weighted vote
to determine the final predicted class. The class weights for all the relevant
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Fig. 14.6: The J48 ROC curves for the holdout data using two different ap-
proaches for handling categorical predictors. The symbols (filled circle and
plus) represent the 50% probability cutoff. The areas under the curves were
0.835 when using grouped categories and 0.842 when using independent cat-
egories. The grey line corresponds to the previous CART model

terminal nodes are aggregated and the class associated with the largest total
weight is used to predict the sample. In this way, each terminal node with
possible associations with the sample contributes to the overall prediction.

J48 trees were created for the grant application data. Although the confi-
dence factor could be treated as a tuning parameter, our experience is that
the default value (0.25) works well. Two models were fit using the two differ-
ent approaches for representing the categorical predictors. Based on the prior
discussion, there is the expectation that treating the categories as a cohesive
set will results in a much larger tree than one using independent categories.
This is exactly the case for these data. Grouping the categories resulted in
a pruned tree with 2,918 terminal nodes. This was primarily due to a large
number of splits using the sponsor code; 2,384 splits out of 2,918 (82%) in-
volve this predictor. When using independent categories, the tree was much
smaller (821 terminal nodes).

The area under the ROC curve for the large model was 0.835, compared
to 0.842 when using independent categories. Figure 14.6 shows the two ROC
curves and the points on each curve corresponding to the default 50% prob-
ability cutoff. From this, it is clear that the specificities are about the same
for each approach (81.7% for the larger model vs. 83.8%), but there is a
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significant difference in the sensitivity of the models; the more complex model
resulted in a sensitivity of 83.9% while the independent category model
had relatively poor ability to predict successful grants (with a sensitivity
of 76.8%). However, these statistics are based on the nominal 50% cutoff for
success. The curves overlap considerably and alternate cutoffs would produce
almost identical results (see Sect. 16.4).

While CART and C4.5 classification trees are the most widely used, there
has been extensive research in this area and many other proposals for tree-
based models. For example, as discussed in the section on regression trees,
conditional inference trees (Hothorn et al. 2006) avoid selection bias during
splitting. Also, several techniques exist (Frank et al. 1998; Loh 2002; Chan and
Loh 2004; Zeileis et al. 2008) that use more complex models in the terminal
nodes, similar to M5 and Cubist. Other types of splits can be employed. For
example, Breiman et al. (1984) introduced the idea of splitting on a linear
combination of the predictors. These oblique trees may be beneficial when
the classes are linearly separable, which traditional splits have a difficult
time approximating. Menze et al. (2011) discusses tree ensemble models with
oblique trees.

14.2 Rule-Based Models

As previously discussed, rule-based models consist of one or more independent
conditional statements. Unlike trees, a sample may be predicted from a set
of rules. Rules have a long history as classifiers and this section will discuss
approaches for creating classification rules.

C4.5Rules

There are several different philosophies and algorithms for creating rule-based
models from classification trees. Some of the first were described by Quinlan
(1987) and Quinlan (1993b). This model, called C4.5Rules, builds on the C4.5
tree methodology described in the last section. To start, an unpruned tree is
created, then each path through the tree is collapsed into an individual rule.

Given this initial set, each rule is evaluated individually to assess whether
it can be generalized by eliminating terms in the conditional statement. The
pruning process here is similar to the one used to prune C4.5 trees. For a rule,
the model first calculates a baseline pessimistic error rate, then removes each
condition in the rule in isolation. Once a condition is removed, the pessimistic
error rate is recomputed. If any error rate is smaller than the baseline, the
condition associated with the smallest error rate is removed. The process is
repeated until all conditions are above the baseline rate or all conditions are



384 14 Classification Trees and Rule-Based Models

removed. In the latter case, the rule is completely pruned from the model.
The table below shows the pruning process with a five condition rule for the
grant data:

Pessimistic error rate
Condition Pass 1 Pass 2 Pass 3

Baseline 14.9 5.8 5.2
First day of year 12.9 5.2
Zero unsuccessful grants (CI) 77.3 53.5 50.7
Number of CI 42.0 21.6 19.7
Number of SCI 18.0 8.1 7.3
Zero successful grants (CI) 5.8

On the first pass, removing the condition associated with zero successful
grants by a chief investigator has the least impact on the error rate, so this
condition is deleted from the rule. Three passes of pruning were needed until
none of the error rates were below the baseline rate. Also, note that the
pessimistic error rate decreases with each iteration. Finally, the condition
related to zero unsuccessful grants for a chief investigator appears to have
the most importance to the rule since the error rate is the largest when the
condition is removed from the rule.

After the conditions have been pruned within each rule, the set of rules
associated with each class are processed separately to reduce and order the
rules. First, redundant or ineffective rules are removed using the MDL princi-
ple [see Quinlan and Rivest (1989) and Chap. 5 of Quinlan (1993b)]. An MDL
metric is created that encapsulates a ruleset’s performance and complexity—
for two rulesets with equivalent performance, the simpler collection of rules is
favored by the metric. Within each class, an initial group of groups is assem-
bled such that every training set sample is covered by at least one rule. These
are combined into the initial ruleset. Starting with this set, search methods
(such as greedy hill climbing or simulated annealing) are used to add and
remove rules until no further improvements can be made on the ruleset. The
second major operation within a class is to order the rules from most to least
accurate.

Once the rulesets within each class have been finalized, the classes are
ordered based on accuracy and a default class is chosen for samples that have
no relevant rules. When predicting a new sample, each rule is evaluated in
order until one is satisfied. The predicted class corresponds to the class for
the first active rule.
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1 repeat

2 Create a pruned classification tree

3 Determine the path through the tree with the largest coverage

4 Add this path as a rule to the rule set

5 Remove the training set samples covered by the rule

6 until all training set samples are covered by a rule

Algorithm 14.1: The PART algorithm for constructing rule-based
models (Frank and Witten 1998)

PART

C4.5Rules follows the philosophy that the initial set of candidate rules are
developed simultaneously then post-processed into an improved model. Al-
ternatively, rules can be created incrementally. In this way, a new rule can
adapt to the previous set of rules and may more effectively capture important
trends in the data.

Frank and Witten (1998) describe another rule model called PART shown
in Algorithm 14.1. Here, a pruned C4.5 tree is created from the data and the
path through the tree that covers the most samples is retained as a rule. The
samples covered by the rule are discarded from the data set and the process
is repeated until all samples are covered by at least one rule. Although the
model uses trees to create the rules, each rule is created separately and has
more potential freedom to adapt to the data.

The PART model for the grant data slightly favored the grouped category
model. For this model, the results do not show an improvement above and
beyond the previous models: the estimated sensitivity was 77.9%, the speci-
ficity was 80.2%, and the area under the ROC curve (not shown) was 0.809.
The model contained 360 rules. Of these, 181 classify grants as successful
while the other 179 classify grants as unsuccessful. Here, the five most pro-
lific predictors were sponsor code (332 rules), contract value band (30 rules),
the number of unsuccessful grants by chief investigators (27 rules), the num-
ber of successful grants by chief investigators (26 rules), and the number of
chief investigators (23 rules).

14.3 Bagged Trees

Bagging for classification is a simple modification to bagging for regression
(Sect. 8.4). Specifically, the regression tree in Algorithm 8.1 is replaced with
an unpruned classification tree for modeling C classes. Like the regression
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Table 14.1: The 2008 holdout set confusion matrix for the random forest
model

Observed class
Successful Unsuccessful

Successful 491 144
Unsuccessful 79 843

This model had an overall accuracy of 85.7%, a sensitivity of 86.1%, and a
specificity of 85.4%

setting, each model in the ensemble is used to predict the class of the new
sample. Since each model has equal weight in the ensemble, each model can
be thought of as casting a vote for the class it thinks the new sample belongs
to. The total number of votes within each class are then divided by the total
number of models in the ensemble (M) to produce a predicted probability
vector for the sample. The new sample is then classified into the group that
has the most votes, and therefore the highest probability.

For the grant data, bagging models were built using both strategies for
categorical predictors. As discussed in the regression trees chapter, bagging
performance often plateaus with about 50 trees, so 50 was selected as the
number of trees for each of these models. Figure 14.7 illustrates the bagging
ensemble performance using either independent or grouped categories. Both
of these ROC curves are smoother than curves produced with classification
trees or J48, which is an indication of bagging’s ability to reduce variance via
the ensemble. Additionally, both bagging models have better AUCs (0.92 for
both) than either of the previous models. For these data, there seems to be
no obvious difference in performance for bagging when using either indepen-
dent or grouped categories; the ROC curves, sensitivities, and specificities
are all nearly identical. The holdout set performance in Fig. 14.7 shows an
improvement over the J48 results (Fig. 14.6).

Similar to the regression setting, variable importance measures can be cal-
culated by aggregating variable importance values from the individual trees in
the ensemble. Variable importance of the top 16 predictors for both the inde-
pendent and grouped category bagged models set are presented in Fig. 14.15,
and a comparison of these results is left to the reader in Exercise 14.1.

14.4 Random Forests

Random forests for classification requires a simple tweak to the random forest
regression algorithm (Algorithm 8.2): a classification tree is used in place of
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Fig. 14.7: The ROC curves for the bagged classification tree model. The area
under the curves for both models was 0.92. The sensitivities and specificities
were 82.98 and 85.71, respectively

a regression tree. As with bagging, each tree in the forest casts a vote for
the classification of a new sample, and the proportion of votes in each class
across the ensemble is the predicted probability vector.

While the type of tree changes in the algorithm, the tuning parameter
of number of randomly selected predictors to choose from at each split is
the same (denoted as mtry). As in regression, the idea behind randomly
sampling predictors during training is to de-correlate the trees in the forest.
For classification problems, Breiman (2001) recommends setting mtry to the
square root of the number of predictors. To tunemtry, we recommend starting
with five values that are somewhat evenly spaced across the range from 2 to
P , where P is the number of predictors. We likewise recommend starting with
an ensemble of 1,000 trees and increasing that number if performance is not
yet close to a plateau.

For the most part, random forest for classification has very similar prop-
erties to the regression analog discussed previously, including:

• The model is relatively insensitive to values of mtry.
• As with most trees, the data pre-processing requirements are minimal.
• Out-of-bag measures of performance can be calculated, including accuracy,

sensitivity, specificity, and confusion matrices.
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Fig. 14.8: The ROC curves for the random forest model. The area under the
curve for independent categories was 0.92 and for the grouped category model
the AUC was 0.9

One difference is the ability to weight classes differentially. This aspect of the
model is discussed more in Chap. 16.

Random forest models were built on both independent and grouped cat-
egory models. The tuning parameter, mtry, was evaluated at values rang-
ing from 5 to 1,000. For independent categories, the optimal tuned value of
mtry was 100, and for grouped categories the value was also 250. Figure 14.8
presents the results, and in this case the independent categories have a slightly
higher AUC (0.92) than the grouped category approach (0.9). The binary pre-
dictor model also has better sensitivity (86.1% vs. 84.7%) but slightly worse
specificity (85.4% vs. 87.2%).

For single trees, variable importance can be determined by aggregating
the improvement in the optimization objective for each predictor. For ran-
dom forests, the improvement criteria (default is typically the Gini index) is
aggregated across the ensemble to generate an overall variable importance
measure. Alternatively, predictors’ impact on the ensemble can be calculated
using a permutation approach (Breiman 2000) as discussed in Sect. 8.5. Vari-
able importance values based on aggregated improvement have been com-
puted for the grant data for both types of predictors and the most important
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predictors are presented in Fig. 14.15. The interpretation is left to the reader
in Exercise 14.1.

Conditional inference trees can also be used as the base learner for random
forests. But current implementations of the methodology are computation-
ally burdensome for problems that are the relative size of the grant data.
A comparison of the performance of random forests using CART trees and
conditional inference trees is explored in Exercise 14.3.

14.5 Boosting

Although we have already discussed boosting in the regression setting, the
method was originally developed for classification problems (Valiant 1984;
Kearns and Valiant 1989), in which many weak classifiers (e.g., a classifier
that predicts marginally better than random) were combined into a strong
classifier. There are many species of boosting algorithms, and here we discuss
the major ones.

AdaBoost

In the early 1990s several boosting algorithms appeared (Schapire 1990; Fre-
und 1995) to implement the original theory. Freund and Schapire (1996)
finally provided the first practical implementation of boosting theory in
their famous AdaBoost algorithm; an intuitive version is provided in Al-
gorithm 14.2.

To summarize the algorithm, AdaBoost generates a sequence of weak clas-
sifiers, where at each iteration the algorithm finds the best classifier based on
the current sample weights. Samples that are incorrectly classified in the kth
iteration receive more weight in the (k + 1)st iteration, while samples that
are correctly classified receive less weight in the subsequent iteration. This
means that samples that are difficult to classify receive increasingly larger
weights until the algorithm identifies a model that correctly classifies these
samples. Therefore, each iteration of the algorithm is required to learn a dif-
ferent aspect of the data, focusing on regions that contain difficult-to-classify
samples. At each iteration, a stage weight is computed based on the error rate
at that iteration. The nature of the stage weight described in Algorithm 14.2
implies that more accurate models have higher positive values and less ac-
curate models have lower negative values.5 The overall sequence of weighted
classifiers is then combined into an ensemble and has a strong potential to
classify better than any of the individual classifiers.

5 Because a weak classifier is used, the stage values are often close to zero.
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1 Let one class be represented with a value of +1 and the other with a
value of -1

2 Let each sample have the same starting weight (1/n)
3 for k = 1 to K do

4 Fit a weak classifier using the weighted samples and compute
the kth model’s misclassification error (errk)

5 Compute the kth stage value as ln ((1− errk) /errk).

6 Update the sample weights giving more weight to incorrectly
predicted samples and less weight to correctly predicted samples

7 end

8 Compute the boosted classifier’s prediction for each sample by
multiplying the kth stage value by the kth model prediction and
adding these quantities across k. If this sum is positive, then classify
the sample in the +1 class, otherwise the -1 class.

Algorithm 14.2: AdaBoost algorithm for two-class problems

Boosting can be applied to any classification technique, but classification
trees are a popular method for boosting since these can be made into weak
learners by restricting the tree depth to create trees with few splits (also
known as stumps). Breiman (1998) gives an explanation for why classifica-
tion trees work particularly well for boosting. Since classification trees are a
low bias/high variance technique, the ensemble of trees helps to drive down
variance, producing a result that has low bias and low variance. Working
through the lens of the AdaBoost algorithm, Johnson and Rayens (2007)
showed that low variance methods cannot be greatly improved through boost-
ing. Therefore, boosting methods such as LDA or KNN will not show as
much improvement as boosting methods such as neural networks (Freund
and Schapire 1996) or näıve Bayes (Bauer and Kohavi 1999).

Stochastic Gradient Boosting

As mentioned in Sect. 8.6, Friedman et al. (2000) worked to provide statis-
tical insight of the AdaBoost algorithm. For the classification problem, they
showed that it could be interpreted as a forward stagewise additive model that
minimizes an exponential loss function. This framework led to algorithmic
generalizations such as Real AdaBoost, Gentle AdaBoost, and LogitBoost.
Subsequently, these generalizations were put into a unifying framework called
gradient boosting machines which was previously discussed in the regression
trees chapter.
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1 Initialized all predictions to the sample log-odds: f
(0)
i = log p̂

1−p̂ .

2 for iteration j = 1 . . .M do

3 Compute the residual (i.e. gradient) zi = yi − p̂i

4 Randomly sample the training data

5 Train a tree model on the random subset using the residuals as
the outcome

6 Compute the terminal node estimates of the Pearson residuals:

ri =
1/n

∑n
i (yi−p̂i)

1/n
∑

n
i p̂i(1−p̂i)

7 Update the current model using fi = fi + λf
(j)
i

8 end

Algorithm 14.3: Simple gradient boosting for classification (2-class)

Akin to the regression setting, when trees are used as the base learner,
basic gradient boosting has two tuning parameters: tree depth (or interac-
tion depth) and number of iterations. One formulation of stochastic gradient
boosting models an event probability, similar to what we saw in logistic re-
gression, by

p̂i =
1

1 + exp [−f(x)]
,

where f(x) is a model prediction in the range of [−∞,∞]. For example, an

initial estimate of the model could be the sample log odds, f
(0)
i = log p̂

1−p̂ ,
where p is the sample proportion of one class from the training set.

Using the Bernoulli distribution, the algorithm for stochastic gradient
boosting for two classes is shown in Algorithm 14.3.

The user can tailor the algorithm more specifically by selecting an appro-
priate loss function and corresponding gradient (Hastie et al. 2008). Shrinkage
can be implemented in the final step of Algorithm 14.3. Furthermore, this al-
gorithm can be placed into the stochastic gradient boosting framework by
adding a random sampling scheme prior to the first step in the inner For

loop. Details about this process can be found in Sect. 8.6.
For the grant data a tuning parameter grid was constructed where inter-

action depth ranged from 1 to 9, number of trees ranged from 100 to 2,000,
and shrinkage ranged from 0.01 to 0.1. This grid was applied to constructing
a boosting model where the categorical variables were treated as indepen-
dent categories and separately as grouped categories. For the independent
category model, the optimal area under the ROC curve was 0.94, with an
interaction depth of 9, number of trees 1,300, and shrinkage 0.01. For the
grouped category model, the optimal area under the ROC curve was 0.92,
with an interaction depth of 7, number of trees 100, and shrinkage 0.01 (see
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Fig. 14.9). In this case, the independent category model performs better than
the grouped category model on the basis of ROC. However, the number of
trees in each model was substantially different, which logically follows since
the binary predictor set is larger than the grouped categories.

An examination of the tuning parameter profiles for the grouped category
and independent category predictors displayed in Figs. 14.10 and 14.11 reveals
some interesting contrasts. First, boosting independent category predictors
has almost uniformly better predictive performance across tuning parame-
ter settings relative to boosting grouped category predictors. This pattern is
likely because only one value for many of the important grouped category
predictors contains meaningful predictive information. Therefore, trees using
the independent category predictors are more easily able to find that infor-
mation quickly which then drives the boosting process. Within the grouped
category predictors, increasing the shrinkage parameter almost uniformly de-
grades predictive performance across tree depth. These results imply that for
the grouped category predictors, boosting obtains most of its predictive infor-
mation from a moderately sized initial tree, which is evidenced by comparable
AUCs between a single tree (0.89) and the optimal boosted tree (0.92).

Boosting independent category predictors shows that as the number of
trees increases, model performance improves for low values of shrinkage and
degrades for higher values of shrinkage. But, whether a lower or higher value
of shrinkage is selected, each approach finds peak predictive performance
at an ROC of approximately 0.94. This result implies, for these data, that
boosting can find an optimal setting fairly quickly without the need for too
much shrinkage.

Variable importance for boosting in the classification setting is calculated
in a similar manner to the regression setting: within each tree in the ensemble,
the improvement based on the splitting criteria for each predictor is aggre-
gated. These importance values are then averaged across the entire boosting
ensemble.

14.6 C5.0

C5.0 is a more advanced version of Quinlan’s C4.5 classification model that
has additional features, such as boosting and unequal costs for different types
of errors. Like C4.5, it has tree- and rule-based versions and shares much of
its core algorithms with its predecessor. Unlike C4.5 or Cubist, there is very
little literature on the improvements and our description comes largely from
evaluating the program source code, which was made available to the public
in 2011.

The model has many features and options and our discussion is broken
down into four separate areas: creating a single classification tree, the cor-
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Fig. 14.9: The ROC curves for the boosted tree model. The area under the
curve for independent categories was 0.936 and for the grouped category
model the AUC was 0.916
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Fig. 14.11: Tuning parameter profiles for the boosted tree model using inde-
pendent categories

responding rule-based model, C5.0’s boosting procedure, and miscellaneous
features of the algorithm (e.g., variable importance etc).

Classification Trees

C5.0 trees have several basic improvements that are likely to generate smaller
trees. For example, the algorithm will combine nonoccurring conditions for
splits with several categories. It also conducts a final global pruning proce-
dure that attempts to remove the sub-trees with a cost-complexity approach.
Here, sub-trees are removed until the error rate exceeds one standard error
of the baseline rate (i.e., no pruning). Initial experimentation suggests that
these additional procedures tend to create simpler trees than the previous
algorithm.

The nominal C5.0 tree was fit to the grant data with the categorical pre-
dictors treated as cohesive sets. The tree had 86 terminal nodes and resulted
in an area under the ROC curve of 0.685. The five most prolific predictors in
the tree were contract value band (six splits), numeric day of the year (six
splits), sponsor code (five splits), category code (four splits), and day of the
week (four splits). Recall that the analogous J48 tree had many more terminal
nodes (2,918), which was primarily due to how splits were made on categor-
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ical variables with many possible values, such as the sponsor code. The C5.0
tree avoids this issue using the heuristic algorithm described in Sect. 14.1 that
attempts to consolidate the categories into two or more smaller groups. If this
option is turned off in C5.0, the tree is much larger (213 terminal nodes) due
to the categorical predictors. However, the area under the ROC curve for the
larger tree (0.685) is nearly the same as the smaller tree.

Neither C5.0 model approaches the size of the previously described J48
tree. For J48 and C5.0 (without grouping), categorical predictors with many
values are used in more splits, and, at each split, they tend to result in more
than two branches when the grouping option is not used.

Classification Rules

The process used for creating rules is similar to C4.5; an initial tree is grown,
collapsed into rules, then the individual rules are simplified via pruning and a
global procedure is used on the entire set to potentially reduce the number of
constituent rules. The process for pruning conditions within a rule and sim-
plifying the ruleset follows C4.5, but C5.0 does not order the rules. Instead,
when predicting new samples, C5.0 uses all active rules, each of which votes
for the most likely class. The votes for each class are weighted by the confi-
dence values and the class associated with the highest vote is used. However,
the predicted confidence value is the one associated with the most specific
active rule. Recall that C4.5 sorts the rules, and uses the first active rule for
prediction.

The grant data were analyzed with this algorithm. The rule-based model
consists of 22 rules with an estimated area under the ROC curve of 0.675.
The complexity of the model is much simpler than PART. When ordered by
the confidence value of the rule, the top three rules to predict a successful
grant are:

1. (First day of the year)
2. (The number of chief investigators > 0) and (the number of principal

supervisors ≤ 0) and (the number of student chief investigators ≤ 0) and
(the number of unsuccessful grants by chief investigators ≤ 0) and (SEO
code �= 730106) and (numeric day of the year ≤ 209)

3. (The number of external chief investigators ≤ 0) and (the number of chief
investigators born around 1975 ≤ 0) and (the number of successful grants
by chief investigators ≤ 0) and (numeric day of the year > 109) and (un-
known category code) and (day of the week in Tues, Fri, Mon, Wed, Thurs)

Similarly, the top three rules for unsuccessful grants are:

1. (The number of unsuccessful grants by chief investigators > 0) and (nu-
meric day of the year > 327) and (sponsor code in 2B, 4D, 24D, 60D,
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90B, 32D, 176D, 7C, 173A, 269A) and (contract value band in Unk, J)
and (CategoryCode in 10A, 30B, 30D, 30C)

2. (The number of chief investigators ≤ 1) and (the number of unsuccessful
grants by chief investigators > 0) and (the number of B journal papers
by chief investigators > 3) and (sponsor code = 4D) and (contract value
band in B, Unk, J) and (Month in Nov, Dec, Feb, Mar, May, Jun)

3. (The number of chief investigators > 0) and (the number of chief inves-
tigators born around 1945 ≤ 0) and (the number of successful grants by
chief investigators ≤ 0) and (numeric day of the year > 209) and (sponsor
code in 21A, 60D, 172D, 53A, 103C, 150B, 175C, 93A, 207C, 294B)

There were 11 rules to predict successful grants and 11 for unsuccessful
outcomes. The predictors involved in the most rules were the number of
unsuccessful grants by chief investigators (11 rules), contract value band (9
rules), category code (8 rules), numeric day of the year (8 rules), and Month
(5 rules).

C5.0 has other features for rule-based models. For example, the model can
create utility bands. Here, the utility is measured as the increase in error that
occurs when the rule is removed from the set. The rules are ordered with
an iterative algorithm: the model removes the rule with the smallest utility
and recomputes the utilities for the other rules. The sequence in which the
rules are removed defines their importance. For example, the first rule that is
removed is associated with the lowest utility and the last rule with the highest
utility. The bands are groups of rules of roughly equal size based on the utility
order (highest to smallest). The relationship between the cumulative error
rate can be profiled as the groups of rules are added to the model.

Boosting

C5.0’s boosting procedure is similar to the previously described AdaBoost
algorithm in the basic sense: models are fit sequentially and each iteration
adjusts the case weights based on the accuracy of a sample’s prediction. There
are, however, some notable differences. First, C5.0 attempts to create trees
that are about the same size as the first tree by coercing the trees to have
about the same number of terminal nodes per case as the initial tree. Previ-
ous boosting techniques treated the tree complexity as a tuning parameter.
Secondly, the model combines the predictions from the constituent trees dif-
ferently than AdaBoost. Each boosted model calculates the confidence values
for each class as described above and a simple average of these values is cal-
culated. The class with the largest confidence value is selected. Stage weights
are not calculated during the model training process. Third, C5.0 conducts
two sorts of “futility analysis” during model training. The model will auto-
matically stop boosting if the model is very effective (i.e., the sum of the
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weights for the misclassified samples is less than 0.10) or if it is highly inef-
fective (e.g., the average weight of incorrect samples is greater than 50%).
Also, after half of the requested boosting iterations, each sample is assessed
to determine if a correct prediction is possible. If it is not, the case is dropped
from further computations.

Finally, C5.0 uses a different weighting scheme during model training.
First, some notation:

N = training set size

N− = number of incorrectly classified samples

wk = case weight for sample at the kth boosting iteration

S+ = sum of weights for correctly classified samples

S− = sum of weights for incorrectly classified samples

The algorithm begins by determining the midpoint between the sum of the
weights for misclassified samples and half of the overall sum of the weights

midpoint =
1

2

[
1

2
(S− + S+)− S−

]
=

1

4
(S+ − S−).

From this, the correctly classified samples are adjusted with the equation

wk = wk−1 × S+ −midpoint

S+

and the misclassified samples are updated using

wk = wk−1 +
midpoint

N−
.

This updating scheme gives a large positive jump in the weights when a
sample is incorrectly predicted. When a sample is correctly predicted, the
multiplicative nature of the equation makes the weights drop more slowly
and with a decreasing rate as the sample continues to be correctly predicted.
Figure 14.12 shows an example of the change in weights for a single sample
over several boosting iterations.

Quinlan (1996a) describes several experiments with boosting and bagging
tree-based models including several where boosting C4.5 resulted in a less
effective model.

Other Aspects of the Model

C5.0 measures predictor importance by determining the percentage of
training set samples that fall into all the terminal nodes after the split. For
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Fig. 14.12: An example of the sample weighting scheme using C5.0 when
boosting

example, the predictor in the first split automatically has an importance mea-
surement of 100% since all samples are affected by this split. Other predictors
may be used frequently in splits, but if the terminal nodes cover only a hand-
ful of training set samples, the importance scores may be close to zero. The
same strategy is applied to rule-based models and boosted versions of the
model.

C5.0 also has an option to winnow or remove predictors: an initial algo-
rithm uncovers which predictors have a relationship with the outcome, and
the final model is created from only the important predictors. To do this, the
training set is randomly split in half and a tree is created for the purpose of
evaluating the utility of the predictors (call this the “winnowing tree”). Two
procedures characterize the importance of each predictor to the model:

1. Predictors are considered unimportant if they are not in any split in the
winnowing tree.

2. The half of the training set samples not included to create the winnowing
tree are used to estimate the error rate of the tree. The error rate is also
estimated without each predictor and compared to the error rate when all
the predictors are used. If the error rate improves without the predictor,
it is deemed to be irrelevant and is provisionally removed.

Once the tentative list of non-informative predictors is established, C5.0 recre-
ates the tree. If the error rate has become worse, the winnowing process is
disabled and no predictors are excluded.
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After the important predictors are established (if any), the conventional
C5.0 training process is used with the full training set but with only the
predictors that survived the winnowing procedure.

For example, C5.0 split the grant data into roughly equal parts, built a tree
on one-half of the data, and used the second half to estimate the error rate to
be about 14.6%. When the predictor related to the number of student chief
investigators was excluded, the error rate decreased slightly to 14.2%. Given
this, the number of student chief investigators was excluded from further
consideration. Conversely, when the contract value band was excluded, the
error rate rose to 24.8%. This predictor was retained for subsequent C5.0
models.

Grant Data

For the grant data, several variations of the C5.0 model were evaluated:

• Single tree- and rule-based models
• Tree and rules with boosting (up to 100 iterations)
• All predictors and the winnowed set
• The two previously described approaches for handling categorical predic-

tors

For the last set of model conditions, there was very little difference in the
models. Figure 14.13 shows the ROC curves for the two methods of encoding
the categorical predictors. The curves are almost identical.

The top panel of Fig. 14.13 shows the tuning profile for the C5.0 models
with grouped categories. There was a slight decrease in performance when
the winnowing algorithm was applied, although this is likely to be within the
experimental noise of the data. Boosting clearly had a positive effect for these
models and there is marginal improvement after about 50 iterations. Although
single rules did worse than single trees, boosting showed the largest impact
on the rule-based models, which ended up having superior performance. The
optimal area under the ROC curve for this model was 0.942, the best seen
among the models.

What predictors were used in the model? First, it may be helpful to know
how often each predictor was used in a rule across all iterations of boosting.
The vast majority of the predictors were used rarely; 99% of the predictors
were used in less than 0.71% of the rules. The ten most frequent predictors
were: contract value band (9.2%), the number of unsuccessful grants by chief
investigators (8.3%), the number of successful grants by chief investigators
(7.1%), numeric day of the year (6.3%), category code (6%), Month (3.5%),
day of the week (3.1%), sponsor code (2.8%), the number of external chief
investigators (1.1%), and the number of C journal papers by chief investiga-
tors (0.9%). As previously described, the predictors can be ranked by their
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importance values, as measured by the aggregate percentage of samples cov-
ered by the predictor. With boosting, this metric is less informative since
the predictor in the first split is calculated to have 100% importance. In this
model, where a significant number of boosting iterations were used, 40 pre-
dictors had importance values of 100%. This model only used 357 predictors
(24%).

14.7 Comparing Two Encodings of Categorical
Predictors

All of the models fit in this chapter used two methods for encoding cate-
gorical predictors. Figure 14.14 shows the results of the holdout set for each
model and approach. In general, large differences in the area under the ROC
curve were not seen between the two encodings. J48 saw a loss in sensitiv-
ity with separate binary dummy variables, while stochastic gradient boosting
and PART have losses in specificity when using grouped variables. In some
cases, the encodings did have an effect on the complexity of the model. For
the boosted trees, the choice of encodings resulted in very different tuning
profiles, as demonstrated in Figs. 14.10 and 14.11. It is difficult to extrapolate
these findings to other models and other data sets, and, for this reason, it
may be worthwhile to try both encodings during the model training phase.

14.8 Computing

This section uses functions from the following packages: C50, caret, gbm, ipred,
partykit, pROC, randomForest, and RWeka. This section also uses the same R
objects created in Sect. 12.7 that contain the Grant Applications data (such
as the data frame training).

In addition to the sets of dummy variables described in Sect. 12.7, sev-
eral of the categorical predictors are encoded as R factors: SponsorCode,
ContractValueBand, CategoryCode, and Weekday. When fitting models with inde-
pendent categories for these predictors, the character vector fullSet is used.
When treating the categorical predictors as a cohesive set, an alternate list of
predictors is contained in the vector factorPredictors, which contains the fac-
tor versions of the relevant data. Additionally, the character string factorForm

is an R formula created using all the predictors contained in factorPredictors

(and is quite long).
A good deal of the syntax shown in this section is similar to other comput-

ing sections, especially the previous one related to regression trees. The focus
here will be on the nuances of individual model functions and interpreting
their output. Some code is shown to recreate the analyses in this chapter.
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Fig. 14.13: Top: The parameter tuning profile for the C5.0 model using
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Fig. 14.14: The effect of different methods of representing categorical predic-
tors in tree- and rule-based models. “Grouped” indicates that the categories
for a predictor were treated as a cohesive set, while “independent” indicates
that the categories were converted to independent dummy variables prior to
modeling

A comprehensive program for the models shown is contained in the Chapter
directory of the AppliedPredictiveModeling package.

Classification Trees

There are a number of R packages to build single classification trees. The
primary package is rpart. As discussed in regression, the function takes only
the formula method for specifying the exact form of the model.

There are a large number of predictors for the grant data, and, as previ-
ously mentioned, an R formula was created programmatically to model the
classes for grouped categories. The following syntax fits a CART model to
these predictors with our data splitting strategy:

> library(rpart)

> cartModel <- rpart(factorForm, data = training[pre2008,])

This automatically grows and prunes the tree using the internal cross-
validation procedure. One important argument for classification is parms.
Here, several alterations to the model training process can be declared, such
as the prior probabilities of the outcome and the type of splitting (either
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the Gini coefficient or the information statistic). These values should be in a
list.6 See ?rpart for the details. Also, the control argument can customize the
fitting procedure in terms of the numerical methods (such as the tree depth).

The model output is somewhat different than in regression trees. To show
this we generate a smaller model with two predictors:

> rpart(Class ~ NumCI + Weekday, data = training[pre2008,])

n= 6633

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 6633 3200 unsuccessful (0.49 0.51)
2) Weekday=Sun 223 0 successful (1.00 0.00) *
3) Weekday=Fri,Mon,Sat,Thurs,Tues,Wed 6410 3000 unsuccessful (0.47 0.53)

6) Weekday=Mon,Thurs,Tues 2342 1000 successful (0.57 0.43) *
7) Weekday=Fri,Sat,Wed 4068 1700 unsuccessful (0.41 0.59) *

The output shows the split variable/value, along with how many samples
were partitioned into the branch (223 for the second node in the output
above). The majority class is also printed (successful for node 2) and the
predicted class probabilities for samples that terminate in this node.

Prediction syntax is nearly the same as other models in R. The predict

function, by default, produces probabilities for each class. Using
predict(object, type = "class") generates a factor vector of the winning
class.

The R implementation of C4.5 is in the RWeka package in a function called
J48. The function also takes a model formula:

> library(RWeka)

> J48(Class ~ NumCI + Weekday, data = training[pre2008,])

J48 pruned tree
------------------

Weekday = Fri: unsuccessful (1422.0/542.0)
Weekday = Mon: successful (1089.0/455.0)
Weekday = Sat
| NumCI <= 1: unsuccessful (1037.0/395.0)
| NumCI > 1
| | NumCI <= 3: unsuccessful (378.0/185.0)
| | NumCI > 3: successful (61.0/26.0)
Weekday = Sun: successful (223.0)
Weekday = Thurs
| NumCI <= 0: unsuccessful (47.0/21.0)
| NumCI > 0: successful (520.0/220.0)
Weekday = Tues
| NumCI <= 2
| | NumCI <= 0: unsuccessful (45.0/21.0)
| | NumCI > 0: successful (585.0/251.0)

6 An example of this type of argument is shown in Sect. 16.9 where rpart is fit using
with differential costs for different types of errors.
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| NumCI > 2: unsuccessful (56.0/22.0)
Weekday = Wed: unsuccessful (1170.0/521.0)

Number of Leaves : 12

Size of the tree : 18

Recall that this implementation of C4.5 does not attempt to group the
categories prior to pruning. The prediction function automatically pro-
duces the winning classes and the class probabilities can be obtained from
predict(object, type = "prob").

When visualizing CART or J48 trees, the plot function from the partykit
package can create detailed displays. The objects must be converted to the
appropriate class with as.party, followed by the plot function.

A single C5.0 tree can be created from the C50 package:

> library(C50)

> C5tree <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,])

> C5tree

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ])

Classification Tree
Number of samples: 6633
Number of predictors: 2

Tree size: 2

Non-standard options: attempt to group attributes
> summary(C5tree)

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ])

C5.0 [Release 2.07 GPL Edition] Thu Dec 6 13:53:14 2012
-------------------------------

Class specified by attribute `outcome'

Read 6633 cases (3 attributes) from undefined.data

Decision tree:

Weekday in Tues,Mon,Thurs,Sun: successful (2565/1010)
Weekday in Fri,Wed,Sat: unsuccessful (4068/1678)

Evaluation on training data (6633 cases):

Decision Tree
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----------------
Size Errors

2 2688(40.5%) <<

(a) (b) <-classified as
---- ----
1555 1678 (a): class successful
1010 2390 (b): class unsuccessful

Attribute usage:

100.00% Weekday

Time: 0.0 secs

Note that, unlike J48, this function is able to split the weekday values from
groups of values. The control function for this model (C5.0Control) turns this
feature off (subset = FALSE). Other options are available here, such as win-
nowing and the confidence factor for splitting. Like J48, the default prediction
function produces classes and type = "prob" produces the probabilities.

There are wrappers for these models using the caret function train. For
example, to fit the grouped category model for CART, we used:

> set.seed(476)

> rpartGrouped <- train(x = training[,factorPredictors],

+ y = training$Class,

+ method = "rpart",

+ tuneLength = 30,

+ metric = "ROC",

+ trControl = ctrl)

Recall that the ctrl object specifies which data are in the holdout set and
what performance measures should be calculated (e.g., sensitivity, specificity,
and the area under the ROC curve). The model codes for J48 and C5.0 trees
are J48 and C5.0Tree, respectively. The main differences here between train

and the original model function are a unified interface to the models and the
ability to tune the models with alternative metrics, such as the area under
the ROC curve.

Note that rpart, C5.0, and J48 use the formula method differently than
most other functions. Usually, the formula method automatically decomposes
any categorical predictors to a set of binary dummy variables. These func-
tions respect the categorical nature of the data and treat these predictors as
grouped sets of categories (unless the data are already converted to dummy
variables). The train function follows the more common convention in R,
which is to create dummy variables prior to modeling. This is the main rea-
son the code snippet above is written with the non-formula method when
invoking train.
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Rules

There are several rule-based models in the RWeka package. The PART function
creates models based on Frank and Witten (1998). Its syntax is similar to
J48:

> PART(Class ~ NumCI + Weekday, data = training[pre2008,])

PART decision list
------------------

Weekday = Fri: unsuccessful (1422.0/542.0)

Weekday = Sat AND
NumCI <= 1: unsuccessful (1037.0/395.0)

Weekday = Mon: successful (1089.0/455.0)

Weekday = Thurs AND
NumCI > 0: successful (520.0/220.0)

Weekday = Wed: unsuccessful (1170.0/521.0)

Weekday = Tues AND
NumCI <= 2 AND
NumCI > 0: successful (585.0/251.0)

Weekday = Sat AND
NumCI <= 3: unsuccessful (378.0/185.0)

Weekday = Sun: successful (223.0)

Weekday = Tues: unsuccessful (101.0/43.0)

Weekday = Sat: successful (61.0/26.0)

: unsuccessful (47.0/21.0)

Number of Rules : 11

Other RWeka functions for rules can be found on the help page ?Weka_

classifier_rules.
C5.0 rules are created using the C5.0 function in the same manner as trees,

but with the rules = TRUE option:

> C5rules <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,],

+ rules = TRUE)

> C5rules

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], rules = TRUE)

Rule-Based Model
Number of samples: 6633
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Number of predictors: 2

Number of Rules: 2

Non-standard options: attempt to group attributes
> summary(C5rules)

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], rules = TRUE)

C5.0 [Release 2.07 GPL Edition] Thu Dec 6 13:53:14 2012
-------------------------------

Class specified by attribute `outcome'

Read 6633 cases (3 attributes) from undefined.data

Rules:

Rule 1: (2565/1010, lift 1.2)
Weekday in Tues, Mon, Thurs, Sun
-> class successful [0.606]

Rule 2: (4068/1678, lift 1.1)
Weekday in Fri, Wed, Sat
-> class unsuccessful [0.587]

Default class: unsuccessful

Evaluation on training data (6633 cases):

Rules
----------------

No Errors

2 2688(40.5%) <<

(a) (b) <-classified as
---- ----
1555 1678 (a): class successful
1010 2390 (b): class unsuccessful

Attribute usage:

100.00% Weekday

Time: 0.0 secs
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Prediction follows the same syntax as above. The variable importance scores
for C5.0 trees and rules is calculated using the C5imp function or the varImp

function in the caret package.
When working with the train function, model codes C5.0Rules and PART

are available.
Other packages for single trees include party (conditional inference trees),

tree (CART trees), oblique.tree (oblique trees), partDSA (for the model of
Molinaro et al. (2010)), and evtree (trees developed using genetic algorithms).
Another class of partitioning methods not discussed here called Logic Regression
(Ruczinski et al. 2003) are implemented in several packages, including Logi-
cReg.

Bagged Trees

The primary tree bagging package is ipred. The bagging function creates
bagged versions of rpart trees using the formula method (another function,
ipredbagg, uses the non-formula method). The syntax is familiar:

> bagging(Class ~ Weekday + NumCI, data = training[pre2008,])

The argument nbagg controls how many trees are in the ensemble (25 by
default). The default for the standard predict method is to determine the
winning class and type = "prob" will produce the probabilities.

Another function in the caret package, called bag, creates bag models more
generally (i.e., models other than trees).

Random Forest

The R port of the original random forest program is contained in the ran-
domForest package and its basic syntax is identical to the regression tree
code shown on p. 215. The default value of mtry ≈ √

p is different than in
regression. One option, cutoff, is specific to classification and controls the
voting cutoff(s) for determining the winning class from the ensemble of trees.
This particular option is also available when using random forest’s predict

function.
The model takes the formula and non-formula syntax. In either case, any

categorical predictors encoded as R factor variables are treated as a group.
The predict syntax defaults to generating the winning class, but the type

argument allows for predicting other quantities such as the class probabilities
(type = "prob") or the actual vote counts type = "votes".

A basic example for the grant data, with output, is:
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> library(randomForest)

> randomForest(Class ~ NumCI + Weekday, data = training[pre2008,])

Call:
randomForest(formula = Class ~ NumCI + Weekday, data = training[pre2008, ])

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 40.06%
Confusion matrix:

successful unsuccessful class.error
successful 1455 1778 0.5499536
unsuccessful 879 2521 0.2585294

Since only two predictors are included, only a single predictor is randomly
selected at each split.

The function prints the out-of-bag error estimate, as well as the analogous
confusion matrix. Out-of-bag estimates of the sensitivity and the false positive
rate (i.e., 1—specificity) are shown under the column class.error.

The model code for tuning a random forest model with train is "rf".
Other random forests functions are cforest (in the party package), obliqueRF

(forests from oblique trees in the obliqueRF package), rFerns (for the random
fern model of Ozuysal et al. (2010) in the rFerns package), and RRF (regularized
random forest models in the RRF package).

Boosted Trees

The primary boosted tree package in R is gbm, which implements stochas-
tic gradient boosting. The primary difference between boosting regression
and classification trees is the choice of the distribution of the data. The gbm

function can only accommodate two class problems and using distribution =

"bernoulli" is an appropriate choice here. Another option is distribution =

"adaboost" to replicate the loss function used by that methodology.
One complication when using gbm for classification is that it expects that

the outcome is coded as 0/1. An example of a simple model for the grant
data would be

> library(gbm)

> forGBM <- training

> forGBM$Class <- ifelse(forGBM$Class == "successful", 1, 0)

> gbmModel <- gbm(Class ~ NumCI + Weekday,

+ data = forGBM[pre2008,],

+ distribution = "bernoulli",

+ interaction.depth = 9,

+ n.trees = 1400,

+ shrinkage = 0.01,

+ ## The function produces copious amounts
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+ ## of output by default.

+ verbose = FALSE)

The prediction function for this model does not predict the winning class. Us-
ing predict(gbmModel, type = "response") will calculate the class probability
for the class encoded as a 1 (in our example, a successful grant was encoded
as a 1). This can be converted to a factor variable with the winning class:

> gbmPred <- predict(gbmModel,

+ newdata = head(training[-pre2008,]),

+ type = "response",

+ ## The number of trees must be

+ ## explicitly set

+ n.trees = 1400)

> gbmPred

[1] 0.5697346 0.5688882 0.5688882 0.5688882 0.5697346 0.5688882
> gbmClass <- ifelse(gbmPred > .5, "successful", "unsuccessful")

> gbmClass <- factor(gbmClass, levels = levels(training$Class))

> gbmClass

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

Fitting this model with train simplifies the process considerably. For exam-
ple, a factor variable can be used as the outcome format (train automatically
does the conversion). When predicting the winning class, a factor is produced.
If the class probabilities are required, then specify predict(object, type =

"prob") (train’s prediction function automatically uses the number of trees
that were found to be optimal during model tuning).

The original AdaBoost algorithm is available in the ada package. Another
function for boosting trees is blackboost in the mboost package. This package
also contains functions for boosting other types of models (such as logistic
regression) as does the bst package.

To train boosted versions of C5.0, the trials argument is used (with values
between 1 and 100).

> library(C50)

> C5Boost <- C5.0(Class ~ NumCI + Weekday, data = training[pre2008,],

+ trials = 10)

> C5Boost

Call:
C5.0.formula(formula = Class ~ NumCI + Weekday, data
= training[pre2008, ], trials = 10)

Classification Tree
Number of samples: 6633
Number of predictors: 2

Number of boosting iterations: 10 requested; 6 used due to early stopping
Average tree size: 2.5

Non-standard options: attempt to group attributes
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By default, the algorithm has internal tests that assess whether the boost-
ing is effective and will halt the model training when it diagnoses that it is
no longer effective (note the message that ten iterations were requested but
only six were used due to early stopping). This feature can be negated using
C5.0Control(earlyStopping = FALSE).

These models can be tuned by train using method values of gbm, ada, or
C5.0.

Exercises

14.1. Variable importance for the bagging, random forests, and boosting has
been computed for both the independent categories and the factor model
predictors. The top 16 important predictors for each method and predictor
set are presented in Fig. 14.15.

(a) Within each modeling technique, which factors are in common between
the independent category and factor models?

(b) How do these results compare with the most prolific predictors found in
the PART model results discussed in Sect. 14.2?

14.2. For the churn data described in Exercise 12.3:

(a) Fit a few basic trees to the training set. Should the area code be encoded
as independent dummy variables or as a grouped set of values?

(b) Does bagging improve the performance of the trees? What about boost-
ing?

(c) Apply rule-based models to the data. How is the performance? Do the
rules make any sense?

(d) Use lift charts to compare tree or rule models to the best techniques from
previous chapters.

14.3. Exercise 12.1 gives a detailed description of the hepatic injury data
set, where the primary scientific objective for these data is to construct a
model to predict hepatic injury status. Recall that random forests can be
performed with CART trees or conditional inference trees. Start R and use
these commands to load the data:

> library(caret)

> data(hepatic)

(a) Fit a random forest model using both CART trees and conditional infer-
ence trees to the chemistry predictors, using the Kappa statistic as the
metric as follows:
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Fig. 14.15: A comparison of variable importance for the ensemble methods of
bagging, random forests, and boosting for both the independent categories
and grouped categories predictors
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> library(caret)

> set.seed(714)

> indx <- createFolds(injury, returnTrain = TRUE)

> ctrl <- trainControl(method = "cv", index = indx)

> mtryValues <- c(5, 10, 25, 50, 75, 100)

> rfCART <- train(chem, injury,

+ method = "rf",

+ metric = "Kappa",

+ ntree = 1000,

+ tuneGrid = data.frame(.mtry = mtryValues))

> rfcForest <- train(chem, injury,

+ method = "cforest",

+ metric = "Kappa",

+ tuneGrid = data.frame(.mtry = mtryValues))

Which model has better performance, and what are the corresponding
tuning parameters?

(b) Use the following syntax to obtain the computation time for each model:

> rfCART$times$everything

> rfcForest$times$everything

Which model takes less computation time? Given the trade-off between
performance and computation time, which model do you prefer?

(c) Use the following syntax to obtain the variable importance for the top
ten predictors for each model:

> varImp(rfCART)

> varImp(rfcForest)

Are there noticeable differences in variable importance between the top
ten predictors for each model? Explain possible reasons for the differences.



Chapter 15

A Summary of Grant Application Models

The previous three chapters used a variety of different philosophies and
techniques to predict grant-funding success. In general, we believe that it is
prudent to evaluate a number of different models for each data set since it
is difficult to know which will do well a priori with any degree of certainty.

Before comparing models, recall that the data splitting process used the
pre-2008 grants to tune the model, and, once final parameters were deter-
mined, the entire training set (which consisted of a fraction of the 2008 grants)
was used to fit the model. The test set of 518, not yet used in our analyses,
consisted completely of year 2008 grants. As discussed in Sect. 12.1, the per-
formance on the test set is likely to be better than the results generated in
the tuning process since the final model parameters were based on some 2008
information.

Figure 15.1 shows a visualization of the area under the ROC curve for the
final models with the two data sets. Each point in the plot is for a particular
model from the last three chapters. The correlation between the two estimates
is high (0.96), although the tuning holdout set was more pessimistic than
the test set. On average, the test set was 0.029 units larger. Again, this
small but reproducible difference is likely due to the fact that the test set
predictions were produced from a model built with some 2008 information,
and these estimates are probably more relevant to predicting more recent
grants. An important point is that, despite differences between the holdout
and test set performance, model performance rankings are nearly the same
regardless of the data splitting process (see Table 15.1).

Figure 15.2 shows the area under the ROC curves for each model, estimated
using the test set grants. The bars represent 95% confidence intervals that
were derived using the bootstrap (Robin et al. 2011). These estimates of
uncertainty help in two ways. First, the intervals give the consumers of
the model an understanding about how good or bad the model may be.
The interval quantifies the variation in the model but is also reflective of
the data. For example, smaller test sets or noise (or mislabeling) in the re-
sponse (see Sect. 20.2) can lead to wider intervals. In this way, the confidence
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Fig. 15.1: A comparison of the year 2008 holdout areas under the ROC curve
and the AUC values that result from evaluating the test set. Each point
represents a model estimated in the last three chapters

interval helps gauge the weight of evidence available when comparing models.
The second benefit of the confidence intervals is to facilitate trade-offs
between models. If the confidence intervals for two models significantly over-
lap, this is an indication of (statistical) equivalence between the two and
might provide a reason to favor the less complex or more interpretable model.

Finally, before comparing models, we echo the comment made in Sect. 14.7:
the relative effectiveness of the models for these data cannot be used to
extrapolate to other situations. A low-ranking model for these data may beat
out others on a different data set. Any conclusions derived from these analyses
should be considered “forward-looking statements” and should be taken with
a grain of salt.

Across the models, which predictors had the largest effects?1 In many of
the models, the historical success and failure rates for the chief investiga-
tor played a large role in predicting grant outcomes (“nothing succeeds like

1 As previously noted, more formal statistical methods are much better at making
inferential statements on the importance of the predictors than variable importance
measures.
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Table 15.1: Ranked model performance across the 2008 holdout (training set)
and the 2008 test set

Model Holdout set Test set

C5.0 1 1
Boosted tree 2 4
Bagged tree 4 3
Random forest 5 2
FDA 3 6
Neural networks 6 5
Sparse LDA 8 7
glmnet 7 9
SVM (polynomial) 9 8
CART 12 10
LDA 10 12
MDA 11 11
Logistic regression 14 14
Nearest shrunken centroids 13 15
PLS 15 13
J48 16 16
PART 17 17
Naive Bayes 18 18
KNN 19 19

The methods have similar ROC curve rankings between the two sets (rank
correlation of the area under the curve: 0.96)

success”). Informative missingness seemed to occur in these data; unknown
values of the contract value band and sponsor code were heavily used in
many models. This itself is a likely surrogate or signal for some other piece
of information. Similarly, why was there a strong seasonal effect such that
grants in late December and early January (see Table 12.1 and Figs. 12.3
and 13.8) were likely to be more successful? In this case, it may be difficult
to tell if increased success was due to the investigators that submit grants
during this time or if the improvement was due to the grant reviewers. Finally,
grants with category code 30B were associated with decreased success rates.
Understanding this trend would help add another piece to the puzzle for those
interested in improving success rates.
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Fig. 15.2: A plot of the test set ROC curve AUCs and their associated 95%
confidence intervals



Chapter 16

Remedies for Severe Class Imbalance

When modeling discrete classes, the relative frequencies of the classes can
have a significant impact on the effectiveness of the model. An imbalance
occurs when one or more classes have very low proportions in the training data
as compared to the other classes. Imbalance can be present in any data set or
application, and hence, the practitioner should be aware of the implications
of modeling this type of data.

Here are a few practical settings where class imbalance often occurs:

• Online advertising: An advertisement is presented to a viewer which creates
an impression. The click through rate is the number of times an ad was
clicked on divided by the total number of impressions and tends to be very
low (Richardson et al. 2007 cite a rate less than 2.4%).

• Pharmaceutical research: High-throughput screening is an experimental
technique where large numbers of molecules (10000s) are rapidly evaluated
for biological activity. Usually only a few molecules show high activity;
therefore, the frequency of interesting compounds is low.

• Insurance claims: Artis et al. (2002) investigated auto insurance damage
claims in Spain between the years of 1993 and 1996. Of claims undergoing
auditing, the rate of fraud was estimated to be approximately 22%.

This chapter discusses the impact of class imbalance on performances
measures, methodologies for post-processing model predictions, and predic-
tive models that can mitigate the issue during training. However, before
proceeding, we will describe another case study which we will use to illustrate
the various approaches to addressing class imbalance.

16.1 Case Study: Predicting Caravan Policy Ownership

A data set generated by the computational intelligence and learning (CoIL)
research network is used to illustrate methods for combatting class imbalances.
The 2000 CoIL Challenge was to predict whether customers would purchase
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caravan insurance1; Van Der Putten and Van Someren (2004) discuss these
data, the challenge, and some of the solutions to the problem. Our discussion
of these data is limited to illustrating the effect of class imbalances.

The outcome, whether the costumer purchased caravan insurance, is
highly unbalanced with only 6% of customers having purchased policies.
The predictors in the data set consisted of:

• Customer subtype designation, such as “Traditional Families” or “Afflu-
ent Young Families.” There were 39 unique values, although many of the
subtypes comprise less than 5% of the customers.

• Demographic factors, such as religion, education level, social class, income,
and 38 others. The values of the predictors were derived from data at the
zip code level, so customers residing in the same zip code will have the same
values for these attributes.2

• Product ownership information, such as the number of (or the contribution
to) policies of various types.

In all there were 85 predictors. Many of the categorical predictors had 10 or
more levels and the count-based predictors tended to be fairly sparse (i.e., few
nonzero values).

To demonstrate different methodologies with these data, stratified random
sampling (where the strata was the response variable) was used to create three
different data sets:

• A training set of customers (n = 6877) that will be used to estimate model
parameters, tuning models, etc.

• A small evaluation set of customers (n = 983) that will be used for
developing post-processing techniques, such as alternative probability
cutoffs

• A customer test set (n = 1962) that is solely used for final evaluations of
the models

The rate of customers with caravan policies in each of these data sets was
roughly the same across all three data sets (6%, 5.9%, and 6%, respectively).

16.2 The Effect of Class Imbalance

To begin, three predictive models were used to model the data: random forest,
a flexible discriminant analysis model (with MARS hinge functions), and
logistic regression. To tune the models, 10-fold cross-validation was used;
each holdout sample contained roughly 687 customers, which should provide

1 We would like to thank Peter van der Putten for permission to use these data.
2 Giving all customers within the same zip code the same values for the predictors
implies that there is unseen noise within the predictors. The implications of predictor
set noise are discussed in Sect. 20.3.



16.2 The Effect of Class Imbalance 421

Table 16.1: Results for three predictive models using the evaluation set

Model Accuracy Kappa Sensitivity Specificity ROC AUC

Random forest 93.5 0.091 6.78 99.0 0.757
FDA (MARS) 93.8 0.024 1.69 99.7 0.754
Logistic regression 93.9 0.027 1.69 99.8 0.727

reasonable estimates of uncertainty. To choose the optimal model, the area
under the receiver operating characteristic (ROC) curve was optimized.3

The random forest model used 1500 trees in the forest and was tuned over
5 values of the mtry parameter (Sect. 8.5); the final model had an optimal
mtry value of 126. The FDA model used first-degree features and was tuned
over 25 values for the number of retained terms. The resampling process de-
termined that 13 model terms was appropriate. Logistic regression utilized a
simple additive model (i.e., no interactions or nonlinear terms) with a reduced
predictor set (many near-zero variance predictors were removed so that the
model resulted in a stable solution).

A number of different performance metrics were estimated including:
overall accuracy, Kappa, area under the ROC curve, sensitivity, and speci-
ficity (where a purchased policy was defined as the “event” of interest).
All models predicted the samples in the evaluation data set and yielded very
similar results, as shown in Table 16.1. In each model, any patterns that were
useful for predicting the outcome were overwhelmed by the large percentage
of customers with no caravan insurance. In fact, none of the models predicted
more than 13 customers on the evaluation set as having insurance, despite 59
customers with insurance in the evaluation set. The implication of these re-
sults is that the models achieve good specificity (since almost every customer
is predicted no insurance) but have poor sensitivity.

The imbalance also had a severe effect on the predicted class probabilities.
In the random forest model, for example, 82% of the customers have a pre-
dicted probability of having insurance of 10% or less. This highly left-skewed
predicted probability distribution also occurs for the other two models.

Figure 16.1 shows the lift plots and ROC curves for the evaluation set.
The lift curves are very similar and can be used to determine how many
individuals would need to be contacted in order to capture a specific percent
of those who might purchase the policy. For example, to find about 60%
of those with policies using the random forest model, around 30% of the
population would need to be sampled. The ROC curves show considerable
overlap and does not differentiate the models.

3 The results of the tuning process are summarized here. The full details of the process
can be found in the Chapters directory of the AppliedPredictiveModeling package and
in the Computing section of this chapter.
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Fig. 16.1: Top: Evaluation set ROC curves for each of the three baseline
models. Bottom: The corresponding lift plots

In this figure, there is a strong similarity between the lift and ROC curves.
When classes are more balanced, lift plots and ROC curves are not this
similar; rather, the similarity we see in Fig. 16.1 is due to class imbalance.
In general, this is not the case but is an artifact of the severe class imbalance.
When the classes are more balanced, the curves are unlikely to have similar
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patterns. For example, the maximum area on the lift curve is bounded by the
event rate in the data (as shown with the grey background area in the loft
plot) while the ROC curve has no such limitation.

The remaining sections discuss other strategies for overcoming class
imbalances. The next section discusses how model tuning can be used to in-
crease the sensitivity of the minority class while Sect. 16.4 demonstrates how
alternative probability cutoffs can be derived from the data to improve the
error rate on the minority class. This amounts to post-processing the model
predictions to redefine the class predictions. Modifications of case weights
and prior probabilities are also discussed. Another section examines how the
training data can be altered to mitigate the class imbalance prior to model
training. The last approach described in Sect. 16.6 demonstrates how, for
some models, the model training process can be altered to emphasize the ac-
curacy of the model for the less frequent class(es). In this case, the estimated
model parameters are being modified instead of post-processing the model
output.

16.3 Model Tuning

The simplest approach to counteracting the negative effects of class imbalance
is to tune the model to maximize the accuracy of the minority class(es).
For insurance prediction, tuning the model to maximize the sensitivity may
help desensitize the training process to the high percentage of data without
caravan policies in the training set. The random forest model that was tuned
for these data did not show a meaningful trend in sensitivity across the tuning
parameter. The FDA model did show a trend; as the number of model terms
was increased, there was a rise in sensitivity from effectively 0% for very
simple models to 5.4% when 16 terms were retained. This minor improvement
in sensitivity comes at virtually no cost to specificity. Given that the increase
in sensitivity is not high enough to be considered acceptable, this approach
to solving the problem is not effective for this particular data set. The use of
model tuning for this purpose is revisited in Sect. 16.8.

16.4 Alternate Cutoffs

When there are two possible outcome categories, another method for increas-
ing the prediction accuracy of the minority class samples is to determine
alternative cutoffs for the predicted probabilities which effectively changes
the definition of a predicted event. The most straightforward approach is to
use the ROC curve since it calculates the sensitivity and specificity across
a continuum of cutoffs. Using this curve, an appropriate balance between
sensitivity and specificity can be determined.
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tively. Several possible probability cutoffs are used, including the threshold
geometrically closest to the perfect model (0.064)

Figure 16.2 shows the ROC curve for the random forest model based on
the evaluation set. Several cutoffs are shown on the curve and it is apparent
that decreasing the cutoff for the probability of responding increases the sen-
sitivity (at the expense of the specificity). There may be situations where the
sensitivity/specificity trade-off can be accomplished without severely com-
promising the accuracy of the majority class (which, of course, depends on
the context of the problem).

Several techniques exist for determining a new cutoff. First, if there is
a particular target that must be met for the sensitivity or specificity, this
point can be found on the ROC curve and the corresponding cutoff can be
determined. Another approach is to find the point on the ROC curve that is
closest (i.e., the shortest distance) to the perfect model (with 100% sensitivity
and 100% specificity), which is associated with the upper left corner of the
plot. In Fig. 16.2, a cutoff value of 0.064 would be the closest to the perfect
model. Another approach for determining the cutoff uses Youden’s J index
(see Sect. 11.2), which measures the proportion of correctly predicted samples
for both the event and nonevent groups. This index can be computed for each
cutoff that is used to create the ROC curve. The cutoff associated with the
largest value of the Youden index may also show superior performance relative
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Table 16.2: Confusion matrices for the test set for random forests using the
default and alternate cutoffs

0.50 Cutoff 0.064 Cutoff
Insurance no insurance Insurance no insurance

Insurance 11 19 71 441
Noinsurance 105 1827 45 1,405

to the default 50% value. For the random forest ROC curve, the cutoff that
maximizes the Youden index (0.021) is similar to the point closest to the
optimal model.

Using the evaluation set, the predicted sensitivity for the new cutoff of
0.064 is 64.4%, which is a significant improvement over the value generated
by the default cutoff. The consequence of the new cutoff is that the specificity
is estimated to drop from 99% to 75.9%. This may or may not be acceptable
based on the context of how the model will be used.

In our analysis, the alternate cutoff for the model was not derived from the
training or test sets. It is important, especially for small samples sizes, to use
an independent data set to derive the cutoff. If the training set predictions
are used, there is likely a large optimistic bias in the class probabilities that
will lead to inaccurate assessments of the sensitivity and specificity. If the test
set is used, it is no longer an unbiased source to judge model performance.
For example, Ewald (2006) found via simulation that post hoc derivation of
cutoffs can exaggerate test set performance.

Table 16.2 contains confusion matrices derived from the test set for the
default and alternate cutoffs. Predictions from the 50% cutoff echo the same
performances values shown by cross-validation (a sensitivity of 9.5% and a
specificity of 99%). For the new cutoff, the test set sensitivity was found to
be 61.2% while the specificity was calculated to be 76.1%. This estimated
difference in sensitivity between the two data sets (64.4% and 61.2%) is
likely due to the high uncertainty in the metric (which itself is a result of
the low frequency of events). These two values may be equivalent given the
experimental noise. To reiterate, this cutoff resulted from being as close as
possible to the optimal model. This may not be applicable in the context of
other problems in which case alternative trade-offs can be made.

It is worth noting that the core of the model has not changed. The same
model parameters are being used. Changing the cutoff to increase the sen-
sitivity does not increase the overall predictive effectiveness of the model.
The main impact that an alternative cutoff has is to make trade-offs between
particular types of errors. For example, in a confusion matrix, alternate cut-
offs can only move samples up and down rows of the matrix (as opposed to
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moving them from the off-diagonals to the diagonals). In other words, using
an alternative cutoff does not induce further separation between the classes.

Figure 16.2 and Table 16.2 demonstrate why, for many classification prob-
lems, comparing models on the basis of the default sensitivity and speci-
ficity may be misleading. Since a better cutoff may be possible, an analysis
of the ROC curve can lead to improvements in these metrics. As shown in
Fig. 16.2, a class imbalance can further exacerbate this issue. Consequently,
performance metrics that are independent of probability cutoffs (such as the
area under the ROC curve) are likely to produce more meaningful contrasts
between models. However, some predictive models only produce discrete class
predictions.

16.5 Adjusting Prior Probabilities

Some models use prior probabilities, such as näıve Bayes and discriminant
analysis classifiers. Unless specified manually, these models typically derive
the value of the priors from the training data. Weiss and Provost (2001a)
suggest that priors that reflect the natural class imbalance will materially bias
predictions to the majority class. Using more balanced priors or a balanced
training set may help deal with a class imbalance.

For the insurance data, the priors are 6% and 94% for the insured and
uninsured, respectively. The predicted probability of having insurance is ex-
tremely left-skewed for all three models and adjusting the priors can shift the
probability distribution away from small values. For example, new priors of
60% for the insured and 40% for the uninsured in the FDA model increase
the probability of having insurance significantly. With the default cutoff, pre-
dictions from the new model have a sensitivity of 71.2% and a specificity of
66.9% on the test set. However, the new class probabilities did not change
the rankings of the customers in the test set and the model has the same area
under the ROC curve as the previous FDA model. Like the previous tactics
for an alternative cutoff, this strategy did not change the model but allows
for different trade-offs between sensitivity and specificity.

16.6 Unequal Case Weights

Many of the predictive models for classification have the ability to use case
weights where each individual data point can be given more emphasis in the
model training phase. For example, previously discussed boosting approaches
to classification and regression trees are able to create a sequence of models,
each of which apply different case weights at each iteration.
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One approach to rebalancing the training set would be to increase the
weights for the samples in the minority classes (Ting 2002). For many models,
this can be interpreted as having identical duplicate data points with the
exact same predictor values. Logistic regression, for example, can utilize case
weights in this way. This procedure for dealing with a class imbalance is
related to the sampling methods discussed in next section.

16.7 Sampling Methods

When there is a priori knowledge of a class imbalance, one straightforward
method to reduce its impact on model training is to select a training set
sample to have roughly equal event rates during the initial data collection
(see, e.g., Artis et al. 2002). Basically, instead of having the model deal with
the imbalance, we can attempt to balance the class frequencies. Taking this
approach eliminates the fundamental imbalance issue that plagues model
training. However, if the training set is sampled to be balanced, the test set
should be sampled to be more consistent with the state of nature and should
reflect the imbalance so that honest estimates of future performance can be
computed.

If an a priori sampling approach is not possible, then there are post hoc
sampling approaches that can help attenuate the effects of the imbalance dur-
ing model training. Two general post hoc approaches are down-sampling and
up-sampling the data. Up-sampling is any technique that simulates or imputes
additional data points to improve balance across classes, while down-sampling
refers to any technique that reduces the number of samples to improve the
balance across classes.

Ling and Li (1998) provide one approach to up-sampling in which cases
from the minority classes are sampled with replacement until each class has
approximately the same number. For the insurance data, the training set
contained 6466 non-policy and 411 insured customers. If we keep the original
minority class data, adding 6055 random samples (with replacement) would
bring the minority class equal to the majority. In doing this, some minority
class samples may show up in the training set with a fairly high frequency
while each sample in the majority class has a single realization in the data.
This is very similar to the case weight approach shown in an earlier section,
with varying weights per case.

Down-sampling selects data points from the majority class so that the ma-
jority class is roughly the same size as the minority class(es). There are several
approaches to down-sampling. First, a basic approach is to randomly sample
the majority classes so that all classes have approximately the same size. An-
other approach would be to take a bootstrap sample across all cases such that
the classes are balanced in the bootstrap set. The advantage of this approach
is that the bootstrap selection can be run many times so that the estimate
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of variation can be obtained about the down-sampling. One implementation
of random forests can inherently down-sample by controlling the bootstrap
sampling process within a stratification variable. If class is used as the strati-
fication variable, then bootstrap samples will be created that are roughly the
same size per class. These internally down-sampled versions of the training
set are then used to construct trees in the ensemble.

The synthetic minority over-sampling technique (SMOTE), described by
Chawla et al. (2002), is a data sampling procedure that uses both up-sampling
and down-sampling, depending on the class, and has three operational pa-
rameters: the amount of up-sampling, the amount of down-sampling, and the
number of neighbors that are used to impute new cases. To up-sample for the
minority class, SMOTE synthesizes new cases. To do this, a data point is ran-
domly selected from the minority class and its K-nearest neighbors (KNNs)
are determined. Chawla et al. (2002) used five neighbors in their analyses,
but different values can be used depending on the data. The new synthetic
data point is a random combination of the predictors of the randomly se-
lected data point and its neighbors. While the SMOTE algorithm adds new
samples to the minority class via up-sampling, it also can down-sample cases
from the majority class via random sampling in order to help balance the
training set.

Figure 16.3 shows an example of sampling methods using a simulated data
set. The original data contain 168 samples from the first class and 32 from
the second (a 5.2:1 ratio). The down-sampled version of the data reduced
the total sample size to 64 cases evenly split between the classes. The up-
sampled data have 336 cases, now with 168 events. The SMOTE version of
the data has a smaller imbalance (with a 1.3:1 ratio) resulting from having
128 samples from the first class and 96 from the second. For the most part,
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the new synthetic samples are very similar to other cases in the data set; the
space encompassing the minority class is being filled in instead of expanding.

It should be noted that when using modified versions of the training set,
resampled estimates of model performance can become biased. For example,
if the data are up-sampled, resampling procedures are likely to have the same
sample in the cases that are used to build the model as well as the holdout
set, leading to optimistic results. Despite this, resampling methods can still
be effective at tuning the models.

A substantial amount of research has been conducted on the effective-
ness of using sampling procedures to combat skewed class distributions, most
notably Weiss and Provost (2001b), Batista et al. (2004), Van Hulse et al.
(2007), Burez and Van den Poel (2009), and Jeatrakul et al. (2010). These
and other publications show that, in many cases, sampling can mitigate the
issues caused by an imbalance, but there is no clear winner among the var-
ious approaches. Also, many modeling techniques react differently to sam-
pling, further complicating the idea of a simple guideline for which procedure
to use.

These sampling methods were applied to the random forest models for the
insurance data using the same tuning process as the original model. The ROC
and lift curves for the evaluation set for three of the random forest models
are shown in Fig. 16.4. Numerical summaries of the models are contained in
Table 16.3. In this table, the area under the ROC curve is calculated for the
evaluation and test sets. Using the evaluation set, new cutoffs for each model
were derived by choosing the point on the ROC curve closest to the optimal
model. The sensitivity and specificity values in this table are the result of
applying those cutoffs to the test set.

The results show that the up-sampling procedure had no real improvement
on the area under the curve. SMOTE showed an improvement in the evalua-
tion set, but the increase in the area under the ROC curve was not reproduced
in the larger test set. Simple down-sampling of the data also had a limited
effect on model performance. However, down-sampling inside the random
forest model had robust areas under the ROC curve in both data sets. This
may be due to using independent realizations of the majority class in each
tree. In all, the results are mixed. While these improvements are modest, the
sampling approaches have the benefit of enabling better trade-offs between
sensitivity and specificity (unlike modifying cutoffs or prior probabilities).

16.8 Cost-Sensitive Training

Instead of optimizing the typical performance measure, such as accuracy or
impurity, some models can alternatively optimize a cost or loss function
that differentially weights specific types of errors. For example, it may be



430 16 Remedies for Severe Class Imbalance

1 − Specificity

S
en

si
tiv

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

Normal
Down−Sampling (Internal)
SMOTE

%Customers Evaluated

%
E

ve
nt

s 
F

ou
nd

0

20

40

60

80

100

0 20 40 60 80 100

Fig. 16.4: Top: Test set ROC curves for three of the random forest models.
Bottom: The corresponding lift plots

appropriate to believe that misclassifying true events (false negatives) is X
times as costly as incorrectly predicting nonevents (false positives). Incorpo-
ration of specific costs during model training may bias the model towards less
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Table 16.3: A summary of results for random forest models with different
sampling mechanisms

Method Evaluation Test
ROC ROC Sensitivity Specificity

Original 0.757 0.738 64.4 75.9
Down-sampling 0.794 0.730 81.4 70.3
Down-sampling (Internal) 0.792 0.764 78.0 68.3
Up-sampling 0.755 0.739 71.2 68.1
SMOTE 0.767 0.747 78.0 67.7

The test set sensitivity and specificity values were determined using the
optimal cutoff derived from the evaluation set ROC curve

frequent classes. Unlike using alternative cutoffs, unequal costs can affect the
model parameters and thus have the potential to make true improvements to
the classifier.

For support vector machine (SVM) models, costs can be associated with
specific classes (as opposed to specific types of errors). Recall that these
models control the complexity using a cost function that increases the penalty
if samples are on the incorrect side of the current class boundary. For class
imbalances, unequal costs for each class can adjust the parameters to increase
or decrease the sensitivity of the model to particular classes (Veropoulos et al.
1999). Note that this approach is different from one where specific types of
errors can have differential costs. For support vector machines (SVMs), the
entire class can be given increased importance. For two classes, these two
approaches are similar.

One consequence of this approach is that class probabilities cannot be gen-
erated for the model, at least in the available implementation. Therefore we
cannot calculate an ROC curve and must use a different performance metric.
Instead we will now use the Kappa statistic, sensitivity, and specificity to
evaluate the impact of weighted classes.

For the SVM model, we analyzed both weighted and unweighted models
and compared the performance results. When tuning the models, the un-
weighted SVM required a fairly large value of the SVM cost parameter (256)
to optimize the Kappa statistic. Applying the unweighted model to the test
set, the Kappa statistic was 0.121 with a corresponding sensitivity of 15.5%
and a specificity of 95.7%. The effects of weights ranging between 6 and
25 were assessed for the training set (using resampling) and the evaluation
set. Across the range of weights selected, the model performance based on
the Kappa statistic, sensitivity, and specificity was very similar for the two
data sets (Fig. 16.5). Smaller weights optimize Kappa, while moderate to
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Fig. 16.5: Tuning results for class weighted support vector machine deter-
mined with cross-validation and the evaluation set

high weights optimize sensitivity. Using the plot, the modeler can decide the
appropriate operating characteristics of the model for the problem at hand
as described in Sect. 16.3.

Additionally, many classification tree models can incorporate differential
costs, including CART and C5.0 trees. The potential cost of a prediction takes
into account several factors (Johnson and Wichern 2001):

• The cost of the particular mistake
• The probability of making that mistake
• The prior probability of the classes

To illustrate how costs can be taken into account, let’s return to the
concepts and notation used in Sect. 13.6. Let πi represent the prior prob-
ability of a sample being in class i, and let Pr[j|i] be the probability of
mistakenly predicting a class i sample as class j. For a two-class problem, the
total probability of misclassifying a sample is then

Pr[2|1]π1 + Pr[1|2]π2

In practice we rarely know Pr[j|i] and instead use the estimated probability
of the ith class, pi.

For two classes, the above equation can then be transformed into a rule
for classifying a sample into class 1, if

p1
p2

>
π2

π1

This rule assumes that the costs of misclassifying a class 1 sample into class
2 or a class 2 sample into class 1 are equal. Conveniently, the equation can
easily be extended to consider the scenario where the costs are not the same.
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Let C(j|i) be the cost of mistakenly predicting a class i sample as class j.
Then the total expected cost of misclassification is

Expected Cost = C(2|1)Pr[2|1]π1 + C(1|2)Pr[1|2]π2

And the revised decision boundary for classifying a sample into class 1 is

p1
p2

>

(
C(1|2)
C(2|1)

)(
π2

π1

)

For equal priors, the first class is only predicted when the probability ratio is
greater than the cost ratio. If p1 = 0.75 and p2 = 0.25, the second class would
be predicted when the cost of erroneously predicting that class is greater
than 3.0.

Once the cost of each type of error is specified, CART trees can incorporate
them into the training process. Breiman et al. (1984) discuss the use of a
generalized Gini criterion:

Gini∗ = C(1|2)p1(1− p1) + C(2|1)p2(1− p2)

= [C(1|2) + C(2|1)] p1p2
where p1 and p2 are the observed class probabilities induced by the split. Note
that, in this case, the two costs are lumped together when using the Gini
index to determine splits. With more than two classes, this same issue arises.
As such, using costs with the Gini matrix symmetrizes the costs, that is to say,
that the costs C(i|j) and C(j|i) are averaged when determining the overall
costs for the split. Breiman et al. (1984) also point out that, in some cases,
using unequal costs becomes equivalent to using modified prior probabilities.
In their examples, they note that the cost-sensitive trees tended to be smaller
than the trees produced by the nominal procedure. The reasoning was that
in the growing phase, the tree greedily splits to produce accurate predictions
of the potentially costly errors but does not work as hard to be accurate on
the remaining errors that have lower costs.

For trees (and rules), the predicted class probabilities (or confidence
values) might not be consistent with the discrete class predictions when un-
equal costs are used. The final class prediction for a sample is a function of the
class probability and the cost structure. As previously shown, the class prob-
abilities in the terminal node may be appreciably favoring the one class but
also have a large expected cost. For this reason, there is a disconnect between
the confidence values and the predicted class. Therefore, simple class proba-
bilities (or confidence values) should not be used under these circumstances.

To demonstrate cost-sensitive model training, single CART trees were fit
to the data with equal costs as well as a wide range of cost values (2.5 to 30)
similar to the previous weighted SVM model. Figure 16.6 shows the results
for the training and evaluation sets. The trends shown in these plots are noisy
(due to the instability of CART trees), especially for sensitivity, which has
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Fig. 16.6: Tuning results for cost-sensitive classification tree models deter-
mined with cross-validation and the evaluation set

the smaller sample size. The resampled estimate of the sensitivity was more
pessimistic than the evaluation set. The results show that the sensitivity and
specificity of the model start to converge at high cost values.

Recall that C5.0 does not use the Gini criterion for splitting. With costs,
the previous formula is used and assumes equal prior probabilities4:

Expected Cost = C(2|1)p1 + C(1|2)p2
Again, new samples are predicted as the class associated with the lowest
expected cost.

For C5.0, the models were tuned over the model type (i.e., trees or rules)
and the number of boosting iterations. Figure 16.7 shows the patterns for cost-
sensitive learning with false-negative costs ranging from 5 to 50. Like the SVM
analysis, the curves are consistent between the training and evaluation sets.
To optimize the concordance via the Kappa statistic, smaller costs values are
required and to increase the sensitivity, moderate to large costs are needed.
Here, there is a clear trade-off between sensitivity and specificity, but the
sensitivity appears to plateau for costs values greater than 25 or 30.

4 An alternative view of this criterion is that the priors are to be included into the
appropriate cost value.
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Fig. 16.7: Performance profiles for C5.0 models using cost-sensitive learning

16.9 Computing

This section uses the following packages: caret, C50, DMwR, DWD, kernlab,
pROC, and rpart.

The insurance data are contained in the DWD package, and can be loaded
as follows:

> library(DWD)

> data(ticdata)

There are several factor variables in the data set. Many of the factor levels
have nonstandard characters, such as “%,” commas, and other values. When
these are converted to dummy variable columns, the values violate the rules
for naming new variables. To bypass this issue, we re-encode the names to be
more simplistic:

> recodeLevels <- function(x)

+ {

+ x <- as.numeric(x)

+ ## Add zeros to the text version:

+ x <- gsub(" ", "0",format(as.numeric(x)))

+ factor(x)

+ }

> ## Find which columns are regular factors or ordered factors

> isOrdered <- unlist(lapply(ticdata, is.ordered))

> isFactor <- unlist(lapply(ticdata, is.factor))

> convertCols <- names(isOrdered)[isOrdered | isFactor]

> for(i in convertCols) ticdata[,i] <- recodeLevels(ticdata[,i])

> ## Make the level 'insurance' the first factor level
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> ticdata$CARAVAN <- factor(as.character(ticdata$CARAVAN),

+ levels = rev(levels(ticdata$CARAVAN)))

The training and test sets were created using stratified random sampling:

> library(caret)

> ## First, split the training set off

> set.seed(156)

> split1 <- createDataPartition(ticdata$CARAVAN, p = .7)[[1]]

> other <- ticdata[-split1,]

> training <- ticdata[ split1,]

> ## Now create the evaluation and test sets

> set.seed(934)

> split2 <- createDataPartition(other$CARAVAN, p = 1/3)[[1]]

> evaluation <- other[ split2,]

> testing <- other[-split2,]

> ## Determine the predictor names

> predictors <- names(training)[names(training) != "CARAVAN"]

Dummy variables are useful for several models being fit in this section.
The randomForest function has a limitation that all factor predictors must
not have more than 32 levels. The customer type predictor has 39 levels, so
a predictor set of dummy variables is created for this and other models using
the model.matrix function:

> ## The first column is the intercept, which is eliminated:

> trainingInd <- data.frame(model.matrix(CARAVAN ~ .,

+ data = training))[,-1]

> evaluationInd <- data.frame(model.matrix(CARAVAN ~ .,

+ data = evaluation))[,-1]

> testingInd <- data.frame(model.matrix(CARAVAN ~ .,

+ data = testing))[,-1]

> ## Add the outcome back into the data set

> trainingInd$CARAVAN <- training$CARAVAN

> evaluationInd$CARAVAN <- evaluation$CARAVAN

> testingInd$CARAVAN <- testing$CARAVAN

> ## Determine a predictor set without highly sparse and unbalanced

distributions:

> isNZV <- nearZeroVar(trainingInd)

> noNZVSet <- names(trainingInd)[-isNZV]

To obtain different performance measures, two wrapper functions were
created:

> ## For accuracy, Kappa, the area under the ROC curve,

> ## sensitivity and specificity:

> fiveStats <- function(...) c(twoClassSummary(...),

+ defaultSummary(...))

> ## Everything but the area under the ROC curve:

> fourStats <- function (data, lev = levels(data$obs), model = NULL)
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+ {

+

+ accKapp <- postResample(data[, "pred"], data[, "obs"])

+ out <- c(accKapp,

+ sensitivity(data[, "pred"], data[, "obs"], lev[1]),

+ specificity(data[, "pred"], data[, "obs"], lev[2]))

+ names(out)[3:4] <- c("Sens", "Spec")

+ out

+ }

Two control functions are developed for situations when class probabilities
can be created and when they cannot:

> ctrl <- trainControl(method = "cv",

+ classProbs = TRUE,

+ summaryFunction = fiveStats,

+ verboseIter = TRUE)

> ctrlNoProb <- ctrl

> ctrlNoProb$summaryFunction <- fourStats

> ctrlNoProb$classProbs <- FALSE

The three baseline models were fit with the syntax:

> set.seed(1410)

> rfFit <- train(CARAVAN ~ ., data = trainingInd,

+ method = "rf",

+ trControl = ctrl,

+ ntree = 1500,

+ tuneLength = 5,

+ metric = "ROC")

> set.seed(1410)

> lrFit <- train(CARAVAN ~ .,

+ data = trainingInd[, noNZVSet],

+ method = "glm",

+ trControl = ctrl,

+ metric = "ROC")

> set.seed(1401)

> fdaFit <- train(CARAVAN ~ ., data = training,

+ method = "fda",

+ tuneGrid = data.frame(.degree = 1, .nprune = 1:25),

+ metric = "ROC",

+ trControl = ctrl)

>

A data frame is used to house the predictions from different models:

> evalResults <- data.frame(CARAVAN = evaluation$CARAVAN)

> evalResults$RF <- predict(rfFit,

+ newdata = evaluationInd,

+ type = "prob")[,1]
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> evalResults$FDA <- predict(fdaFit,

+ newdata = evaluation[, predictors],

+ type = "prob")[,1]

> evalResults$LogReg <- predict(lrFit,

+ newdata = valuationInd[, noNZVSet],

+ type = "prob")[,1]

The ROC and lift curves are created from these objects. For example:

> library(pROC)

> rfROC <- roc(evalResults$CARAVAN, evalResults$RF,

+ levels = rev(levels(evalResults$CARAVAN)))

> ## Create labels for the models:

> labs <- c(RF = "Random Forest", LogReg = "Logistic Regression",

+ FDA = "FDA (MARS)")

> lift1 <- lift(CARAVAN ~ RF + LogReg + FDA, data = evalResults,

+ labels = labs)

> rfROC

Call:
roc.default(response = evalResults$CARAVAN, predictor = evalResults$RF,

levels = rev(levels(evalResults$CARAVAN)))

Data: evalResults$RF in 924 controls (evalResults$CARAVAN noinsurance) <
59 cases (evalResults$CARAVAN insurance).

Area under the curve: 0.7569
> lift1

Call:
lift.formula(x = CARAVAN ~ RF + LogReg + FDA, data = evalResults,

labels = labs)

Models: Random Forest, Logistic Regression, FDA (MARS)
Event: insurance (6%)

To plot the curves:

> plot(rfROC, legacy.axes = TRUE)

> xyplot(lift1,

+ ylab = "%Events Found", xlab = "%Customers Evaluated",

+ lwd = 2, type = "l")

Alternate Cutoffs

After the ROC curve has been created, there are several functions in the pROC
package that can be used to investigate possible cutoffs. The coords function
returns the points on the ROC curve as well as deriving new cutoffs. The main
arguments are x, which specifies what should be returned. A value of x = "all"

will return the coordinates for the curve and their associated cutoffs. A value
of "best" will derive a new cutoff. Using x = "best" in conjunction with the
best.method (either "youden" or "closest.topleft") can be informative:
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> rfThresh <- coords(rfROC, x = "best", best.method = "closest.topleft")

> rfThresh

threshold specificity sensitivity
0.06433333 0.75865801 0.64406780

For this, new predicted classes can be calculated:

> newValue <- factor(ifelse(evalResults$RF > rfThresh,

+ "insurance", "noinsurance"),

+ levels = levels(evalResults$CARAVAN))

Sampling Methods

The caret package has two functions, downSample and upSample, that readjust
the class frequencies. Each takes arguments for the predictors (called x) and
the outcome class (y). Both functions return a data frame with the sampled
version of the training set:

> set.seed(1103)

> upSampledTrain <- upSample(x = training[,predictors],

+ y = training$CARAVAN,

+ ## keep the class variable name the same:

+ yname = "CARAVAN")

> dim(training)

[1] 6877 86
> dim(upSampledTrain)

[1] 12932 86
> table(upSampledTrain$CARAVAN)

insurance noinsurance
6466 6466

The down-sampling function has the same syntax. A function for SMOTE
can be found in the DMwR package. It takes a model formula as an input,
along with parameters (such as the amount of over- and under-sampling and
the number of neighbors). The basic syntax is

> library(DMwR)

> set.seed(1103)

> smoteTrain <- SMOTE(CARAVAN ~ ., data = training)

> dim(smoteTrain)

[1] 2877 86
> table(smoteTrain$CARAVAN)

insurance noinsurance
1233 1644

These data sets can be used as inputs into the previous modeling code.
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Cost-Sensitive Training

Class-weighted SVMs can be created using the kernlab package. The syntax
for the ksvm function is the same as previous descriptions, but the
class.weights argument is put to use. The train function has similar syn-
tax:

> library(kernlab)

> ## We will train over a large cost range, so we precompute the sigma

> ## parameter and make a custom tuning grid:

> set.seed(1157)

> sigma <- sigest(CARAVAN ~ ., data = trainingInd[, noNZVSet], frac = .75)

> names(sigma) <- NULL

> svmGrid <- data.frame(.sigma = sigma[2],

+ .C = 2^seq(-6, 1, length = 15))

> ## Class probabilities cannot be generated with class weights, so

> ## use the control object 'ctrlNoProb' to avoid estimating the

> ## ROC curve.

> set.seed(1401)

> SVMwts <- train(CARAVAN ~ .,

+ data = trainingInd[, noNZVSet],

+ method = "svmRadial",

+ tuneGrid = svmGrid,

+ preProc = c("center", "scale"),

+ class.weights = c(insurance = 18, noinsurance = 1),

+ metric = "Sens",

+ trControl = ctrlNoProb)

> SVMwts

6877 samples
203 predictors

2 classes: 'insurance', 'noinsurance'

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 6189, 6190, 6190, 6189, 6189, 6189, ...

Resampling results across tuning parameters:

C Accuracy Kappa Sens Spec
0.0156 0.557 0.0682 0.742 0.545
0.0221 0.614 0.0806 0.691 0.609
0.0312 0.637 0.0864 0.669 0.635
0.0442 0.644 0.0883 0.662 0.643
0.0625 0.658 0.0939 0.657 0.658
0.0884 0.672 0.0958 0.633 0.674
0.125 0.684 0.101 0.625 0.688
0.177 0.7 0.106 0.611 0.705
0.25 0.711 0.108 0.591 0.719
0.354 0.724 0.111 0.572 0.734
0.5 0.737 0.112 0.543 0.75
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0.707 0.75 0.109 0.506 0.765
1 0.765 0.104 0.46 0.785
1.41 0.776 0.097 0.416 0.799
2 0.791 0.102 0.394 0.817

Tuning parameter 'sigma' was held constant at a value of 0.00245
Sens was used to select the optimal model using the largest value.
The final values used for the model were C = 0.0156 and sigma = 0.00245.

(The standard deviation columns were not shown to save space) Prediction
uses the same syntax as unweighted models.

For cost-sensitive CART models, the rpart package is used with the parms

argument, which is a list of fitting options. One option, loss, can take a
matrix of costs:

> costMatrix <- matrix(c(0, 1, 20, 0), ncol = 2)

> rownames(costMatrix) <- levels(training$CARAVAN)

> colnames(costMatrix) <- levels(training$CARAVAN)

> costMatrix

insurance noinsurance
insurance 0 20
noinsurance 1 0

Here, there would be a 20-fold higher cost of a false negative than a false
positive. To fit the model:

> library(rpart)

> set.seed(1401)

> cartCosts <- train(x = training[,predictors],

+ y = training$CARAVAN,

+ method = "rpart",

+ trControl = ctrlNoProb,

+ metric = "Kappa",

+ tuneLength = 10,

+ parms = list(loss = costMatrix))

Similar to the support vector machine model, the syntax for generating class
predictions is the same as the nominal model. However, any class probabilities
generated from this model may not match the predicted classes (which are a
function of the cost and the probabilities).

C5.0 has similar syntax to rpart by taking a cost matrix, although this
function uses the transpose of the cost matrix structure used by rpart:

> c5Matrix <- matrix(c(0, 20, 1, 0), ncol = 2)

> rownames(c5Matrix) <- levels(training$CARAVAN)

> colnames(c5Matrix) <- levels(training$CARAVAN)

> c5Matrix

insurance noinsurance
insurance 0 1
noinsurance 20 0
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> library(C50)

> set.seed(1401)

> C5Cost <- train(x = training[, predictors],

+ y = training$CARAVAN,

+ method = "C5.0",

+ metric = "Kappa",

+ cost = c5Matrix,

+ trControl = ctrlNoProb)

When employing costs, the predict function for this model only produces the
discrete classes (i.e. no probabilities).

Exercises

16.1. The “adult” data set at the UCI Machine Learning Repository is
derived from census records.5 In these data, the goal is to predict whether
a person’s income was large (defined in 1994 as more than $50K) or small.
The predictors include educational level, type of job (e.g., never worked, and
local government), capital gains/losses, work hours per week, native country,
and so on.6 After filtering out data where the outcome class is unknown, there
were 48842 records remaining. The majority of the data were associated with
a small income level (75.9%).

The data are contained in the arules package and the appropriate version
can be loaded using data(AdultUCI).

(a) Load the data and investigate the predictors in terms of their distributions
and potential correlations.

(b) Determine an appropriate split of the data.
(c) Build several classification models for these data. Do the results favor the

small income class?
(d) Is there a good trade-off that can be made between the sensitivity and

specificity?
(e) Use sampling methods to improve the model fit.
(f) Do cost-sensitive models help performance?

16.2. The direct marketing data of Larose (2006, Chap. 7) discussed previ-
ously in Chap. 11 can be found at the author’s web site.7 The goal of the

5 These data are first referenced in Kohavi (1996). A description of the data col-
lection and a summary of the results of previous models can be found at the
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/machine-learning-
databases/adult/adult.names).
6 Another attribute, “fnlwgt,” only contains information about the data collection
process and should not be used as a predictor.
7 http://www.dataminingconsultant.com/data.
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analysis was to predict which customers would respond to a promotional
opportunity via mail.

Of the 65220 customers in the data set, 16.6% responded to the promotion.
The predictors in the data set include

• Spending habits, in aggregate and broken down by month and frequently
visited store locations

• The types of products purchased
• Time between visits
• Historical promotion response rates
• Predefined customer cluster memberships

Larose (2006) discussed the class imbalance for this problem and demon-
strates several techniques to achieve effective results.

(a) Read the data into R, conduct exploratory analyses, and determine the
best method for encoding the predictors.

(b) Determine an appropriate split of the data and build several classification
models for these data.

(c) Construct lift plots to understand a possible strategy regarding how
many customers should be contacted to capture an estimated 60% of
responders.

(d) Use sampling methods with several models. Do these models have better
lift charts, and can they be used to contact fewer customers to achieve a
60% response rate (of those who were given the promotion)?



Chapter 17

Case Study: Job Scheduling

High-performance computing (HPC) environments are used by many
technology and research organizations to facilitate large-scale computations.
An HPC environment usually consists of numerous “compute nodes” net-
worked to handle computations required by the users. These can be structured
in different ways, such as a network of many computers each with fewer pro-
cessors, or a network of fewer computers with many processors. The amount
of memory on each may vary from environment to environment and often is
built based on a balance between available funds and the nature of the types
of computations required by an institution.

A specific unit of computations (generally called a job here) can be
launched by users for execution in the HPC environment. The issue is that, in
many cases, a large number of programs are executed simultaneously and the
environment has to manage these jobs in a way that returns the job results
in the most efficient manner. This may be a complicated task. For example:

• There are times where the existing jobs outnumber the capacity of the
environment. In these cases, some jobs will be required to stay pending
prior to launch until the appropriate resources are available.

• The frequency of submissions by users may vary. If one user submits a
large number of jobs at once, it may be undesirable for the system to let a
single user consume the majority of resources at the expense of the other
users.

• All compute jobs may not be treated equally. Higher priority projects may
require more privileged access to the hardware resources. For example,
jobs at a pharmaceutical company needed to support a time-sensitive reg-
ulatory submission may need to have a higher priority than jobs related
to research-oriented tasks.

A common solution to this problem is to use a job scheduler—a software that
prioritizes jobs for submissions, manages the computational resources, and
initiates submitted jobs to maximize efficiency. The scheduler can enact a
queuing system based on several factors such as resource requirements for
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Job Information
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User A
6 CPUs
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Machine 1
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1 TB RAM

Machine 2
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Job2
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1 CPU
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Fig. 17.1: A hypothetical example of a job scheduler in a high-performance
computing environment

a job (e.g., number of processors required, memory requirements), project
priority, and the current load of the environment. The scheduler may also
consider the submission history of specific users when delegating jobs to
computational resources.

Figure 17.1 shows a schematic of such a system. The top shows three
hypothetical jobs that are submitted at the same time. The first two have a
single set of computations each but have different requirements. For example,
the first job could be a scientific computation that spreads the computations
across multiple processors on the same physical machine. The second job
may be a short database query that a scientist makes interactively from a
web site. This job is expected to run quickly with low overhead. The third
case represents a cohesive set of computations that are launched at once but
correspond to a set of independent calculations (such as a simulation) that
use the same program. This job array launches 50 independent calculations
that can be run on different machines but should be managed and supervised
as a single entity. Again the goal of the scheduler is to allocate these jobs to
the system in a manner that maximizes efficiency.

The efficiency of the scheduler can be significantly affected by the amount
and quality of job information that is known at the time of submission.
This allows the scheduler to place the jobs on suitable machines at the
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appropriate time. For computations that are repeated a large number of
times, it is straightforward to record information on existing jobs then make
resource predictions on new jobs. For example, it may be helpful to predict
the execution time or maximum memory requirements for a job at the time of
submission. The requirements for such a prediction are that it be quick and
accurate. However, the accuracy requirements should take into account the
fact that prediction errors do not likely have the same impact on the environ-
ment’s performance. For example, if the predicted amount of memory needed
is severely underestimated, this could cause physical machine resources to
be overburdened and may drastically affect all the jobs on that machine.
The cost of this type of error should be high in order for the scheduler to
avoid this problem. The converse problem is not true: overestimation of mem-
ory needs may cause abnormally low utilization of a hardware resource but
will not critically affect existing jobs on the system. A cost should be assigned
to this error, but likely not as high as the other type of error.

As an example, Pfizer runs a large number of jobs in its HPC environment.
One class of jobs for characterizing compounds is run regularly, some of which
can be computationally burdensome. Over a period of time, resource utiliza-
tion information was logged about this class of jobs. Additionally, there are
several task characteristics that can be collected at the time of job launch:

• Protocol: Several different analytical techniques, called protocols, can be
used to calculate results for each compound. The protocols are coded as
letters A through O; protocol J was used the most (22.8% of all the jobs)
while protocol K was rarely invoked (0.1%).

• Number of compounds: The number of compounds processed by the job.
This number varied wildly across the data.

• Number of input fields: Each task can process a number of different input
fields in the data, depending on what the scientist would like to analyze.
This predictor is also right skewed.

• Number of iterations: Each protocol can run for a pre-specified number
of iterations. The default is 20 iterations, which occurs most frequently in
these data.

• Pending job count: A count of how many jobs were pending at the time
launch was recorded. This is meant to measure the workload of the environ-
ment at the time of the launch. All other things being equal, the number of
pending jobs should not directly affect execution time of the jobs but may
capture the amount of resources being used at the time. For these data,
most jobs were launched at a time when there were available resources, so
no jobs were pending. However, a minority of requests were made when the
hardware was in high demand (thousands of jobs were already pending).

• Time of day: The time of day (Eastern Standard Time) that the job was
launched (0 to 24). The distribution is multimodal, which reflects users
coming online in three different time zones on two continents.

• Day of the week: The day of the week when the job was launched.



448 17 Case Study: Job Scheduling

Execution time was recorded for each job. Time spent in pending or
suspended states were not counted in these values. While the outcome is
continuous in nature, the scheduler required a qualitative representation for
this information. Jobs were required to be classified as either very fast (1m or
less), fast (1–50m), moderate (5–30m), or long (greater than 30m). Most of
the jobs fall into either the very fast category (51.1%) or the fast category
(31.1%) while only 11.9% were classified as moderate and 6% were long.

The goal of this experiment is to predict the class of the jobs using the
information given in Table 17.1. Clearly, the types of errors are not equal and
there should be a greater penalty for classifying jobs as very short that are
in fact long. Also, since the prediction equation will need to be implemented
in software and quickly computed, models with simpler prediction equations
are preferred.

Over the course of two years, changes were made to some of the hardware in
the HPC environment. As a consequence, the same job run on two different
vintages of hardware may produce different execution times. This has the
effect of inflating the inherent variation in the execution times and can lead
to potential mislabeling of the observed classes. While there is no way to
handle this in the analysis, any model for classifying execution times should
be revisited over time (on the assumption that new hardware will decrease
execution time).

Before delving into model building, it is important to investigate the data.
Prior to modeling, one would expect that the main drivers of the execution
time would be the number of compounds, the number of tasks, and, which
protocol is being executed. As an initial investigation, Fig. 17.2 shows the
relationship between the protocols and the execution time classes using a
mosaic plot. Here the widths of the boxes are indicative of the number of
jobs run for the protocol (e.g., protocol J was run the most and K the least).
To predict the slow jobs, one can see that only a few protocols produce long
execution times. Others, such as protocol D, are more likely to be executed
very quickly. Given these relationships, we might expect the protocol infor-
mation to be potentially important to the model.

Figure 17.3 shows another visualization of the data using a table plot. Here,
the data are ordered by the class then binned into 100 slices. Within each
slice, the average value of the numeric predictors is determined. Similarly, the
frequency distribution of the categorical predictors is determined. The results
for each predictor are shown in columns so that the modeler can have a better
understanding of how each predictor relates to the outcome. In the figure, we
can see that:

• The jobs associated with a large number of compounds tend to be either
large or moderate in execution time.

• Many of the jobs of moderate length were submitted when the number
of pending jobs was very high. However, this trend does not reproduce
itself in the very long jobs. Because of this, it would be important to
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Table 17.1: Predictors for the job scheduler data

7 Variables 4331 Observations

Protocol
n missing unique

4331 0 14

A C D E F G H I J K L M N O
Frequency 94 160 149 96 170 155 321 381 989 6 242 451 536 581
% 2 4 3 2 4 4 7 9 23 0 6 10 12 13

Compounds
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

4331 0 858 497.7 27 37 98 226 448 967 2512

lowest : 20 21 22 23 24
highest: 14087 14090 14091 14097 14103

InputFields
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

4331 0 1730 1537 26 48 134 426 991 4165 7594

lowest : 10 11 12 13 14
highest: 36021 45420 45628 55920 56671

Iterations
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

4331 0 11 29.24 10 20 20 20 20 50 100

10 11 15 20 30 40 50 100 125 150 200
Frequency 272 9 2 3568 3 7 153 188 1 2 126
% 6 0 0 82 0 0 4 4 0 0 3

NumPending
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

4331 0 303 53.39 0.0 0.0 0.0 0.0 0.0 33.0 145.5

lowest : 0 1 2 3 4, highest: 3822 3870 3878 5547 5605

Hour
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

4331 0 924 13.73 7.025 9.333 10.900 14.017 16.600 18.250 19.658

lowest : 0.01667 0.03333 0.08333 0.10000 0.11667
highest: 23.20000 23.21667 23.35000 23.80000 23.98333

Day
n missing unique

4331 0 7

Mon Tue Wed Thu Fri Sat Sun
Frequency 692 900 903 720 923 32 161
% 16 21 21 17 21 1 4
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A C D E F G H I J K L M N O

V
F

F
M

L

Fig. 17.2: A mosaic lot of the class frequencies for each protocol. The width
of the boxes is determined by the number of jobs observed in the data set

prospectively validate this observation to make sure that it is not a fluke
of this particular data set.

• When the number of iterations is large, the job tends to go long.

One shortcoming of this particular visualization is that it obscures the rela-
tionships between predictors. Correlation plots and scatter plot matrices are
effective methods for finding these types of relationships.

Additionally, Fig. 17.4 shows scatter plots for the number of compounds
versus the number of input fields by protocol. In these plots, the jobs are
colored by class. For some cases, such as protocols A, C, D, H, I, and K, the
number of compounds and fields appears to provide information to differen-
tiate the classes. However, these relationships are class specific; the patterns
for protocols I and K are different. Another interesting aspect of this analysis
is that the correlation pattern between the number of compounds versus the
number of input fields is protocol-specific. For example, there is very little
correlation between the two predictors for some protocols (e.g., J, O) and a
strong correlation in others (such as D, E, and H). These patterns might be
important and are more likely to be discovered when the modeler looks at
the actual data points.

17.1 Data Splitting and Model Strategy

There are 4331 samples available; 80% will be used for training the algorithms
while the remainder will be used to evaluate the final candidate models.
The data were split using stratified random sampling to preserve the class
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Fig. 17.4: A scatter plot of the number of compounds versus the number of
fields for each protocol. The points are colored by their execution time class

distribution of the outcome. Five repeats of 10-fold cross–validation were used
to tune the models.

Rather than creating models that maximize the overall accuracy or Kappa
statistics, a custom cost function is used to give higher weight to errors where
long and medium jobs are misclassified as fast or very fast. Table 17.2 shows
how the costs associated with each type of error affect the overall measure of
performance. The cost is heavily weighted so that long jobs will not be submit-
ted to queues (or hardware) that are designed for small, quick jobs. Moderate-
length jobs are also penalized for being misclassified as more efficient jobs.
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Table 17.2: Cost structure used to optimize the model

Observed Class
VF F M L

VF 0 1 5 10
F 1 0 5 5
M 1 1 0 1
L 1 1 1 0

Longer jobs that are misclassified as fast are penalized more in this criterion

The best possible approach to model training is when this cost function
is used to estimate the model parameters (see Sect. 16.8). A few tree-based
models allow for this, but most of the models considered here do not.

A series of models were fit to the training set. The tuning parameter com-
bination associated with the smallest average cost value was chosen for the
final model and used in conjunction with the entire training set. The following
models were investigated:

• Linear discriminant analysis: This model was created using the standard
set of equations as well as with the penalized version that conducts fea-
ture selection during model training. Predictor subset sizes ranging from
2 to 112 were investigated in conjunction with several values of the ridge
penalty: 0, 0.01, 0.1, 1 and 10.

• Partial least squares discriminant analysis: The PLS model was fit with
the number of components ranging from 1 to 91.

• Neural networks: Models were fit with hidden units ranging from 1 to 19
and 5 weight decay values: 0, 0.001, 0.01, 0.1, and 0.5.

• Flexible discriminant analysis: First-degree MARS hinge functions were
used and the number of retained terms was varied from 2 to 23.

• Support vector machines (SVMs): Two different models were fit with the
radial basis function. One using equal weights per class and another where
the moderate jobs were given a fivefold weight and long jobs were up-
weighted tenfold. In each case, the analytical calculations for estimating
the RBF kernel function were used in conjunction with cost values ranging
from 2−2 to 212 in the log scale.

• Single CART trees: Similarly, the CART models were fit with equal costs
per class and another where the costs mimic those in Table 17.2. In each
case, the model was tuned over 20 values of the complexity parameter.

• Bagged CART trees: These models used 50 bagged CART trees with and
without incorporating the cost structure.

• Random forests: The model used 2,000 trees in the forest and was tuned
over 6 values of the tuning parameter.
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• C5.0: This model was evaluated with tree- and rule-based models, with
and without winnowing, with single models and with up to 100 iterations
of boosting. An alternative version of this model was fit that utilized the
cost structure shown in Table 17.2.

For this application, there is a bias towards models which are conducive to fast
predictions. If the prediction equation(s) for the model can be easily encoded
in software (such as a simple tree or neural network) or can be executed from
a simple command-line interface (such as C5.0), the model is preferred over
others.

17.2 Results

The model results are shown in Fig. 17.5 where box plots of the resampling
estimates of the mean cost value are shown. The linear models, such as LDA
and PLS, did not do well here. Feature selection did not help the linear
discriminant model, but this may be due to that model’s inability to han-
dle nonlinear class boundaries. FDA also showed poor performance in terms
of cost.

There is a cluster of models with average costs that are likely to be
equivalent, mostly SVMs and the various tree ensemble methods. Using
costs/weights had significant positive effects on the single CART tree and
SVMs. Figure 17.6 shows the resampling profiles for these two models in

Cost

C5.0

Random Forests

Bagging

SVM (Weights)

C5.0 (Costs)

CART (Costs)

Bagging (Costs)

SVM

Neural Networks

CART

LDA (Sparse)

LDA

FDA

PLS

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 17.5: Average cost resampling profiles for various models
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Fig. 17.6: The effect of incorporating the cost structure into the CART
training process (top) and weights for support vector machines (bottom)

terms of their estimates of the cost, overall accuracy and Kappa statistic.
The CART model results show that using the cost has a negative effect on
accuracy and Kappa but naturally improved the cost estimates. No matter
the metric, the tuning process would have picked the same CART model
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Table 17.3: Resampled confusion matrices for the random forest and cost-
sensitive CART models

Cost-sensitive CART Random forests
VF F M L VF F M L

VF 157.0 24.6 2.0 0.2 164.7 18.0 1.3 0.2
F 10.3 43.2 3.1 0.2 11.9 83.7 11.5 1.8
M 9.6 38.3 34.5 5.8 0.2 5.5 27.4 1.8
L 0.0 1.7 1.6 14.6 0.0 0.6 0.9 17.0

Each value is the average number of jobs that occurred in that cell across the
50 holdout data sets. The columns are the true job classes

for final training. The support vector machine (SVM) results are somewhat
different. Using class weights also had a slight negative effect on accuracy
and Kappa, but the improvement in the estimated cost was significant. Also,
the unweighted model would be optimized with a much higher SVM cost
parameter (and thus more complex models) than the weighted version.

Oddly, the C5.0 model without costs did very well, but adding the cost
structure to the tree-building process increased the estimated cost of the
model. Also, bagging CART trees with costs had a small negative effect on
the model

Trees clearly did well for these data, as did support vector machines and
neural networks. Is there much of a difference between the top models?
One approach to examining these results is to look at a confusion matrix
generated across the resamples. Recall that for resampling, there were 50
hold–out sets that contained, on average, about 347 jobs. For each one of
these hold–out sets, a confusion matrix was calculated and the average con-
fusion matrix was calculated by averaging the cell frequencies.

Table 17.3 shows two such tables for the random forests model and the
cost-sensitive CART model. For random forest, the average number of long
jobs that were misclassified as very fast was 0.2 while the same value for the
classification tree was 0.24. The CART tree shows very poor accuracy for the
fast jobs compared to the random forest model. However, the opposite is true
for moderately long jobs; random forest misclassified 72.56% of those jobs (on
average), compared to 65.52% for the single tree. For long jobs, the single tree
has a higher error rate than the ensemble method. How do these two models
compare using the test set? The test set cost for random forest was 0.316
while the single classification trees had a average cost of 0.37. Table 17.4
shows the confusion matrices for the two models. The trends in the test set
are very similar to the resampled estimates. The single tree does worse with
fast and long jobs while random forests have issues predicting the moderately
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Table 17.4: Test set confusion matrices for the random forest and cost-
sensitive CART models

Cost-sensitive CART Random forests
VF F M L VF F M L

VF 383 61 5 1 414 45 3 0
F 32 106 7 2 28 206 27 5
M 26 99 87 15 0 18 71 6
L 1 3 3 33 0 0 1 40

The columns are the true job classes

long jobs. In summary, the overall differences between the two models are not
large.

17.3 Computing

The data are contained in the AppliedPredictiveModeling package. After
loading the data, a training and test set were created:

> library(AppliedPredictiveModeling)

> data(HPC)

> set.seed(1104)

> inTrain <- createDataPartition(schedulingData$Class,

+ p = .8,

+ list = FALSE)

> schedulingData$NumPending <- schedulingData$NumPending + 1

> trainData <- schedulingData[ inTrain,]

> testData <- schedulingData[-inTrain,]

Since the costs defined in Table 17.2 will be used to judge the models,
functions were written to estimate this value from a set of observed and
predicted classes:

> cost <- function(pred, obs)

+ {

+ isNA <- is.na(pred)

+ if(!all(isNA))

+ {

+ pred <- pred[!isNA]

+ obs <- obs[!isNA]

+ cost <- ifelse(pred == obs, 0, 1)

+ if(any(pred == "VF" & obs == "L"))

+ cost[pred == "L" & obs == "VF"] <- 10

+ if(any(pred == "F" & obs == "L"))

+ cost[pred == "F" & obs == "L"] <- 5



458 17 Case Study: Job Scheduling

+ if(any(pred == "F" & obs == "M"))

+ cost[pred == "F" & obs == "M"] <- 5

+ if(any(pred == "VF" & obs == "M"))

+ cost[pred == "VF" & obs == "M"] <- 5

+ out <- mean(cost)

+ } else out <- NA

+ out

+ }

> costSummary <- function (data, lev = NULL, model = NULL)

+ {

+ if (is.character(data$obs)) data$obs <- factor(data$obs,

levels = lev)

+ c(postResample(data[, "pred"], data[, "obs"]),

+ Cost = cost(data[, "pred"], data[, "obs"]))

+ }

The latter function is used in the control object for future computations:

> ctrl <- trainControl(method = "repeatedcv", repeats = 5,

+ summaryFunction = costSummary)

For the cost-sensitive tree models, a matrix representation of the costs was
also created:

> costMatrix <- ifelse(diag(4) == 1, 0, 1)

> costMatrix[1,4] <- 10

> costMatrix[1,3] <- 5

> costMatrix[2,4] <- 5

> costMatrix[2,3] <- 5

> rownames(costMatrix) <- levels(trainData$Class)

> colnames(costMatrix) <- levels(trainData$Class)

> costMatrix

The tree-based methods did not use independent categories, but the other
models require that the categorical predictors (e.g., protocol) are decomposed
into dummy variables. A model formula was created that log transforms
several of the predictors (given the skewness demonstrated in Table 17.1):

> modForm <- as.formula(Class ~ Protocol + log10(Compounds) +

+ log10(InputFields)+ log10(Iterations) +

+ log10(NumPending) + Hour + Day)

The specifics of the models fit to the data can be found in the Chapter

directory of the AppliedPredictiveModeling package and follow similar syn-
tax to the code shown in previous chapters. However, the cost-sensitive and
weighted model function calls are

> ## Cost-Sensitive CART

> set.seed(857)

> rpFitCost <- train(x = trainData[, predictors],

+ y = trainData$Class,

+ method = "rpart",

+ metric = "Cost",

+ maximize = FALSE,
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+ tuneLength = 20,

+ ## rpart structures the cost matrix so that

+ ## the true classes are in rows, so we

+ ## transpose the cost matrix

+ parms =list(loss = t(costMatrix)),

+ trControl = ctrl)

> ## Cost- Sensitive C5.0

> set.seed(857)

> c50Cost <- train(x = trainData[, predictors],

+ y = trainData$Class,

+ method = "C5.0",

+ metric = "Cost",

+ maximize = FALSE,

+ costs = costMatrix,

+ tuneGrid = expand.grid(.trials = c(1, (1:10)*10),

+ .model = "tree",

+ .winnow = c(TRUE, FALSE)),

+ trControl = ctrl)

> ## Cost-Sensitive bagged trees

> rpCost <- function(x, y)

+ {

+ costMatrix <- ifelse(diag(4) == 1, 0, 1)

+ costMatrix[4, 1] <- 10

+ costMatrix[3, 1] <- 5

+ costMatrix[4, 2] <- 5

+ costMatrix[3, 2] <- 5

+ library(rpart)

+ tmp <- x

+ tmp$y <- y

+ rpart(y~.,

+ data = tmp,

+ control = rpart.control(cp = 0),

+ parms = list(loss = costMatrix))

+ }

> rpPredict <- function(object, x) predict(object, x)

> rpAgg <- function (x, type = "class")

+ {

+ pooled <- x[[1]] * NA

+ n <- nrow(pooled)

+ classes <- colnames(pooled)

+ for (i in 1:ncol(pooled))

+ {

+ tmp <- lapply(x, function(y, col) y[, col], col = i)

+ tmp <- do.call("rbind", tmp)

+ pooled[, i] <- apply(tmp, 2, median)

+ }

+ pooled <- apply(pooled, 1, function(x) x/sum(x))

+ if (n != nrow(pooled)) pooled <- t(pooled)

+ out <- factor(classes[apply(pooled, 1, which.max)],

+ levels = classes)
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+ out

+ }

> set.seed(857)

> rpCostBag <- train(trainData[, predictors],

+ trainData$Class,

+ "bag",

+ B = 50,

+ bagControl = bagControl(fit = rpCost,

+ predict = rpPredict,

+ aggregate = rpAgg,

+ downSample = FALSE),

+ trControl = ctrl)

>

> ## Weighted SVM

> set.seed(857)

> svmRFitCost <- train(modForm, data = trainData,

+ method = "svmRadial",

+ metric = "Cost",

+ maximize = FALSE,

+ preProc = c("center", "scale"),

+ class.weights = c(VF = 1, F = 1,

+ M = 5, L = 10),

+ tuneLength = 15,

+ trControl = ctrl)

The resampled versions of the confusion matrices were computed using the
confusionMatrix function on the objects produced by the train function, such
as

> confusionMatrix(rpFitCost, norm = "none")

Cross-Validated (10-fold, repeated 5 times) Confusion Matrix

(entries are un-normalized counts)

Reference
Prediction VF F M L

VF 157.0 24.6 2.0 0.2
F 10.3 43.2 3.1 0.2
M 9.6 38.3 34.5 5.8
L 0.0 1.7 1.6 14.6

The norm argument determines how the raw counts from each resample should
be normalized. A value of "none" results in the average counts in each cell
of the table. Using norm = "overall" first divides the cell entries by the total
number of data points in the table, then averages these percentages.



Chapter 18

Measuring Predictor Importance

Often, we desire to quantify the strength of the relationship between the
predictors and the outcome. As the number of attributes becomes large,
exploratory analysis of the all the predictors may be infeasible and concentrat-
ing on those with strong relationships with the outcome may be an effective
triaging strategy. Ranking predictors in this manner can be very useful when
sifting through large amounts of data.

One of the primary reasons to measure the strength or relevance of the
predictors is to filter which should be used as inputs in a model. This super-
vised feature selection can be data driven based on the existing data. The re-
sults of the filtering process, along with subject matter expertise, can be
a critical step in creating an effective predictive model. As will be seen in
the next chapter, many feature selection algorithms rely on a quantitative
relevance score for filtering.

Many predictive models have built-in or intrinsic measurements of
predictor importance and have been discussed in previous chapters. For exam-
ple, MARS and many tree-based models monitor the increase in performance
that occurs when adding each predictor to the model. Others, such as linear
regression or logistic regression can use quantifications based on the model
coefficients or statistical measures (such as t-statistics). The methodologies
discussed in this chapter are not specific to any predictive model. If an ef-
fective model has been created, the scores derived from that model are likely
to be more reliable than the methodologies discussed in this chapter because
they are directly connected to the model.

In this chapter, the notion of variable importance is taken to mean an
overall quantification of the relationship between the predictor and out-
come. Most of the methodologies discussed cannot inform the modeler as
to the nature of the relationship, such as “increasing the predictor results
in a decrease in the outcome.” Such detailed characterizations can only re-
sult from models having precise parametric forms such as linear or logistic
regression, multivariate adaptive regression splines, and a few others. For
example, Sect. 8.5 discussed variable importance scores for random forest. In
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essence, this measurement of predictor relevance is derived by permuting each
predictor individually and assessing the loss in performance when the effect
of the predictor is negated. In this case, a substantial drop in performance is
indicative of an important predictor. While this can be an effective approach,
it does not enlighten the modeler as to the exact form of the relationship.
Despite this, these measurements can be useful for guiding the user to focus
more closely on specific predictors via visualizations and other means.

Many variable importance scores are specific to the type of data. For exam-
ple, techniques for numeric outcomes may not be appropriate for categorical
outcomes. This chapter is divided based on the nature of the outcome. Sec-
tion 18.1 discusses techniques for numeric outcomes and Sect. 18.2 focuses on
categorical outcomes. Finally, Sect. 18.3 discussed more general approaches to
the problem. Several examples from previous chapters are used to illustrate
the techniques.

18.1 Numeric Outcomes

For numeric predictors, the classic approach to quantifying each relationship
with the outcome uses the sample correlation statistic. This quantity mea-
sures linear associations; if the relationship is nearly linear or curvilinear, then
Spearman’s correlation coefficient (Sect. 5.1) may be more effective. These
metrics should be considered rough estimates of the relationship and may
not be effective for more complex relationships.

For example, the QSAR data used in the previous regression chapters
contained a number of numeric predictors. Figure 18.1 shows scatter plots
of two predictors and the outcome. The relationship between solubility and
number of carbon atoms is relatively linear and straightforward. The simple
correlation was estimated to be −0.61 and the rank correlation was −0.67.
For the surface area predictor, the situation is more complicated. There is a
group of compounds with low surface area and, for these compounds, solubil-
ity is also low. The remainder of the compounds have higher solubility up to
a point, after which there is a marginal trend. This could be a valuable piece
of information to the modeler and would not be captured by the correlation
statistic. For this predictor, simple correlation was estimated to be 0.27 and
the rank correlation was 0.14. These values are relatively low and would rank
accordingly low (17th out of 20 predictors).

An alternative is to use more flexible methods that may be capable of
modeling general nonlinear relationships. One such technique is the locally
weighted regression model (known more commonly as LOESS) of Cleveland
and Devlin (1988). This technique is based on a series polynomial regressions
that model the data in small neighborhoods (similar to computing a mov-
ing average). The approach can be effective at creating smooth regression
trends that are extremely adaptive. The red lines in Fig. 18.1 are the LOESS
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Fig. 18.1: Scatter plots for two numeric predictors (on transformed scales)
for the solubility data. The red lines are smoother model fits

smoother fits. From the model fit, a pseudo-R2 statistic can be calculated
derived from the residuals. For the solubility data shown in Fig. 18.1, the
LOESS pseudo-R2 for the surface area was 0.22, which ranks higher (7th out
of 20) than the correlation scores.

Figure 18.2 shows the relationship between importance scores for all of the
continuous predictors. The third metric, the maximal information coefficient
(MIC), is discussed in Sect. 18.3. The rank correlation and LOESS pseudo-
R2 tend to give the same results, with the exception of two surface area
predictors. Both methods reflect three distinct clusters of predictors, based
on their ranks: a set of four high scoring predictors (two significantly overlap
in the plot), a set of moderately important predictors, and another set of very
low importance. The only inconsistency between the methods is that the two
surface area predictors score higher using LOESS than the other methods.
These predictors are shown as red squares in the image.

Each of these techniques evaluates each predictor without considering the
others. This can be potentially misleading in two ways. First, if two predic-
tors are highly correlated with the response and with each other, then the
univariate approach will identify both as important. As we have seen, some
models will be negatively impacted by including this redundant information.
Pre-processing approaches such as removing highly correlated predictors can
alleviate this problem. Second, the univariate importance approach will fail
to identify groups of predictors that together have a strong relationship with
the response. For example, two predictors may not be highly correlated with
the response; however, their interaction may be. Univariate correlations will
not capture this predictive relationship. A sensible strategy would be to fur-
ther explore these aspects of the predictors instead of using the rankings as
the sole method for understanding the underlying trends. Knowing which
relationship to explore often requires expert knowledge about the data.
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Fig. 18.2: A scatter plot matrix importance metrics for the 20 continuous
predictors in the solubility data. The two surface area predictors are shown
as red squares

When the predictors are categorical, different methodologies are required.
In the solubility data, there were 208 fingerprint predictors, which are
indicator variables representing particular atomic structures in the com-
pound. The most straightforward method for determining the relevance of
each binary predictor is to evaluate whether the average outcome in each
category is different. Consider fingerprint FP175; the difference between the
mean solubility value with and without the structure is −0.002. Given that
solubility ranges from −11.6 to 1.6, this is likely to be negligible. On the other
hand, fingerprint FP044 has a difference of −4.1 log units. This is larger but
on its own may not be informative. The variability in the data should also
be considered.

The most natural method for comparing the mean of two groups is
the standard t-statistic, which is essentially a signal-to-noise ratio (the differ-
ence in means is divided by a function of the variabilities in the groups). A
p-value can be produced by this procedure where the null hypothesis is that
there is no difference between the groups. The assumption for the statistic
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Fig. 18.3: A volcano plot of the t-test results applied to the fingerprint pre-
dictors. The red square is fingerprint FP044 (which has the largest difference
in means) while the blue triangle is fingerprint FP076 and is the most statis-
tically significant

is that the data are normally distributed. If this assumption is unlikely to
be true, other methods (such as the Wilcoxon rank sum test) may be more
appropriate.

For each of the 208 fingerprint predictors, a t-test was used. Instead of
solely relying on the p-value, Fig. 18.3 shows a volcano plot where a trans-
formed version of the p-value is shown on the y-axis and the difference in solu-
bility means is shown on the x-axis. Higher values of the y-axis are indicative
of strong statistical significance (i.e., low p-value). Most of the mean differ-
ences are negative, indicating that solubility tends to be higher without the
structure. FP044 has the largest difference (and is shown as a red square).
However, this difference is not the most statistically significant. Fingerprint
FP076 is the most statistically significant (shown as a blue triangle) and has a
difference in means of −2.3 log units. As previously mentioned, the t-statistic
is a signal-to-noise ratio. While fingerprint FP044 has the largest signal, it also
has appreciable variability which diminishes its significance. This is reflected
in the 95% confidence intervals for the mean differences: (3.6, 4.7) for FP044
and (2.1, 2.6) for fingerprint FP076. Which predictor is more important de-
pends on the context and the particular data set. If the signal is large enough,
the model may be able to overcome the noise. In other cases, smaller but more
precise differences may generate better performance.

When the predictor has more than two values, an analysis of variance
(ANOVA) model can be used to characterize the statistical significance of the
predictors. However, if the means of the categories are found to be different,
the natural next step is to discover which are different. For this reason, it may
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be helpful to decompose the categories into multiple binary dummy variables
and apply the procedure outlined above to determine the relevance of each
category.

18.2 Categorical Outcomes

With categorical outcomes and numeric predictors, there are several
approaches to quantifying the importance of the predictor. The image seg-
mentation data from Chap. 3 will be used to illustrate the techniques. Figure
18.4 shows histograms of two predictors (the fiber width for channel 1 and
the spot fiber count for channel 4) for each class. Fiber width shows a shift in
the average values between the classes while the spot fiber count distribution
appears very similar between classes.

One approach when there are two classes is to use the area under the ROC
curve to quantify predictor relevance. Sections 11.3 and 16.4 utilized the ROC
curve with predicted class probabilities as inputs. Here, we use the predictor
data as inputs into the ROC curve. If the predictor could perfectly separate
the classes, there would be a cutoff for the predictor that would achieve a
sensitivity and specificity of 1 and the area under the curve would be one.
As before, a completely irrelevant predictor would have an area under the
curve of approximately 0.5. Figure 18.5 shows the area under the curve for
the fiber width and spot fiber count predictors. The area under the ROC
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Fig. 18.4: Histograms for two predictors in the cell segmentation data,
separated for each class
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Fig. 18.5: ROC curves for two predictors in the cell segmentation data

curve for the fiber width data was 0.836 while the value for the spot fiber
count was 0.538. This echoes the trends seen in Fig. 18.4 where the fiber width
showed more separation between classes.

When there are multiple classes, the extensions of ROC curves described
by Hanley and McNeil (1982), DeLong et al. (1988), Venkatraman (2000),
and Pepe et al. (2009) can also be used. Alternatively, a set of “one versus
all”ROC curves can be created by lumping all but one of the classes together.
In this way, there would be a separate AUC for each class and the overall
relevance can be quantified using the average or maximum AUC across the
classes.

Another, more simplistic approach is to test if the mean values of predictors
within each class are different. This is similar to the technique described in
the previous section, but, in this context, the predictor is being treated as
the outcome. Volcano plots cannot be used since the each of the differences
may be on different scales. However, the t-statistics can be used to compare
the predictors on different scales. For the fiber width, the t-statistic value
was −19, indicating a clear signal above the noise. The signal was much
weaker for the spot fiber count, with a value of 3.

For the segmentation data, the 58 continuous predictors were evaluated
using each of these methods along with the random forest variable importance
score and two methods that are described in Sect. 18.3 (MIC and Relief).
The methods are roughly concordant (Fig. 18.6). The area under the ROC
curve shows a tight, curvilinear relationship with the random forest score and
a strong linear relationship with the t-statistic. The t-statistic and random
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Fig. 18.6: A scatter plot matrix of several different metrics for ranking pre-
dictors with the image segmentation data set

forest appear to rank the same predictors as less important, but there are
differences in the scores for those quantified as most important. Three pre-
dictors tend to be ranked very highly across the methods: average intensity
(channel 2), fiber width (channel 1), and total intensity (channel 2).

When the predictor is categorical, there are several metrics that may be
appropriate. For binary predictors and two classes, one effective method for
measuring the relevance is the odds ratio. Recall that the odds of a probability
are p(1− p). The probability of an event can be calculated for both levels of
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Table 18.1: Statistics for three binary categorical predictors in the grant data

Grant success
Yes No % OR p-value Gain ratio

Sponsor
62B 7 44 14
Other 3226 3356 49 6.0 2.6e−07 0.04726

CVB
Band unknown 644 2075 24
Band known 2589 1325 66 6.3 1.7e−263 0.13408

RFCD code
240302 13 15 46
Other code 3220 3385 49 1.1 8.5e−01 0.00017

the predictor. If these are denoted as p1 and p2, the odds ratio (Bland and
Altman 2000; Agresti 2002) is

OR =
p1(1− p2)

p2(1− p1)

and represents the increase in the odds of the event when going from the first
level of the predictor to the other.

To illustrate this approach, the grant application data from previous
chapters is used. For these data there are 226 binary predictors with at least
25 entries in each cell of the 2× 2 table between the predictor and outcome.
Table 18.1 shows cross tabulations for three predictors in the grant data.
For contract value band, the probability of grant success is determined when
the band is known (p1 = 0.661) and unknown (p2 = 0.237). The correspond-
ing odds ratio is 6.3, meaning that there is more than a sixfold increase in the
odds of success when the band is known. As with the discussion on the differ-
ences in means, the odds ratio only reflects the signal, not the noise. Although
there are formulas for calculating the confidence interval for the odds ratio,
a more common approach is to conduct a statistical hypothesis test that
the odds ratio is equal to one (i.e., equal odds between the predictor levels).
When there are two categories and two values for the predictor, Fisher’s ex-
act test (Agresti 2002) can be used to evaluate this hypothesis and can be
summarized by the resulting p-value. For this predictor, the p-value was effec-
tively zero, which indicates that levels of contract value band are related to
grant success. Table 18.1 shows another predictor for Sponsor 62B that has
a similar odds ratio (OR = 6), but the number of grants with this sponsor is
very low. Here, the p-value was still small but would be ranked much lower
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Fig. 18.7: The log odds ratio plotted against two other statistics. Left: a
function of the p-values from Fisher’s exact test is shown. The largest value
in the data is 263; this image truncates at 50 to preserve the perspective.
Right: The gain ratio for each predictor. The red square is the predictor for
sponsor 62B and the blue triangle is for unknown contract value band

using statistical significance. The left-hand panel of Fig. 18.7 shows a volcano
plot for the odds ratio and the corresponding p-value for 226 binary grant
predictors.

When there are more than two classes or the predictors have more than two
levels, other methods can be applied. Fisher’s exact test can still be used to
measure the association between the predictor and the classes. Alternatively,
the gain ratio used for C4.5 can be applied to quantify relationship between
two variables, where larger is better. Recall that the gain ratio adjusts for
the number of levels in the predictor to remove the bias against attributes
with few levels. For this reason, the information gain can be applied to all
categorical predictors, irrespective of their characteristics. Table 18.1 shows
the information gain for three of the grant predictors and Fig. 18.7 contrasts
the gain statistics versus the odds ratio. Like the p-value for Fisher’s exact
test, the gain statistics favor the contract value band predictor over the one
for Sponsor 62B, despite the similarities in their odds ratio.

18.3 Other Approaches

The Relief algorithm (Kira and Rendell 1992) is a generic method for
quantifying predictor importance. It was originally developed for classifi-
cation problems with two classes but has been extended to work across a
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1 Initialize the predictor scores Sj to zero

2 for i = 1 . . .m randomly selected training set samples (Ri) do

3 Find the nearest miss and hit in the training set

4 for j = 1 . . . p predictor variables do

5 Adjust the score for each predictor based on the proximity of
Rj to the nearest miss and hit:

6 Sj = Sj − diffj(Rj , Hit)2/m+ diffj(Rj ,Miss)2/m

7 end

8 end

Algorithm 18.1: The original Relief algorithm for ranking predictor
variables in classification models with two classes

wider range of problems. It can accommodate continuous predictors as well
as dummy variables and can recognize nonlinear relationships between the
predictors and the outcome. It uses random selected points and their nearest
neighbors to evaluate each predictor in isolation.

For a particular predictor, the score attempts to characterize the separa-
tion between the classes in isolated sections of the data. Algorithm 18.1 shows
the procedure.

For a randomly selected training set sample, the algorithm finds the nearest
samples from both classes (called the “hits”and“misses”). For each predictor,
a measure of difference in the predictor’s values is calculated between the
random data point and the hits and misses. For continuous predictors, Kira
and Rendell (1992) suggested the distance between the two points be divided
by the overall range of the predictor:

diff(x, y) = (x − y)/C

where C is a constant for the predictor that scales the difference to be between
0 and 1. For binary (i.e., 0/1) data, a simple indicator for equivalence can
be used:

diff(x, y) = |x− y|
so that these values are also between 0 and 1.

The overall score (Sj) is an accumulation of these differences such that the
score is decreased if the hit is far away from the randomly selected value but
is increased if the miss is far away. The idea is that a predictor that shows a
separation between the classes should have hits nearby and missed far away.
Given this, larger scores are indicative of important predictors.

For example, Fig. 18.8 presents a set of data for several predictors. The top
panel shows a predictor that completely separates the classes. Suppose the
sampling procedure selects the second to last sample on the left-hand side
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Fig. 18.8: Three data sets that illustrate the Relief algorithm. In the top panel,
predictorA shows complete separation with a ReliefF score of 0.19. Themiddle
panel shows a completely non-informative predictor with a corresponding
ReliefF score of 0

(predictor A = −1.1). The nearest hit is on either side of this data point, with
a difference of approximately 0.2 (we’ll forgo the constant here). The nearest
miss is far away (A = 0.5) with a corresponding difference of −1.61. If this
were the first randomly selected training set point, the score would be

SA = 0− 0.22 +−1.612 = 2.55

This value would be divided bym and new values would be accumulated. As a
counter example, predictor B in Fig. 18.8 is completely non-informative. Each
hit and miss is adjacent to any randomly selected sample, so the differences
will always offset each other and the score for this predictor is SB = 0.

This procedure was subsequently improved by Kononenko (1994). The mod-
ified algorithm, called ReliefF, uses more than a single nearest neighbor, uses
a modified difference metric, and allows for more than two classes as well as
missing predictor values. Additionally, Robnik-Sikonja and Kononenko (1997)
adapted the algorithm for regression (i.e., numeric outcomes).

The bottom panel of Fig. 18.9 illustrates an hypothetical data set with
two classes and two correlated predictors (denoted as C and D). The class
boundary was created using a simple logistic regression model equation with
two strong main effects and a moderate interaction effect:
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The data shown in Fig. 18.9 were simulated with this class boundary. For these
data, a logistic regressionmodel was able to achieve a cross-validated accuracy
rate of 90.6%. Knowing the true model equation, both predictors should
be quantified as being important. Since there is an interaction effect in the
model equation, one would expect the ReliefF algorithm to show a larger
signal than other methods that only consider a single predictor at a time.
For these data, the ReliefF algorithm was used with m = 50 random samples
and k = 10-nearest neighbors. The two predictors were centered and scaled
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prior to running the algorithm. The scores for predictors C and D were 0.17
and 0.25, respectively. The areas under the ROC curves for predictors C and
D were moderate, with values of 0.65 and 0.69, respectively.

What cutoff for these scores should be used? Kira and Rendell (1992)
suggest that a threshold “can be much smaller than 1/

√
αm,” where α is the

desired false-positive rate (i.e., the percent of time that an irrelevant predictor
is judged to be important). Using this yardstick with a 5% false positive rate,
values greater than 0.63 may be considered important. Another alternative is
to use a well-established statistical method called a permutation test (Good
2000) to evaluate the scores. Here, the true class labels are randomly shuffled
and the ReliefF scores are recalculated many times. This should provide some
sense of the distribution of the scores when the predictor has no relevance.
From this, the observed score can be contrasted against this distribution to
characterize how extreme it is relative to the assumption that the predictor
is not relevant. Using 500 random permutations of the data, the distributions
of the scores for predictors C and D resembled normally distributed data
(Fig. 18.9). For predictor C, the score values ranged from −0.05 to 0.11,
while for predictor D, the range was −0.05 to 0.11. In this context, the two
observed values for the data in Fig. 18.9 are indicative of very important
predictors. Given the symmetric, normally distributed shapes of the random
permutations, it can be determined that the scores for predictors C and D
are 4.5 and 11.6 standard deviations away from what should be expected by
chance. Given how extreme the scores are, the conclusion would be that both
predictors are important factors for separating the classes.

For the cell segmentation data, Fig. 18.6 shows the ReliefF scores for each
predictor. These values are moderately correlated with the other metrics but
show larger variability in the relationships. For example, the area under the
ROC curve shows less noise in the relationships with the other metrics. This
may be due to the metrics measuring different aspects of the data or may be
due to the random sampling used by ReliefF.

Reshef et al. (2011) describe a new metric to quantify the relationship
between two variables called the MIC. Their method partitions the two-
dimensional area defined by the predictor and outcome into sets of two-
dimensional grids. For example, Fig. 18.10 shows the scatter plot of the solu-
bility data where four random 4×3 grids are created for the number of carbon
atoms predictor. Within each grid, the number of data points is calculated
and used to compute themutual information statistic (Brillinger 2004), which
is related to the information criteria described in Chap. 14 for C4.5 and C5.0
decision trees. Many different configurations of the same grid size are evalu-
ated and the largest mutual information value is determined. This process is
repeated for many different grid sizes (e.g., 2×2, 10×3). The compendium of
mutual information values across all the bins are normalized and the largest
value across all the bin configurations is used as the strength of association
between the predictor and the outcome.
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Fig. 18.10: Examples of how the maximal information criterion (MIC) is
created. Each panel shows a random configuration of 4 × 3 grids for one
of the solubility predictors with the corresponding the mutual information
statistic

The authors demonstrate that this method can detect many types of
relationships, such as sin waves, ellipses, and other highly nonlinear pat-
terns. The metric has a similar scale to the simple correlation statistic where
a value of zero indicates no relationship, whereas a value of one is indicative
of an extremely strong relationship. One potential issue with such a general
technique is that it may not do as well as others under some circumstances.
For example, if the true relationship between the predictor and outcome were
linear, the simple correlation statistic may perform better since it is specific
to linear trends.

The MIC statistic was previously shown in Fig. 18.1 for the continuous
solubility predictors. Here, the MIC values have a strong relationship with
the other metrics. For the cell segmentation data shown in Fig. 18.6, the MIC
statistic has a strong correlation with the absolute t-statistics, the area under
the ROC curve, and random forest scores. There is smaller correlation with
ReliefF.
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18.4 Computing

This section uses functions from the following R packages: AppliedPredictive-
Modeling, caret, CORElearn, minerva, pROC, and randomForest.

The cell segmentation data from Chap. 3 are used and can be found in
the caret package. The solubility data from Chaps. 6 through 9 are also used
and can be found in the AppliedPredictiveModeling package. Finally, the grant
application data from Chaps. 12 through 15 are also used (see Sect. 12.7 for
reading and processing these data).

Numeric Outcomes

To estimate the correlations between the predictors and the outcome, the cor

function is used. For example,

> library(AppliedPredictiveModeling)

> data(solubility)

> cor(solTrainXtrans$NumCarbon, solTrainY)

[1] -0.6067917

To get results for all of the numeric predictors, the apply function can be
used to make the same calculations across many columns

> ## Determine which columns have the string "FP" in the name and

> ## exclude these to get the numeric predictors

> fpCols<- grepl("FP", names(solTrainXtrans))

> ## Exclude these to get the numeric predictor names

> numericPreds <- names(solTrainXtrans)[!fpCols]

> corrValues <- apply(solTrainXtrans[, numericPreds],

+ MARGIN = 2,

+ FUN = function(x, y) cor(x, y),

+ y = solTrainY)

> head(corrValues)

MolWeight NumAtoms NumNonHAtoms NumBonds NumNonHBonds
-0.6585284 -0.4358113 -0.5836236 -0.4590395 -0.5851968

NumMultBonds
-0.4804159

The obtain the rank correlation, the corr function has an option
method = "spearman".

The LOESS smoother can be accessed with the loess function in the stats
library. The formula method is used to specify the model:

> smoother <- loess(solTrainY ~ solTrainXtrans$NumCarbon)

> smoother
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Call:
loess(formula = solTrainY ~ solTrainXtrans$NumCarbon)

Number of Observations: 951
Equivalent Number of Parameters: 5.3
Residual Standard Error: 1.548

The lattice function xyplot is convenient for displaying the LOESS fit:

> xyplot(solTrainY ~ solTrainXtrans$NumCarbon,

+ type = c("p", "smooth"),

+ xlab = "# Carbons",

+ ylab = "Solubility")

The caret function filterVarImp with the nonpara = TRUE option (for nonpara-
metric regression) creates a LOESS model for each predictor and quantifies
the relationship with the outcome:

> loessResults <- filterVarImp(x = solTrainXtrans[, numericPreds],

+ y = solTrainY,

+ nonpara = TRUE)

> head(loessResults)

Overall
MolWeight 0.4443931
NumAtoms 0.1899315
NumNonHAtoms 0.3406166
NumBonds 0.2107173
NumNonHBonds 0.3424552
NumMultBonds 0.2307995

The minerva package can be used to calculate the MIC statistics between
the predictors and outcomes. The mine function computes several quantities
including the MIC value:

> library(minerva)

> micValues <- mine(solTrainXtrans[, numericPreds], solTrainY)

> ## Several statistics are calculated

> names(micValues)

[1] "MIC" "MAS" "MEV" "MCN" "MICR2"
> head(micValues$MIC)

Y
MolWeight 0.4679277
NumAtoms 0.2896815
NumNonHAtoms 0.3947092
NumBonds 0.3268683
NumNonHBonds 0.3919627
NumMultBonds 0.2792600

For categorical predictors, the simple t.test function computes the differ-
ence in means and the p-value. For one predictor:
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> t.test(solTrainY ~ solTrainXtrans$FP044)

Welch Two Sample t-test

data: solTrainY by solTrainXtrans$FP044
t = 15.1984, df = 61.891, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
3.569300 4.650437
sample estimates:
mean in group 0 mean in group 1

-2.472237 -6.582105

This approach can be extended to all predictors using apply in a manner
similar to the one shown above for correlations.

> getTstats <- function(x, y)

+ {

+ tTest <- t.test(y~x)

+ out <- c(tStat = tTest$statistic, p = tTest$p.value)

+ out

+ }

> tVals <- apply(solTrainXtrans[, fpCols],

+ MARGIN = 2,

+ FUN = getTstats,

+ y = solTrainY)

> ## switch the dimensions

> tVals <- t(tVals)

> head(tVals)

tStat.t p
FP001 -4.022040 6.287404e-05
FP002 10.286727 1.351580e-23
FP003 -2.036442 4.198619e-02
FP004 -4.948958 9.551772e-07
FP005 10.282475 1.576549e-23
FP006 -7.875838 9.287835e-15

Categorical Outcomes

The filterVarImp function also calculates the area under the ROC curve when
the outcome variable is an R factor variable:

> library(caret)

> data(segmentationData)

> cellData <- subset(segmentationData, Case == "Train")

> cellData$Case <- cellData$Cell <- NULL

> ## The class is in the first column

> head(names(cellData))

[1] "Class" "AngleCh1" "AreaCh1" "AvgIntenCh1"
[5] "AvgIntenCh2" "AvgIntenCh3"
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> rocValues <- filterVarImp(x = cellData[,-1],

+ y = cellData$Class)

> ## Column is created for each class

> head(rocValues)

PS WS
AngleCh1 0.5025967 0.5025967
AreaCh1 0.5709170 0.5709170
AvgIntenCh1 0.7662375 0.7662375
AvgIntenCh2 0.7866146 0.7866146
AvgIntenCh3 0.5214098 0.5214098
AvgIntenCh4 0.6473814 0.6473814

This is a simple wrapper for the functions roc and auc in the pROC package.
When there are three or more classes, filterVarImp will compute ROC curves
for each class versus the others and then returns the largest area under the
curve.

The Relief statistics can be calculated using the CORElearn package.
The function attrEval will calculate several versions of Relief (using the
estimator option):

> library(CORElearn)

> reliefValues <- attrEval(Class ~ ., data = cellData,

+ ## There are many Relief methods

+ ## available. See ?attrEval

+ estimator = "ReliefFequalK",

+ ## The number of instances tested:

+ ReliefIterations = 50)

> head(reliefValues)

AngleCh1 AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4
0.01631332 0.02004060 0.09402596 0.17200400 0.09268398 0.02672168

This function can also be used to calculate the gain ratio, Gini index,
and other scores. To use a permutation approach to investigate the observed
values of the ReliefF statistic, the AppliedPredictiveModeling package has a
function permuteRelief:

> perm <- permuteRelief(x = cellData[,-1],

+ y = cellData$Class,

+ nperm = 500,

+ estimator = "ReliefFequalK",

+ ReliefIterations = 50)

The permuted ReliefF scores are contained in a sub-object called permutations:

> head(perm$permutations)

Predictor value
1 AngleCh1 -0.009364024
2 AngleCh1 0.011170669
3 AngleCh1 -0.020425694
4 AngleCh1 -0.037133238
5 AngleCh1 0.005334315
6 AngleCh1 0.010394028
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The permutation distributions for the ReliefF scores can be helpful. His-
tograms, such as those show in Fig. 18.9, can be created with the syntax:

> histogram(~ value|Predictor,

+ data = perm$permutations)

Also, the standardized versions of the scores are in the sub-object called
standardized and represent the number of standard deviations that the ob-
served ReliefF values (i.e., without permuting) are from the center of the
permuted distribution:

> head(perm$standardized)

AngleCh1 AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4
-1.232653 3.257958 3.765691 8.300906 4.054288 1.603847

The MIC statistic can be computed as before but with a binary dummy
variable encoding of the classes:

> micValues <- mine(x = cellData[,-1],

+ y = ifelse(cellData$Class == "PS", 1, 0))

>

> head(micValues$MIC)

Y
AngleCh1 0.1310570
AreaCh1 0.1080839
AvgIntenCh1 0.2920461
AvgIntenCh2 0.3294846
AvgIntenCh3 0.1354438
AvgIntenCh4 0.1665450

To compute the odds ratio and a statistical test of association, the
fisher.test function in the stats library can be applied. For example, to
calculate these statistics for the grant objects created in Sect. 12.7:

> Sp62BTable <- table(training[pre2008, "Sponsor62B"],

+ training[pre2008, "Class"])

> Sp62BTable

successful unsuccessful
0 3226 3356
1 7 44

> fisher.test(Sp62BTable)

Fisher's Exact Test for Count Data

data: Sp62BTable
p-value = 2.644e-07
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
2.694138 15.917729

sample estimates:
odds ratio
6.040826
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When the predictor has more than two classes, a single odds ratio cannot be
computed, but the p-value for association can still be utilized:

> ciTable <- table(training[pre2008, "CI.1950"],

+ training[pre2008, "Class"])

> ciTable

successful unsuccessful
0 2704 2899
1 476 455
2 45 39
3 7 7
4 1 0

> fisher.test(ciTable)

Fisher's Exact Test for Count Data

data: ciTable
p-value = 0.3143
alternative hypothesis: two.sided

In some cases, Fisher’s exact test may be computationally prohibitive.
In these cases, the χ2 test for association can be computed:

> DayTable <- table(training[pre2008, "Weekday"],

+ training[pre2008, "Class"])

> DayTable

successful unsuccessful
Fri 542 880
Mon 634 455
Sat 615 861
Sun 223 0
Thurs 321 246
Tues 377 309
Wed 521 649

> chisq.test(DayTable)

Pearson's Chi-squared test

data: DayTable
X-squared = 400.4766, df = 6, p-value < 2.2e-16

Model-Based Importance Scores

As described in the previous chapters, many models have built-in approaches
for measuring the aggregate effect of the predictors on the model. The caret
package contains a general class for calculating or returning these values.
As of this writing, there are methods for 27 R classes, including: C5.0, JRip,
PART, RRF, RandomForest, bagEarth, classbagg, cubist, dsa, earth, fda, gam, gbm,
glm, glmnet, lm, multinom, mvr, nnet, pamrtrained, plsda, randomForest, regbagg,
rfe, rpart, sbf, and train.

To illustrate, a random forest model was fit to the cell segmentation data:
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> library(randomForest)

> set.seed(791)

> rfImp <- randomForest(Class ~ ., data = segTrain,

+ ntree = 2000,

+ importance = TRUE)

The randomForest package contains a function called importance that
returns the relevant metric. The varImp function standardizes across models:

> head(varImp(rfImp))

PS WS
AngleCh1 -1.002852 -1.002852
AreaCh1 8.769884 8.769884
AvgIntenCh1 21.460666 21.460666
AvgIntenCh2 22.377451 22.377451
AvgIntenCh3 7.690371 7.690371
AvgIntenCh4 9.108741 9.108741

Note that some models return a separate score for each class while others
do not.

When using the train function, the varImp function executes the
appropriate code based on the value of the method argument. When the model
does not have a built-in function for measuring importances, train employs
a more general approach (as described above).

Exercises

18.1. For the churn data described in Exercise 12.3:

(a) Calculate the correlations between predictors. Are there strong relation-
ships between these variables? How does this compare to what one would
expect with these attributes?

(b) Assess the importance of the categorical predictors (i.e., area code, voice
mail plan, etc) individually using the training set.

(c) Also estimate the importance scores of the continuous predictors individ-
ually.

(d) Now use ReliefF to jointly estimate the importance of the predictors. Is
there a difference in rankings? Why or why not?

18.2. For the oil type data described in Exercise 4.4, estimate variable impor-
tance scores. Does the large number of classes affect the process of quantifying
the importances?

18.3. The UCI Abalone data (http://archive.ics.uci.edu/ml/datasets/Abalone)
consist of data from 4,177 abalones. The data contain measurements of the
type (male, female, and infant), the longest shell measurement, the diameter,
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height, and several weights (whole, shucked, viscera, and shell). The outcome
is the number of rings. The age of the abalone is the number of rings plus 1.5.

The data are contained in the AppliedPredictiveModeling package:

> library(AppliedPredictiveModeling)

> data(abalone)

> str(abalone)

'data.frame': 4177 obs. of 9 variables:
$ Type : Factor w/ 3 levels "F","I","M": 3 3 1 3 2 2 1 1 3 1 ...
$ LongestShell : num 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 ...
$ Diameter : num 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 ...
$ Height : num 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 ...
$ WholeWeight : num 0.514 0.226 0.677 0.516 0.205 ...
$ ShuckedWeight: num 0.2245 0.0995 0.2565 0.2155 0.0895 ...
$ VisceraWeight: num 0.101 0.0485 0.1415 0.114 0.0395 ...
$ ShellWeight : num 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 ...
$ Rings : int 15 7 9 10 7 8 20 16 9 19 ...

> head(abalone)

Type LongestShell Diameter Height WholeWeight ShuckedWeight
1 M 0.455 0.365 0.095 0.5140 0.2245
2 M 0.350 0.265 0.090 0.2255 0.0995
3 F 0.530 0.420 0.135 0.6770 0.2565
4 M 0.440 0.365 0.125 0.5160 0.2155
5 I 0.330 0.255 0.080 0.2050 0.0895
6 I 0.425 0.300 0.095 0.3515 0.1410
VisceraWeight ShellWeight Rings

1 0.1010 0.150 15
2 0.0485 0.070 7
3 0.1415 0.210 9
4 0.1140 0.155 10
5 0.0395 0.055 7
6 0.0775 0.120 8

(a) Plot the data to assess the functional relationships between the predictors
and the outcome.

(b) Use scatter plots and correlation plots to understand how the predictors
relate to one another.

(c) Estimate variable importance scores for each predictor. Develop an
approach to determining a reduced set of nonredundant predictors.

(d) Apply principal component analysis to the continuous predictors to
determine how many distinct underlying pieces of information are in the
data. Would feature extraction help these data?



Chapter 19

An Introduction to Feature Selection

Determining which predictors should be included in a model is becom-
ing one of the most critical questions as data are becoming increasingly
high-dimensional. For example:

• In business, companies are now more proficient at storing and accessing
large amounts of information on their customers and products. Large
databases are often mined to discover crucial relationships (Lo 2002).

• In pharmaceutical research, chemists can calculate thousands of predic-
tors using quantitative structure-activity relationship (QSAR) methodol-
ogy described in the regression chapters for numerically describing various
aspects of molecules. As an example, one popular software suite calculates
17 flavors of a compound’s surface area. These predictors can be categorical
or continuous and can easily number in the tens of thousands.

• In biology, a vast array of biological predictors can be measured at one
time on a sample of biological material such as blood. RNA expression
profiling microarrays can measure thousands of RNA sequences at once.
Also, DNA microarrays and sequencing technologies can comprehensively
determine the genetic makeup of a sample, producing a wealth of numeric
predictors. These technologies have rapidly advanced over time, offering
ever larger quantities of information.

From a practical point of view, a model with less predictors may be more
interpretable and less costly especially if there is a cost to measuring the
predictors. Statistically, it is often more attractive to estimate fewer param-
eters. Also, as we will soon see, some models may be negatively affected by
non-informative predictors.

Some models are naturally resistant to non-informative predictors.
Tree- and rule-based models, MARS and the lasso, for example, intrinsi-
cally conduct feature selection. For example, if a predictor is not used in any
split during the construction of a tree, the prediction equation is functionally
independent of the predictor.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 19,
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An important distinction to be made in feature selection is that of
supervised and unsupervised methods. When the outcome is ignored dur-
ing the elimination of predictors, the technique is unsupervised. Examples
of these filters were described in Chap. 3 and included removing predictors
that have high correlations with other predictors or that have very sparse and
unbalanced distributions (i.e., near-zero variance predictors). In each case, the
outcome is independent of the filtering calculations. For supervised methods,
predictors are specifically selected for the purpose of increasing accuracy or
to find a subset of predictors to reduce the complexity of the model. Here,
the outcome is typically used to quantify the importance of the predictors
(as illustrated s in Chap. 18).

The issues related to each type of feature selection are very different, and
the literature for this topic is large. Subsequent sections highlight several
critical topics including the need for feature selection, typical approaches,
and common pitfalls.

19.1 Consequences of Using Non-informative Predictors

Feature selection is primarily focused on removing non-informative or
redundant predictors from the model. As with many issues discussed in this
text, the importance of feature selection depends on which model is being
used. Many models, especially those based on regression slopes and inter-
cepts, will estimate parameters for every term in the model. Because of this,
the presence of non-informative variables can add uncertainty to the predic-
tions and reduce the overall effectiveness of the model.

The solubility QSAR data which were analyzed in Chaps. 6–9 and 20
will again be used to demonstrate the effect of non-informative predictors
on various models. The data most likely contain non-informative predictors
already. Despite this, we will tune and rebuild several models after adding
more irrelevant predictors. To do this, the original predictor data are al-
tered by randomly shuffling their rows (independently for each column). As
a result, there should be no connection between the new predictors and the
solubility values. This procedure preserves the nature of the individual pre-
dictors (i.e., fingerprints with the same frequency distribution) but has the
side effect of eliminating the between-predictor correlations. If the inclusion
of correlated predictors would add additional injury to a particular model,
that impact will not be reflected in this exercise.

To quantify the effect of additional predictors, models were created that
used the original 228 predictors in the data and then supplemented with
either 10, 50, 100, 200, 300, 400, or 500 additional, non-informative predictors.
The models were tuned and finalized, and the test set RMSE values were
calculated. The models assessed in this manner were linear regression, partial
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Fig. 19.1: Test set RMSE profiles for solubility models when non-informative
predictors are added

least squares, single regression trees, multivariate adaptive regression splines,
random forests, neural networks, and radial basis function support vector
machines.

Figure 19.1 shows the test set results. As expected, regression trees and
MARS models were not affected due to the built-in feature selection. Ran-
dom forests showed a moderate degradation in performance. The issue here
is that the random selection of predictors for splitting can coerce the model
into including some unimportant predictors. However, their inclusion does
not seriously impact the overall model. The parametrically structured mod-
els, such as linear regression, partial least squares, and neural networks, were
most affected. Neural networks appear to have the most extensive issues,
perhaps due to the excess number of parameters added to the model. For ex-
ample, a network with 5 hidden units would originally have estimated 961
regression parameters. Adding 500 irrelevant predictors increases the number
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of parameters to 3,461. Given that there are 951 data points in the train-
ing set, this may be too difficult of a problem to solve without over-fitting.
Support vector machines also saw a substantial increase in the RMSE, which
is consistent with comments made by Hastie et al. (2008, Chap. 12).

Given the potential negative impact, there is the need to find a smaller
subset of predictors. Our basic goal is to reduce their number in a way that
maximizes performance. This is similar to the previous discussions: how can
we reduce complexity without negatively affecting model effectiveness?

19.2 Approaches for Reducing the Number of Predictors

Apart from models with built-in feature selection, most approaches for reduc-
ing the number of predictors can be placed into two main categories (John
et al. 1994):

• Wrapper methods evaluate multiple models using procedures that add
and/or remove predictors to find the optimal combination that maximizes
model performance. In essence, wrapper methods are search algorithms
that treat the predictors as the inputs and utilize model performance as
the output to be optimized.

• Filter methods evaluate the relevance of the predictors outside of the pre-
dictive models and subsequently model only the predictors that pass some
criterion. For example, for classification problems, each predictor could be
individually evaluated to check if there is a plausible relationship between
it and the observed classes. Only predictors with important relationships
would then be included in a classification model. Saeys et al. (2007) survey
filter methods.

Both approaches have advantages and drawbacks. Filter methods are
usually more computationally efficient than wrapper methods, but the
selection criterion is not directly related to the effectiveness of the model.
Also, most filter methods evaluate each predictor separately, and, conse-
quently, redundant (i.e., highly-correlated) predictors may be selected and
important interactions between variables will not be able to be quantified.
The downside of the wrapper method is that many models are evaluated
(which may also require parameter tuning) and thus an increase in compu-
tation time. There is also an increased risk of over-fitting with wrappers.

The following two sections describe these methods in more detail, and a
case study is used to illustrate their application.
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19.3 Wrapper Methods

As previously stated, wrapper methods conduct a search of the predictors to
determine which, when entered into the model, produce the best results. A
simple example is classical forward selection for linear regression
(Algorithm 19.1). Here, the predictors are evaluated (one at a time) in the
current linear regressionmodel. A statistical hypothesis test can be conducted
to see if each of the newly added predictors is statistically significant (at some
predefined threshold). If at least one predictor has a p-value below the thresh-
old, the predictor associated with the smallest value is added to the model
and the process starts again. The algorithm stops when none of the p-values
for the remaining predictors are statistically significant. In this scheme, linear
regression is the base learner and forward selection is the search procedure.
The objective function is the quantity being optimized which, in this case, is
statistical significance as represented by the p-value.

There are a few issues with this approach:

1. The forward search procedure is greedy, meaning that it does not reeval-
uate past solutions.

2. The use of repeated hypothesis tests in this manner invalidates many
of their statistical properties since the same data are being evaluated
numerous times. See Fig. 19.2 for a nontechnical illustration of this issue.

3. Maximizing statistical significance may not be the same as maximizing
more relevant accuracy-based quantities.

1 Create an initial model containing only an intercept term.

2 repeat
3 for each predictor not in the current model do

4 Create a candidate model by adding the predictor to the
current model

5 Use a hypothesis test to estimate the statistical significance
of the new model term

6 end
7 if the smallest p-value is less than the inclusion threshold then
8 Update the current model to include a term corresponding to

the most statistically significant predictor
9 else

10 Stop
11 end

12 until no statistically significant predictors remain outside the model

Algorithm 19.1: Classical forward selection for linear regression
models
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Fig. 19.2: The perils of repeated testing of the same data (Randall Munroe,
http://xkcd.com/882, modified for space)

http://xkcd.com/882
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For the first issue, more complex search procedures may be more effective.
Several such algorithms are discussed below. The second issue has been ex-
tensively studied (Derksen and Keselman 1992; Olden and Jackson 2000;
Harrell 2001; Whittingham et al. 2006).1 Harrell (2001) summarizes the use
of p-values during automated model selection:

. . . if this procedure had just been proposed as a statistical method, it would
most likely be rejected because it violates every principal of statistical estima-
tion and hypothesis testing.

The second and third issues can be mitigated by using some measure of
predictive performance such as RMSE, classification accuracy, or the error
under the ROC curve.

Suppose that the RMSE was the objective function instead of statistical
significance. Here, the algorithm would be the same but would add predic-
tors to the model that results in the smallest model RMSE. The process
would continue until some predefined number of predictors has been reached
or the full model is used. From this process, the RMSE can be monitored to
determine a point where the error began to increase. The subset size asso-
ciated with the smallest RMSE would be chosen. As one would suspect, the
main pitfall here is obtaining good estimates of the error rate that are not
subject to over-fitting caused by the model or the feature selection process
(see Sect. 19.5 below).

There are several other criteria that can penalize performance based on
how many predictors are in the model. For example, when choosing between
two models with the same RMSE, the simpler model with fewer predictors
is preferable. For linear regression, a commonly used statistic is the Akaike
Information Criterion, a penalized version of the sums of squares error:

AIC = n log

(
n∑

i=1

(yi − ŷi)
2

)
+ 2P

where P is the number of terms in the model. Here, no inferential statements
are being made about this quantity, and, all other things being equal, sim-
plicity is favored over complexity. Similar AIC statistics are also available
for other models, such as logistic regression. Searching the predictor space
for the model with the smallest AIC may help avoid over-fitting.2

Another approach is correlation-based feature selection (Hall and Smith
1997), which attempts to find the best subset of predictors that have strong

1 The majority of the scholarship on this problem has revolved around stepwise
model selection, a variant of forward selection. However, the results apply to any
search procedure using hypothesis testing in this manner.
2 It should be noted that the AIC statistic is designed for preplanned compar-
isons between models (as opposed to comparisons of many models during automated
searches).
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correlations with the outcome but weak between-predictor correlations. To do
this, one possible metric is

G =
P Ry√

P + P (P − 1)R̄x

where Ry is a measure of correlation between the candidate predictor and the
outcome, and R̄x is the average correlation between the current predictor and
the P predictors already included in the subset. At each stage of the search,
this metric can rank predictors as a function of effectiveness and redundancy.

For models built to predict, rather than explain, there are two important
overall points:

• Many of the criticisms of wrapper methods listed above3 focus on the use
of statistical hypothesis tests.

• As in many other cases presented in this text, methodologies based on du-
bious statistical principals may still lead to very accurate models. The key
protection in these instances is a thorough, methodical validation process
with independent data.

The following subsections describe different search methods to use with
wrapper methods.

Forward, Backward, and Stepwise Selection

Classical forward selection was previously described in Algorithm 19.1.
Stepwise selection is a popular modification where, after each candidate vari-
able is added to the model, each term is reevaluated for removal from the
model. In some cases, the p-value threshold for adding and removing pre-
dictors can be quite different (Derksen and Keselman 1992). Although this
makes the search procedure less greedy, it exacerbates the problem of re-
peated hypothesis testing. In backward selection, the initial model contains
all P predictors which are then iteratively removed to determine which are not
significantly contributing to the model. These procedures can be improved
using non-inferential criteria, such as the AIC statistic, to add or remove
predictors from the model.

Guyon et al. (2002) described a backward selection algorithm (called
recursive feature elimination) that avoids refitting many models at each step
of the search. When the full model is created, a measure of variable impor-
tance is computed that ranks the predictors from most important to least.
The importance calculations can be model based (e.g., the random forest im-
portance criterion) or using a more general approach that is independent of
the full model. At each stage of the search, the least important predictors are

3 However, Derksen and Keselman (1992) and Henderson and Velleman (1981) make
arguments against automated feature selection in general.
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1 Tune/train the model on the training set using all P predictors

2 Calculate model performance

3 Calculate variable importance or rankings

4 for each subset size Si, i = 1 . . . S do

5 Keep the Si most important variables

6 [Optional] Pre-process the data

7 Tune/train the model on the training set using Si predictors

88 Calculate model performance

9 [Optional] Recalculate the rankings for each predictor

10 end

11 Calculate the performance profile over the Si

12 Determine the appropriate number of predictors (i.e. the Si

associated with the best performance)

13 Fit the final model based on the optimal Si

Algorithm 19.2: Backward selection via the recursive feature elim-
ination algorithm of Guyon et al. (2002)

iteratively eliminated prior to rebuilding the model. As before, once a new
model is created, the objective function is estimated for that model. The pro-
cess continues for some predefined sequence, and the subset size correspond-
ing to the best value of the objective function is used as the final model.
This process is outlined in more detail in Algorithm 19.2 and is illustrated in
Sect. 19.6.

While it is easy to treat the RFE algorithm as a black box, there are some
considerations that should be made. For example, when the outcome has more
than two classes, some classes may have a large degree of separation from
the rest of the training set. As such, it may be easier to achieve smaller error
rates for these classes than the others. When the predictors are ranked for
selection, the predictors associated with the “easy” classes may saturate the
positions for the highest ranks. As a result, the difficult classes are neglected
and maintain high error rates. In this case, class-specific importance scores
can aid in selecting a more balanced set of predictors in an effort to balance
the error rates across all the classes.

Simulated Annealing

A multitude of modern search procedures exist that can be applied to the
feature selection problem. Simulated annealing (Bohachevsky et al. 1986)
mimics the process of metal cooling. Algorithm 19.3 describes this process
in detail. An initial subset of predictors is selected and is used to estimate
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1 Generate an initial random subset of predictors

2 for iterations i = 1 . . . t do

3 Randomly perturb the current best predictor set

4 [Optional] Pre-process the data

5 Tune/train the model using this predictor set

6 Calculate model performance (Ei)

7 if Ei < Ebest then
8 Accept current predictor set as best

9 Set Ebest = Ei

10 else
11 Calculate the probability of accepting the current predictor

set pai = exp [(Ebest − Ei)/T ]

12 Generate a random number U between [0, 1]

13 if pai ≤ U then
14 Accept current predictor set as best

15 Set Ebest = Ei

16 else
17 Keep current best predictor set

18 end

19 end

20 end

21 Determine the predictor set associated with the smallest Ei across
all iterations

22 Finalize the model with this predictor set

Algorithm 19.3: Simulated annealing for feature selection. E is a
measure of performance where small values are best and T is a tem-
perature value that changes over iterations

performance of the model (denoted here as E1, for the initial error rate). The
current predictor subset is slightly changed, and another model is created
with an estimated error rate of E2. If the new model is an improvement over
the previous one (i.e., E2 < E1), the new feature set is accepted. However,
if it is worse, it may still be accepted based on some probability pai , where i
is the iteration of the process. This probability is configured to decrease over
time so that, as i becomes large, it becomes very unlikely that a suboptimal
configuration will be accepted. The process continues for some pre-specified
number of iterations and the best variable subset across all the iterations,
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Fig. 19.3: A schematic of the reproduction phase of a genetic algorithm

is used. The idea is to avoid a local optimum (a solution that is currently
best but is not best overall). By accepting “bad” solutions, the algorithm is
able to continue the search in other spaces and therefore is less greedy.

Genetic Algorithms

A distant kin to simulated annealing are genetic algorithms (GAs) (Holland
1975; Goldberg 1989). This optimization tool is based on evolutionary prin-
ciples of population biology and has been shown to be effective at finding
optimal solutions of complex, multivariate functions. Specifically, GAs are
constructed to imitate the evolutionary process by allowing the current pop-
ulation of solutions to reproduce, generating children which compete to sur-
vive. The most fit survivors are then allowed to reproduce, creating the next
generation of children. Over time, generations converge to a fitness plateau
(Holland 1992) and an optimal solution can be selected.

As we have seen thus far, the problem of feature selection is inherently
a complex optimization problem, where we seek the combination of features
that provides an optimal prediction of the response. To employ GAs towards
this end, we must frame the feature selection problem in terms of the GA
machinery. The subjects of this machinery are chromosomes, which consist of
genes and are evaluated based on their fitness. To create the next generation
of offspring, two chromosomes reproduce through the process of crossover
and mutation, which is illustrated in Fig. 19.3. GAs have been shown to be
effective feature selection tools in the fields of chemometrics (Lavine et al.
2002), image analysis (Bhanu and Lin 2003), and finance (Min et al. 2006;
Huang et al. 2012).
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1 Define the stopping criteria, number of children for each generation
(GenSize), and probability of mutation (pm)

2 Generate an initial random set of m binary chromosomes, each of
length p

3 repeat
4 for each chromosome do

5 Tune and train a model and compute each chromosome’s
fitness

6 end
7 for reproduction k = 1 . . .GenSize/2 do

8 Select two chromosomes based on the fitness criterion

9 Crossover: Randomly select a loci and exchange each
chromosome’s genes beyond the loci

10 Mutation: Randomly change binary values of each gene in
each new child chromosome with probability, pm

11 end

12 until stopping criteria is met

Algorithm 19.4: A genetic algorithm for feature selection

In the context of feature selection, the chromosome is a binary vector that
has the same length as the number of predictors in the data set. Each binary
entry of the chromosome, or gene, represents the presence or absence of each
predictor in the data. The fitness of the chromosome is determined by the
model using the predictors indicated by the binary vector. GAs are therefore
tasked with finding optimal solutions from the 2n possible combinations of
predictor sets.

To begin the search process, GAs are often initiated with a random
selection of chromosomes from the population of all possible chromosomes.
Each chromosome’s fitness is computed, which determines the likelihood of
the chromosome’s selection for the process of reproduction. Two chromosomes
from the current population are then selected based on the fitness criterion
and are allowed to reproduce. In the reproduction phase, the two parent
chromosomes are split at a random position (also called loci), and the head
of one chromosome is combined with the tail of the other chromosome and
vice versa. After crossover, the individual entries of the new chromosomes
can be randomly selected for mutation in which the current binary value is
changed to the other value. Algorithm 19.4 lists these steps.

The crossover phase drives subsequent generations towards optimums in
subspaces of similar genetic material. In other words, the search subspace
will be narrowed to the space defined by the most fit chromosomes. This
means that the algorithm could become trapped in a local optimum. In the
context of feature selection, this means that the selected features may pro-
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duce an optimal model, but other more optimal feature subsets may exist.
The mutation phase enables the algorithm to escape local optimums by ran-
domly perturbing the genetic material. Usually the probability of mutation
is kept low (say, pm < 0.05). However, if the practitioner is concerned about
local optimums, then the mutation probability can be raised. The effect of
raising the mutation probability is a slowing of the convergence to an optimal
solution.

19.4 Filter Methods

As previously stated, filter methods evaluate the predictors prior to train-
ing the model, and, based on this evaluation, a subset of predictors are en-
tered into the model. Since the scoring of predictors is disconnected from the
model, many of the variable importance metrics discussed in Chap. 18 would
be appropriate for filtering the variables. Most of these techniques are uni-
variate, meaning that they evaluate each predictor in isolation. In this case,
the existence of correlated predictors makes it possible to select important,
but redundant, predictors. The obvious consequences of this issue are that
too many predictors are chosen and, as a result, collinearity problems arise.
Guyon and Elisseeff (2003) discuss several aspects of predictor redundancy
during filtering.

Also, if hypothesis tests are used to determine which predictors have
statistically significant relationships with the outcome (such as the t-test),
the problem of multiplicity can occur (see Westfall and Young (1993) and
Fig. 19.2). For example, if a confidence level of α = 0.05 is used as a p-value
threshold for significance, each individual test has a theoretical false-positive
rate of 5%. However, when a large number of simultaneous statistical tests
are conducted, the overall false-positive probability increases exponentially.
To account for this, p-value adjustment procedures can control the false pos-
itive rate. The Bonferroni correction (Bland and Altman 1995) is one such
procedure. If a p-value cutoff of α is used to define statistical significance for
each of M tests, using an alternative cutoff of α/M increases the stringency
and will help control the probability of a false-positive results. However, this
procedure can be very conservative and limit the number of true-positive re-
sults. Other approaches to dealing with multiplicity can be found in Westfall
and Young (1993). Also, Ahdesmaki and Strimmer (2010) propose a modified
t-test that accounts for the large number of tests being conducted as well as
between-predictor correlations.

While filter methods tend to be simple and fast, there is a subjective
nature to the procedure. Most scoring methods have no obvious cut point to
declare which predictors are important enough to go into the model. Even
in the case of statistical hypothesis tests, the user must still select the confi-
dence level to apply to the results. In practice, finding an appropriate value
for the confidence value α may require several evaluations until acceptable
performance is achieved.
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19.5 Selection Bias

While some filtering methods or search procedures are more effective than
others, the more important question is related to how model performance is
calculated (especially when the sample size is small). Over-fitting the pre-
dictors to the training data can occur and, without a proper validation,
may go unnoticed. For example, Guyon et al. (2002) demonstrated recursive
feature elimination with support vector machine classification models for a
well-known colon cancer microarray data set. In these data, measurements on
2,000 unique RNA sequences were used as predictors of disease status (cancer
or normal) in a set of 62 patients. No test set was used to verify the results. To
monitor performance, leave-one-out cross-validation was used for each model
(at Line 8 in Algorithm 19.2). Their analysis showed that the SVM model
can achieve accuracy over 95% using only 4 predictors and 100% accuracy
with models using 8–256 predictors.

The leave-one-out error rates were based on the SVM model after the
features had been selected. One could imagine that if the feature selection
were repeated with a slightly different data set, the results might change. It
turns out that, in some cases, the uncertainty induced by feature selection
can be much larger than the uncertainty of the model (once the features
have been selected). To demonstrate this, Ambroise and McLachlan (2002)
conducted the same RFE procedure with the same data set but scrambled
the class labels (to coerce all the predictors into being non-informative). They
showed that the leave-one-out cross-validation strategy used by Guyon et al.
(2002) would achieve zero errors even when the predictors are completely
non-informative.

The logical error in the original approach is clear. A model was created
from the training set and, using these data, the predictors were evaluated and
ranked. If the model is refit using only the important predictors, performance
almost certainly improves on the same data set. In addition, the P to n ratio
is extreme (2000:62) which appreciably increases the odds that a completely
irrelevant predictor will be declared important by chance.

The methodological error occurred because the feature selection was not
considered as part of the model-building process. As such, it should be in-
cluded within the resampling procedure so that the variation of feature selec-
tion is captured in the results. The leave-one-out cross-validation procedure
on Line 8 in Algorithm 19.2 is ignorant of the steps outside of the model
training process that it measures. For example, even if the feature selection
process arrives at the true model after evaluating a large number of candidate
models, the performance estimates should reflect the process that led to the
result.

To properly resample the feature selection process, an “outer” resampling
loop is needed that encompasses the entire process. Algorithm 19.5 shows such
an resampling scheme for recursive feature elimination. At Line 1, resampling
is applied such that the entire feature selection process is within. For example,
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if 10-fold cross-validation were in this initial loop, 90% of the data would be
used to conduct the feature selection and the heldout 10% would be used to
evaluate performance (e.g., Line 10) for each subset of predictors. The entire
feature selection process would be conducted nine additional times with a
different set of heldout samples. In the end, these ten holdout sets determine
the optimal number of predictors in the final model (Line 14). Given this
result, the entire training set is used to rank the predictors and train the
final model (Lines 16 and 17, respectively). Note that an additional “inner”
layer of resampling may be needed to optimize any tuning parameters in the
model (Lines 3 and 9).

Ambroise and McLachlan (2002) also showed that when the bootstrap,
10-fold cross-validation or repeated test set resampling methods were used
properly, the model results were correctly determined to be around the value
of the no-information rate.

The additional resampling layer can have a significant negative impact
on the computational efficiency of the feature selection process. However,
especially with small training sets, this process will drastically reduce the
chances of over-fitting the predictors.

The critical point is that it is sometimes easy to commit errors in validat-
ing the results of feature selection procedures. For example, Castaldi et al.
(2011) conducted a survey of articles that used classification techniques with
biological data (e.g., RNA microarrays, proteins) and found that 64% of the
analyses did not appropriately validate the feature selection process. They
also showed that these analyses had a significant difference between the re-
sampled performance estimates and those calculated from an independent
test set (the test set results were more pessimistic).

The risk of over-fitting in this way is not confined to recursive feature
selection or wrappers in general. When using other search procedures or filters
for reducing the number of predictors, there is still a risk.

The following situations increase the likelihood of selection bias:

• The data set is small.
• The number of predictors is large (since the probability of a non-informative

predictor being falsely declared to be important increases).
• The predictive model is powerful (e.g., black-box models), which is more

likely to over-fit the data.
• No independent test set is available.

When the data set is large, we recommend separate data sets for selecting
features, tuning models, and validating the final model (and feature set). For
small training sets, proper resampling is critical. If the amount of data is not
too small, we also recommend setting aside a small test set to double check
that no gross errors have been committed.
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11 for each resampling iteration do

22 Partition data into training and test/hold-back set via
resampling

33 Tune/train the model on the training set using all P predictors

4 Calculate model performance

5 Calculate variable importance or rankings

6 for Each subset size Si, i = 1 . . . S do

7 Keep the Si most important variables

8 [Optional] Pre-process the data

99 Tune/train the model on the training set using Si predictors

1010 Calculate model performance using the held-back samples

11 [Optional] Recalculate the rankings for each predictor

12 end

13 end

1414 Calculate the performance profile over the Si using the held-back
samples

15 Determine the appropriate number of predictors

1616 Determine the final ranks of each predictor

1717 Fit the final model based on the optimal Si using the original
training set

Algorithm 19.5: Recursive feature elimination with proper resam-
pling

19.6 Case Study: Predicting Cognitive Impairment

Alzheimer’s disease (AD) is a cognitive impairment disorder characterized by
memory loss and a decrease in functional abilities above and beyond what
is typical for a given age. It is the most common cause of dementia in the
elderly. Biologically, Alzheimer’s disease is associated with amyloid-β (Aβ)
brain plaques as well as brain tangles associated with a form of the Tau
protein.

Diagnosis of AD focuses on clinical indicators that, once manifested, in-
dicate that the progression of the disease is severe and difficult to reverse.
Early diagnosis of Alzheimer’s disease could lead to a significant improve-
ment in patient care. As such, there is an interest in identifying biomarkers,
which are measurable quantities that do not involve a clinical evaluation.4

4 There are different types of biomarkers. For example, blood cholesterol levels are
believed to indicate cardiovascular fitness. As such, they can be monitored to under-
stand patient health but are also used to characterize the effect of treatments. In the
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de Leon and Klunk (2006) and Hampel et al. (2010) contain broad discussion
of biomarkers for Alzheimer’s disease.

Although medical imaging may be helpful in predicting the onset of the
disease there is also an interest in potential low-cost fluid biomarkers that
could be obtained from plasma or cerebrospinal fluid (CSF). There are cur-
rently several accepted non-imaging biomarkers: protein levels of particular
forms of the Aβ and Tau proteins and the Apolipoprotein E genotype. For
the latter, there are three main variants: E2, E3 and E4. E4 is the allele most
associated with AD (Kim et al. 2009; Bu 2009). Prognostic accuracy may be
improved by adding other biomarkers to this list.

Craig-Schapiro et al. (2011) describe a clinical study of 333 patients, in-
cluding some with mild (but well characterized) cognitive impairment as well
as healthy individuals. CSF samples were taken from all subjects. The goal
of the study was to determine if subjects in the early states of impairment
could be differentiated from cognitively healthy individuals. Data collected
on each subject included:

• Demographic characteristics such as age and gender
• Apolipoprotein E genotype
• Protein measurements of Aβ, Tau, and a phosphorylated version of Tau

(called pTau)
• Protein measurements of 124 exploratory biomarkers, and
• Clinical dementia scores

For these analyses, we have converted the scores to two classes: impaired and
healthy. The goal of this analysis is to create classification models using the
demographic and assay data to predict which patients have early stages of
disease.

Given the relatively small sample size, one could argue that the best strat-
egy for data splitting is to include all the subjects in the training set to
maximize the amount of information for estimating parameters and selecting
predictors. However, with the ratio of predictors to data points in these data,
the possibility of selection bias is relatively high. For this reason, a small set
of subjects will be held back as a test set to verify that no gross methodolog-
ical errors were committed. The test set contained 18 impaired subjects and
48 cognitively healthy. Any measures of performance calculated from these
data will have high uncertainty but will be adequate to detect over-fitting
due to feature selection.

For the 267 subjects in the training set, five repeats of 10-fold cross-
validation will be used to evaluate the feature selection routines (e.g., the
“outer” resampling procedure). If models have additional tuning parameters,
simple 10-fold cross-validation is used. Tuning these models will occur at ev-
ery stage of the feature selection routine. During feature selection and model

latter case, the cholesterol information is treated as surrogate end points for the truly
important attributes (e.g., mortality or morbidity).
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Table 19.1: Training set frequencies for two encodings of the genotype data

E2/E2 E2/E3 E2/E4 E3/E3 E3/E4 E4/E4 E2 E3 E4

Impaired 0 6 1 27 32 7 7 65 40
Control 2 24 6 107 51 4 32 182 61

tuning, the area under the ROC curve (for the predicted class probabilities)
was optimized.

Figure 19.4 shows the 124×124 correlation matrix of the predictors. There
are many strong between-predictor correlations, as indicated by the dark red
and blue areas. The average pairwise correlation was 0.27. The minimum
and maximum correlations were −0.93 and 0.99, respectively. Many of the
correlations are contained within a large group of predictors (as shown by
the large red block on the diagonal). This may have a negative effect on the
modeling and feature selection process. The analysis shown below uses all the
predictors to model the data. Applying an unsupervised filter to reduce the
feature set prior to analysis may help improve the results (see Exercise 19.1).

Almost all of the predictors in the data are continuous. However, the
Apolipoprotein E genotype is not. For the three genetic variants (E2, E3,
and E4), there are six possible values as one copy of the gene is inherited
from each parent. The breakdown of these values in the training set is shown
in Table 19.1. When broken down into the maternal/paternal genetic combi-
nations, some variants have very small frequencies (e.g., E2/E2). Some pre-
dictive models may have issues estimating some parameters, especially if the
frequencies are reduced during resampling. An alternate encoding for these
data is to create three binary indicators for each allele (e.g., E2, E3 and E4).
This version of the information is shown in the three most right-hand columns
in Table 19.1. Since these frequencies are not as sparse as the genotype pairs,
this encoding is used for all the predictive models shown here.

To illustrate feature selection, recursive feature elimination was used for
several models and 66 subset sizes ranging from 1 to 131. Models that require
parameter tuning were tuned at each iteration of feature elimination. The
following models were evaluated:

• Random forests: The default value ofmtry =
√
p was used at each iteration,

and 1,000 trees were used in the forest.
• Linear discriminant analysis: The standard approach was used (i.e., no

penalties or internal feature selection).
• Unregularized logistic regression: A model with only main effects was con-

sidered.
• K-nearest neighbors: The model was tuned over odd number of neighbors

ranging from 5 to 43.
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Fig. 19.4: Between predictor correlations for the AD data. Each row and
column represents one of the predictors. The row and column orders have
been sorted using clustering methods

• Näıve Bayes: Nonparametric kernel estimates were used for the continuous
predictors

• Support Vector Machines: A radial basis function kernel was used. The
analytical estimate of σ was used along with cost values ranging from 2−2

to 29.

The random forest variable importance scores (based on the initial first
model) ranked predictors for that model, whereas logistic regression used the
absolute value of the Z-statistic for each model parameter. The other models
ranked predictors with the area under the ROC curve for each individual
predictor.

Figure 19.5 shows the resampling profiles of the feature selection process
for each model. Random forest showed very little change until important pre-
dictors were eventually removed from the model. This is somewhat expected
since, even though random forests do minimal embedded filtering of predic-
tors, non-informative predictors tend to have very little impact on the model
predictions. The optimal number of predictors estimated for the model was
7, although there is considerable leeway in this number. LDA showed a large
improvement and peaked at 35 predictors and the area under the ROC curve
was estimated to be slightly better than the random forest model. Logistic
regression showed very little change in performance until about 50 predic-
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Fig. 19.5: The resampling profiles for the RFE procedure for several models

tors when, after an initial dip, performance improved considerably. The best
subset size for this model was 13. However, there is a significant drop in per-
formance for the model once important predictors are removed. Näıve Bayes
showed a slight improvement as predictors were removed, culminating at ap-
proximately 17 predictors. Unlike the others, this model did not show a sharp
downturn in performance when a small number of predictors were left. Both
support vector machines and K-nearest neighbors suffered considerably when
predictors were removed and were at their best with the full predictor set. In
the case of support vector machines, the poor performance may be unrelated
to selection bias. A closer examination of the SVM results indicates that the
models have high specificity and low sensitivity (see the results in the com-
puting section below). In other words, the poor results are likely a result of
the class imbalance in the data.
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Table 19.2: Cross-validation results for recursive feature selection

Full set Reduced set
ROC C.I. Size ROC C.I. p-value

LDA 0.844 (0.82− 0.87) 35 0.916 (0.90− 0.94) 0
RF 0.891 (0.87− 0.91) 7 0.898 (0.88− 0.92) 0.1255
SVM 0.889 (0.87− 0.91) 127 0.891 (0.87− 0.91) 0.0192
Logistic reg. 0.785 (0.76− 0.81) 13 0.857 (0.83− 0.88) 0
N. Bayes 0.798 (0.77− 0.83) 17 0.832 (0.81− 0.86) 0.0002
K-NN 0.849 (0.83− 0.87) 125 0.796 (0.77− 0.82) 1.0000

The “C.I.” column corresponds to 95% confidence intervals while the
p-value column corresponds to a statistical test that evaluates whether the
ROC value for the reduced model was a larger than the curve associated
with all of the predictors

Table 19.2 contains a summary of the resampling results for each model.
The area under the ROC curve is shown for the full model (i.e., all of the
predictors) versus the models resulting from the recursive feature elimina-
tion process. In Table 19.2, 95% confidence intervals are also shown. These
were calculated from the 50 resampled estimates produced by repeated cross-
validation. Of the models evaluated, LDA has the best estimate of perfor-
mance. However, based on the confidence intervals, this value is similar in
performance to other models (at least within the experimental error reflected
in the intervals), including random forest (post feature selection) and sup-
port vector machines (before or after feature selection). The p-value column
is associated with a statistical test where the null hypothesis is that the re-
duced predictor set has a larger ROC value than the full set. This value was
computed using the paired resampling result process described in Sect. 4.8.
Although the support vector machine and K-nearest neighbors models were
not substantially enhanced, there was considerable evidence that the other
models were improved by recursive feature elimination.

Did the test set show the same trends as the resampling results? Figure 19.6
shows the estimates of the area under the ROC curve for the reduced models.
The y-axis corresponds to the resampled ROC values (and confidence inter-
vals) shown previously in Table 19.2. The y-axis has similar values across
models, but these were calculated from ROC curves using predictions on the
test set of 66 subjects. There was much more uncertainty in the test set re-
sults; the widths of the test set confidence intervals tended to be more than
3 times the width of the corresponding intervals from resampling. There is a
moderate correlation between the ROC values calculated using the test set
and resampling. The test set results were more optimistic than the resam-
pling results for the näıve Bayes, logistic regression, and K-nearest neighbors
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Test Set Results
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Fig. 19.6: Estimates of the area under the ROC curve for the reduced model
using the test set and repeated cross-validation. The horizontal and vertical
bars are the 95% confidence intervals using each method

models. Also, the support vector machine model was ranked higher by cross-
validation than the test set. Despite these inconsistencies, the test set results
generally reinforce the results seen in Table 19.2; the feature selection pro-
cess tended to show benefits for several models and did not result in severe
selection bias.

The two leading models, LDA and random forests, are quite different. Did
these models select the same predictors? This is a somewhat subjective ques-
tion since, as shown in Fig. 19.5, neither of the profiles for these models had
a single peak. Because of this, the optimal subset size is not clear. However,
using the numerically optimal result, random forests used 7 and LDA selected
35. All of the random forest predictors are included in the LDA model, but
28 of the LDA predictors are not in the random forest model. Figure 19.7
shows the variable importance estimates for both models (recall that the area
under the ROC curve was used for LDA). In this plot, the importance values
are the averages of those found during the resampling process for the final
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subset size. For example, there are points on the plot for predictors only con-
tained in the LDA model. These predictors have random forest values since
that predictor was selected in at least one of the 50 resamples with a subset
size of 7 predictors. The rug plot on the y-axis corresponds to the area under
the ROC curve for predictors that were not selected in any of the random
forest models. There is a fair amount of concordance between the two models;
the rank correlation between the common predictors is 0.44. The discordant
predictors tend to have low importance scores for both models. Both models
contained two predictors, the Aβ and Tau protein assays, with a large influ-
ence on the models. The third most important predictor for both models was
the modified Tau assay. After this, the importance scores begin to disagree
with LDA/ROC using MMP10 and random forest using VEGF.

This underscores the idea that feature selection is a poor method for de-
termining the most significant variables in the data, as opposed to which
predictors most influenced the model. Different models will score the predic-
tors differently. To assess which predictors have individual associations with
the outcome, common classical statistical methods are far more appropriate.
For example, Craig-Schapiro et al. (2011) also used analysis of covariance
and other inferential models to evaluate possible associations. These tech-
niques are designed to yield higher-quality, probabilistic statements about
the potential biomarkers than any variable importance method. Finally, the
biological aspects of the analysis potentially trump all of the empirical evalu-
ations. While the study is aimed at finding novel biomarkers, a certain degree
of scientific legitimacy is needed, as well as prospective experimentation to
further validate the results found in these data.

The use of filters with linear discriminant analysis was also explored. For
the continuous predictors, a simple t-test was used to generate a p-value
for the difference in means of the predictor between the two classes. For
the categorical predictors (e.g., gender, Apolipoprotein E genotype), Fisher’s
exact test was used to calculate a p-value that tests the association between
the predictor and the class. Once the p-values were calculated, two approaches
were used for filtering:

1. Retain the predictors with raw p-values less than 0.05, i.e., accept a 5%
false-positive rate for each individual comparison.

2. Apply a Bonferroni correction so that predictors are retained when their
p-values are less than 0.000379 or 0.05/132.

For the first approach, the process retained 47 predictors out of 132. This
process was also resampled using the same repeated cross-validation process
used for the wrapper analysis. Across the 50 resamples, the filter selected
46.06 predictors on average, although this number ranged from 38 to 57. Using
the predictor subset, an LDA model was fit. The resulting test set area under
the ROC curve for this model was 0.918. When the filtering and modeling
activities were resampled, a similar area under the curve resulted (AUC:
0.917). The filtered set of variables consisted of members with relatively small
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Fig. 19.7: A comparison of two methods for determining variable importance.
The random forest values correspond to models with 7 predictors while the
ROC values are based on the top 35 predictors (i.e., the best subset for LDA).
The values are averaged across the 50 resamples. The “LDA Only” values are
predictors that were in the final LDA model but not the random forest model.
The hash marks, not the y-axis, are for LDA predictors that were not selected
in any of the 50 resampled random forest models

between-correlations with one exception. The Tau and pTau predictors are
strongly related (correlation: 0.91). Repeating this process without the pTau
predictor resulted in no effective change in the area under the ROC curve.

When the p-value filter is modified to reduce the number of false-positive
results, only 17 predictors were selected (13.46 were selected, on average,
during cross-validation). Here, the impact on the model is not as clear. The
test set area under the ROC curve was a slight improvement (AUC: 0.926),
but the resampled estimate was considerably worse, with an area under the
curve of 0.856. Given the sample size, there is considerable variability in the
test set; the 95% confidence interval for the area under the curve is (0.841, 1).
While the cross-validation process only held out 27 patients on average, this
process was repeated 50 times. For this reason, there may be more credence
in the more pessimistic resampling estimates.
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19.7 Computing

This section discusses data and/or functions from the following packages:
AppliedPredictiveModeling, caret, klaR, leaps, MASS, pROC, rms, and stats.

The data are contained in the AppliedPredictiveModeling package. The data
objects consist of a data frame of predictors called predictors and a factor
vector of class values called diagnosis (with levels impaired and control). The
following code was used to prepare the data for analysis:

> library(AppliedPredictiveModeling)

> data(AlzheimerDisease)

> ## Manually create new dummy variables

> predictors$E2 <- predictors$E3 <- predictors$E4 <- 0

> predictors$E2[grepl("2", predictors$Genotype)] <- 1

> predictors$E3[grepl("3", predictors$Genotype)] <- 1

> predictors$E4[grepl("4", predictors$Genotype)] <- 1

>

> ## Split the data using stratified sampling

> set.seed(730)

> split <- createDataPartition(diagnosis, p = .8, list = FALSE)

> ## Combine into one data frame

> adData <- predictors

> adData$Class <- diagnosis

> training <- adData[ split, ]

> testing <- adData[-split, ]

> ## Save a vector of predictor variable names

> predVars <- names(adData)[!(names(adData) %in% c("Class", "Genotype"))]

> ## Compute the area under the ROC curve, sensitivity, specificity,

> ## accuracy and Kappa

>

> fiveStats <- function(...) c(twoClassSummary(...),

+ defaultSummary(...))

> ## Create resampling data sets to use for all models

> set.seed(104)

> index <- createMultiFolds(training$Class, times = 5)

> ## Create a vector of subset sizes to evaluate

> varSeq <- seq(1, length(predVars)-1, by = 2)

The code to reproduce the computations in this chapter is extensive and
can be found in the AppliedPredictiveModeling package. This section demon-
strates how feature selection can be conducted in R for a subset of the anal-
yses.

Forward, Backward, and Stepwise Selection

There are several R functions for this class of wrappers:

• step in the stats package can be used to search for appropriate subsets for
linear regression and generalized linear models (from the lm and glm func-
tions, respectively). The direction argument controls the search method
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(e.g. “both,” “backward,” or “forward”). A more general function is the
stepAIC function in the MASS package, which can handle additional model
types. In either case, the AIC statistic (or its variants) is used as the
objective function.

• The fastbw function in the rms package conducts similar searches but has
the optional but unrecommended choice of using p-values as the objective
function.

• The regsubsets function in the leaps package has similar functionality.
• The klaR package contains the stepclass function than searches the pre-

dictor space for models that maximize cross-validated accuracy rates. The
function has built-in methods for several models, such as lda, but can be
more broadly generalized.

The caret package function train has wrappers for leaps, stepAIC, and
stepclass, so that the entire feature selection process can be resampled and
the risk of selection bias is reduced.

For example, to use stepAIC with logistic regression, the function takes an
initial model as input. To illustrate the function, a small model is used:

> initial <- glm(Class ~ tau + VEGF + E4 + IL_3, data = training,

+ family = binomial)

> library(MASS)

> stepAIC(initial, direction = "both")

Start: AIC=189.46
Class ~ tau + VEGF + E4 + IL_3

Df Deviance AIC
- IL_3 1 179.69 187.69
- E4 1 179.72 187.72
<none> 179.46 189.46
- VEGF 1 242.77 250.77
- tau 1 288.61 296.61

Step: AIC=187.69
Class ~ tau + VEGF + E4

Df Deviance AIC
- E4 1 179.84 185.84
<none> 179.69 187.69
+ IL_3 1 179.46 189.46
- VEGF 1 248.30 254.30
- tau 1 290.05 296.05

Step: AIC=185.84
Class ~ tau + VEGF

Df Deviance AIC
<none> 179.84 185.84
+ E4 1 179.69 187.69
+ IL_3 1 179.72 187.72
- VEGF 1 255.07 259.07
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- tau 1 300.69 304.69

Call: glm(formula = Class ~ tau + VEGF, family = binomial, data = training)

Coefficients:
(Intercept) tau VEGF

9.8075 -4.2779 0.9761

Degrees of Freedom: 266 Total (i.e. Null); 264 Residual
Null Deviance: 313.3
Residual Deviance: 179.8 AIC: 185.8

The function returns a glm object with the final predictor set. The other
functions listed above use similar strategies.

Recursive Feature Elimination

The caret and varSelRF packages contain functions for recursive feature elim-
ination. While the varSelRF function in the varSelRF is specific to random
forests, the rfe function in caret is a general framework for any predictive
model. For the latter, there are predefined functions for random forests, linear
discriminant analysis, bagged trees, näıve Bayes, generalized linear models,
linear regression models, and logistic regression. The random forest functions
are in a list called rfFuncs:

> library(caret)

> ## The built-in random forest functions are in rfFuncs.

> str(rfFuncs)

List of 6
$ summary :function (data, lev = NULL, model = NULL)
$ fit :function (x, y, first, last, ...)
$ pred :function (object, x)
$ rank :function (object, x, y)
$ selectSize:function (x, metric, maximize)
$ selectVar :function (y, size)

Each of these function defines a step in Algorithm 19.2:

• The summary function defines how the predictions will be evaluated (Line 10
in Algorithm 19.2).

• The fit function allows the user to specify the model and conduct param-
eter tuning (Lines 19.2, 6, and 12).

• The pred function generates predictions for new samples.
• The rank function generates variable importance measures (Line 2).
• The selectSize function chooses the appropriate predictor subset size

(Line 11).
• The selectVar function picks which variables are used in the final model.
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These options can be changed. For example, to compute the expanded set of
performance measures shown above,

> newRF <- rfFuncs

> newRF$summary <- fiveStats

To run the RFE procedure for random forests, the syntax is

> ## The control function is similar to trainControl():

> ctrl <- rfeControl(method = "repeatedcv",

+ repeats = 5,

+ verbose = TRUE,

+ functions = newRF,

+ index = index)

> set.seed(721)

> rfRFE <- rfe(x = training[, predVars],

+ y = training$Class,

+ sizes = varSeq,

+ metric = "ROC",

+ rfeControl = ctrl,

+ ## now pass options to randomForest()

+ ntree = 1000)

> rfRFE

Recursive feature selection

Outer resampling method: Cross-Validation (10-fold, repeated 5 times)

Resampling performance over subset size:

Variables ROC Sens Spec Accuracy Kappa Selected
1 0.8051 0.5375 0.8806 0.7869 0.4316
3 0.8661 0.6407 0.9167 0.8415 0.5801
5 0.8854 0.6736 0.9365 0.8645 0.6386
7 0.8980 0.6571 0.9414 0.8637 0.6300 *
9 0.8978 0.6850 0.9506 0.8779 0.6679
11 0.8886 0.6750 0.9609 0.8825 0.6756
13 0.8895 0.6604 0.9609 0.8786 0.6636
15 0.8950 0.6586 0.9629 0.8794 0.6628
17 0.8867 0.6554 0.9621 0.8780 0.6576
19 0.8900 0.6418 0.9642 0.8758 0.6514
: : : : : : :

129 0.8923 0.4439 0.9826 0.8351 0.4947
131 0.8918 0.4439 0.9836 0.8360 0.4976
132 0.8895 0.4439 0.9815 0.8345 0.4963

The top 5 variables (out of 7):
Ab_42, tau, p_tau, VEGF, FAS

(This output has been truncated, and the columns for the standard deviations
were removed to fit on the page.)

The process for predicting new samples is straightforward:
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> predict(rfRFE, head(testing))

pred Impaired Control
2 Control 0.291 0.709
6 Impaired 0.695 0.305
15 Control 0.189 0.811
16 Impaired 0.794 0.206
33 Control 0.302 0.698
38 Impaired 0.930 0.070

The built-in functions predict the classes and probabilities for classification.
There are also built-in functions to do recursive feature selection for models

that require retuning at each iteration. For example, to fit support vector
machines:

> svmFuncs <- caretFuncs

> svmFuncs$summary <- fivestats

> ctrl <- rfeControl(method = "repeatedcv",

+ repeats = 5,

+ verbose = TRUE,

+ functions = svmFuncs,

+ index = index)

> set.seed(721)

> svmRFE <- rfe(x = training[, predVars],

+ y = training$Class,

+ sizes = varSeq,

+ metric = "ROC",

+ rfeControl = ctrl,

+ ## Now options to train()

+ method = "svmRadial",

+ tuneLength = 12,

+ preProc = c("center", "scale"),

+ ## Below specifies the inner resampling process

+ trControl = trainControl(method = "cv",

+ verboseIter = FALSE,

+ classProbs = TRUE))

> svmRFE

Recursive feature selection

Outer resampling method: Cross-Validation (10-fold, repeated 5 times)

Resampling performance over subset size:

Variables ROC Sens Spec Accuracy Kappa Selected
1 0.6043 0.000000 0.9959 0.7237 -0.005400
3 0.6071 0.005714 0.9858 0.7178 -0.010508
5 0.5737 0.000000 0.9979 0.7252 -0.002718
7 0.5912 0.005357 0.9969 0.7259 0.002849
9 0.5899 0.000000 0.9979 0.7252 -0.002799
11 0.6104 0.000000 0.9959 0.7237 -0.005625
13 0.5858 0.000000 0.9979 0.7252 -0.002829
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: : : : : : :
121 0.8172 0.513571 0.9241 0.8116 0.473426
123 0.8210 0.514286 0.9199 0.8087 0.469536
125 0.8844 0.608571 0.9559 0.8610 0.613538
127 0.8914 0.671786 0.9548 0.8775 0.666157 *
129 0.8877 0.647500 0.9445 0.8632 0.629154
131 0.8891 0.644643 0.9487 0.8655 0.631925
132 0.8879 0.647143 0.9455 0.8639 0.630313

The top 5 variables (out of 127):
Ab_42, tau, p_tau, MMP10, MIF

Here we can see that the poor performance is related to the class imbalance;
the model is biased towards high specificity since most samples are controls.

The caret web page5 contains more details and examples related to rfe.

Filter Methods

caret has a function called sbf (for Selection By Filter) that can be used to
screen predictors for models and to estimate performance using resampling.
Any function can be written to screen the predictors.

For example, to compute a p-value for each predictor, depending on the
data type, the following approach could be used:

> pScore <- function(x, y)

+ {

+ numX <- length(unique(x))

+ if(numX > 2)

+ {

+ ## With many values in x, compute a t-test

+ out <- t.test(x ~ y)$p.value

+ } else {

+ ## For binary predictors, test the odds ratio == 1 via

+ ## Fisher's Exact Test

+ out <- fisher.test(factor(x), y)$p.value

+ }

+ out

+ }

> ## Apply the scores to each of the predictor columns

> scores <- apply(X = training[, predVars],

+ MARGIN = 2,

+ FUN = pScore,

+ y = training$Class)

> tail(scores)

p_tau Ab_42 male E4 E3
1.699064e-07 8.952405e-13 1.535628e-02 6.396309e-04 1.978571e-01

E2
1.774673e-01

5 http://caret.r-forge.r-project.org/.
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A function can also be designed to apply a p-value correction, such as the
Bonferroni procedure:

> pCorrection <- function (score, x, y)

+ {

+ ## The options x and y are required by the caret package

+ ## but are not used here

+ score <- p.adjust(score, "bonferroni")

+ ## Return a logical vector to decide which predictors

+ ## to retain after the filter

+ keepers <- (score <= 0.05)

+ keepers

+ }

> tail(pCorrection(scores))

p_tau Ab_42 male E4 E3 E2
TRUE TRUE FALSE FALSE FALSE FALSE

As before, caret contains a number of built-in functions for filter methods:
linear regression, random forests, bagged trees, linear discriminant analysis,
and näıve Bayes (see ?rfSBF for more details). For example, ldaSBF has the
following functions:

> str(ldaSBF)

List of 5
$ summary:function (data, lev = NULL, model = NULL)
$ fit :function (x, y, ...)
$ pred :function (object, x)
$ score :function (x, y)
$ filter :function (score, x, y)

These functions are similar to those shown for rfe. The score function com-
putes some quantitative measure of importance (e.g., the p-values produced
by the previous pScore function). The function filter takes these values (and
the raw training set data) and determines which predictors pass the filter.

For the biomarker data, the filtered LDA model was fit using

> ldaWithPvalues <- ldaSBF

> ldaWithPvalues$score <- pScore

> ldaWithPvalues$summary <- fiveStats

> ldaWithPvalues$filter <- pCorrection

> sbfCtrl <- sbfControl(method = "repeatedcv",

+ repeats = 5,

+ verbose = TRUE,

+ functions = ldaWithPvalues,

+ index = index)

> ldaFilter <- sbf(training[, predVars],

+ training$Class,

+ tol = 1.0e-12,

+ sbfControl = sbfCtrl)

> ldaFilter
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Selection By Filter

Outer resampling method: Cross-Validation (10-fold, repeated 5 times)

Resampling performance:

ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD AccuracySD
0.9168 0.7439 0.9136 0.867 0.6588 0.06458 0.1778 0.05973 0.0567
KappaSD
0.1512

Using the training set, 47 variables were selected:
Alpha_1_Antitrypsin, Apolipoprotein_D, B_Lymphocyte_Chemoattractant_BL,
Complement_3, Cortisol...

During resampling, the top 5 selected variables (out of a possible 66):
Ab_42 (100%), Cortisol (100%), Creatine_Kinase_MB (100%),
Cystatin_C (100%), E4 (100%)

On average, 46.1 variables were selected (min = 38, max = 57)

Again, the caret package web site has additional detail regarding the rfe

and sbf functions, including features not shown here.

Exercises

19.1. For the biomarker data, determine if the between-predictor correlations
shown in Fig. 19.4 have an effect on the feature selection process. Specifically:

(a) Create an initial filter of the predictors that removes predictors to mini-
mize the amount of multicollinearity in the data prior to modeling.

(b) Refit the recursive feature selection models.
(c) Did the RFE profiles shown in Fig. 19.4 change considerably?Which mod-

els would have been mostly likely affected by multicollinearity?

19.2. Use the same resampling process to evaluate a penalized LDA model.
How does performance compare? Is the same variable selection pattern ob-
served in both models?

19.3. Apply different combinations of filters and predictive models to the
biomarker data. Are the same predictors retained across different filters? Do
models react differently to the same predictor set?

19.4. Recall Exercise 7.2 where a simulation tool from Friedman (1991) uti-
lized a nonlinear function of predictors:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e
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where the predictors x1 through x5 have uniform distributions and the error
e is normally distributed with zero mean and a standard deviation that can
be specified:

(a) Simulate a training and test set with n = 500 samples per data set. Plot
the predictors against the outcome in the training set using scatter plots,
correlation plots, table plots, and other visualizations.

(b) Use forward, backward, and stepwise algorithms for feature selection. Did
the final models select the full set of predictors? Why or why not? If cross-
validation was used with these search tools, was the performance similar
to the test set?

(c) Use recursive feature selection with several different models? How did
these methods perform? Were the informative predictors selected?

(d) Apply filter methods to the data using filters where each predictor is eval-
uated separately and others are evaluated simultaneously (e.g., the ReliefF
algorithm). Were the two interacting predictors (x1 and x2) selected? Was
one favored more than the other?

(e) Reduce the sample size of the training set and add a larger number of non-
informative predictors. How do these search procedures perform under
more extreme circumstances?

19.5. For the cell segmentation data:

(a) Use filter and wrapper methods to determine an optimal set of predictors.
(b) For linear discriminant analysis and logistic regression, use the alternative

versions of these models with built-in feature selection (e.g., the glmnet
and sparse LDA). How do the different approaches compare in terms of
performance, the number of predictors required, and training time?



Chapter 20

Factors That Can Affect Model
Performance

Several of the preceding chapters have focused on technical pitfalls of predic-
tive models, such as over-fitting and class imbalances. Often, true success may
depend on aspects of the problem that are not directly related to the model
itself. For example, there may be limitations to what the data can support
or perhaps there may be subtle obstacles related to the goal of the modeling
effort. One issue not discussed here is related to the acceptance of modeling,
especially in areas where these techniques are viewed as novel or disruptive.
Ayres (2007) offers a broad discussion of this issue. Another important as-
pect of modeling not discussed in this chapter is feature engineering; that is,
methods to encode one or more predictors for the model.

This chapter discusses several important aspects of creating and maintain-
ing predictive models. The first section looks at “Type III” errors: developing
a model that answers the wrong question. An illustrative example is used
to show that, due to sampling issues with the training set, the model gives
predictions that answer a different question than the one of interest.

Noise, or error, has varying degrees of impact on models’ predictive per-
formance and occurs in three general forms in most data sets:

• Since many predictors are measured, they contain some level of systematic
noise associated with the measurement system. Any extraneous noise in the
predictors is likely to be propagated directly through the model prediction
equation and results in poor performance.

• A second way noise can be introduced into the data is by the inclusion of
non-informative predictors (e.g., predictors that have no relationship with
the response). Some models have the ability to filter out irrelevant infor-
mation, and hence their predictive performance is relatively unaffected.

• A third way noise enters the modeling process is through the response vari-
able. As with predictors, some outcomes can be measured with a degree
of systematic, unwanted noise. This type of error gives rise to an upper
bound on model performance for which no pre-processing, model com-
plexity, or tuning can overcome. For example, if a measured categorical
outcome is mislabeled in the training data 10% of the time, it is unlikely
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that any model could truly achieve more than a 90% accuracy rate. Of
course, the modeler will not be aware of this and may expend considerable
time chasing noise.

These aspects of modeling are explored in Sects. 20.2 and 20.3. Section 20.4
discusses the effect of discretizing outcomes on predictive performance while
Sect. 20.5 examines the consequences of model extrapolation. We wrap up this
chapter with an overview of how large data can impact model performance.

20.1 Type III Errors

One of the most common mistakes in modeling is to develop a model that
answers the wrong question, otherwise known as a “Type III” error (Kimball
1957). Often, there can be a tendency to focus on the technical details and
inadvertently overlook true nature of the problem. In other words, it is very
important to focus on the overall strategy of the problem at hand and not
just the technical tactics of the potential solution. For example, in business
applications, the goal is almost always to maximize profit. When the observed
outcome is categorical (e.g., purchase/no-purchase or churn/retention), it is
key to tie the model performance and class predictions back to the expected
profit.

A more subtle example of a problematic modeling strategy is related to re-
sponse modeling in marketing. Recall the direct marketing example discussed
in Chap. 11 where a group of customers for a clothing store were contacted
with a promotion. For each customer, the response was recorded (i.e., whether
a purchase was made).

The true goal of the clothing store is to increase profits, but this particular
campaign did not sample from all of the appropriate populations. It only
utilized customers who had been contacted and made the assumption that
all customers would mimic the behavior demonstrated in this population.1

Any model built from these data is limited to predicting the probability of
a purchase only if the customer was contacted. This conditional statement is
contrary to the goal of increasing overall profit. In fact, offering a promotion
to customers who would always respond reduces profit.

For example, there is a subpopulation of customers who would make a
purchase regardless of a promotional offer. These responders are likely to
be in the observed data and the model would be unable to distinguish the
reasons for the response. The goal of the model building exercise is to increase
profits by making promotional offers to only those customers who would not
have response without one.

1 In marketing, Rzepakowski and Jaroszewicz (2012) defined the following classes
of marketing models: “In the propensity models, historical information about pur-
chases (or other success measures like visits) is used, while in the response models,
all customers have been subject to a pilot campaign.”
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Siegel (2011) outlines four possible cases:

No contact
Response Non response

Contact Response A B
Non response C D

The cells in the table are:

• A: customers who would respond regardless of contact
• B: customers who would respond solely because of the promotion
• C: customers who have a negative response to the promotion and would

have responded if they would not have been contacted
• D: customers who have absolutely no interest in responding

To increase profits, a model that accurately predicts which customers are in
cell B is the most useful as this is the population associated with new profit.

The potential negative consequences for the simple response model are:

• The response rate is overestimated since it contains customers who always
respond. The overall estimated profit is not net profit since the baseline
profit is embedded. For example, a lift curve generated from a response
model might indicate that by contacting 30% of the customers, a response
rate of 70% could be achieved. There is a good chance that the customers
who always respond would be scored confidently by the model and consume
some percentage of the 30% designated for contact.

• Costs are increased by sending promotions to customers in cells C or D.
For the cost structure described by Larose (2006, Chap. 7), the cost of the
promotion was relatively low. However, in some situations, the costs can
be much higher. For example, exposing customers to unwanted promotions
can have a detrimental effect on their sentiment towards the business.
Also, where response models are used for customer retention, there is the
possibility that the contact will trigger churn since it is a reminder that
they might find a better deal with another company.

These issues cannot be observed until the promotion is put into action.
Techniques that attempt to understand the impacts of customer response

are called uplift modeling (Siegel 2011; Radcliffe and Surry 2011; Rzepakowski
and Jaroszewicz 2012), true lift models (Lo 2002), net lift modes, incremental
lift models, or true response modeling. Lo (2002) suggests that a control group
of customers who are not contacted can be used to develop a separate response
model to differentiate customers in cells A and C from those in cells B and
D (although B and D cannot be differentiated by the model). In conjunction
with a traditional response model that is created using customers who were
contacted, a scoring strategy would be to find customers with large values of
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Pr[response|contact]− Pr[response|no contact].

By subtracting off the probability of those customers who respond without
contact, a more refined instrument is being used to find the appropriate
customer set. The drawback with this approach is that it is indirect. Also,
there is a likelihood that the model predictions would be highly correlated
since they are modeling very similar events. If this is the case, there may be
very few customers for which the two probabilities are not similar. Radcliffe
and Surry (2011) describe tree-based models where the uplift is modeled
directly with a control group of customers who have not been contacted.

Another approach could be to use more sophisticated sampling techniques
to create an appropriate training set. For the table above, it is impossible
to contact and to not contact the same customer. However, in medical re-
search, this problem is often faced when evaluating a new treatment against
an existing therapy. Here, clinical trials sometimes use matched samples. Two
subjects are found that are nearly identical and are randomized into treat-
ment groups. The idea is that the only differentiating factor is the treatment,
and the patient response can be estimated more accurately than without
matching. The important idea here is that the subjects are no longer the
experimental unit. The matched pair itself becomes the primary data point
in the analysis.

The same strategy can be applied to this situation. Suppose an initial
sample of customers can be matched with others who have the same attributes
such as demographic factors and income levels. Within each matched pair,
a promotion could be randomly assigned to one customer in the pair. Now,
for each matched pair, the above 2× 2 table could be created. If the results
are aggregated across all matched pairs, a classification model for the four
different outcomes (A though D) can be created and customers can be scored
on their probability of being in class B, which is the group of interest. This
approach directly models the population of interest in a single model.

20.2 Measurement Error in the Outcome

What is the minimum error rate that a model could achieve? Recall the linear
regression model shown in Eq. 6.1:

yi = b0 + b1xi1 + b2xi2 + · · ·+ bpxip + ei.

The residuals ei were assume, to have some variance denoted as σ2. If we knew
the true model structure (i.e., the exact predictors and their relationship with
the outcome), then σ2 would represent the lowest possible error achievable
or the irreducible error. However, we do not usually know the true model
structure, so this value becomes inflated to include model error (i.e., error
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Fig. 20.1: Test set RMSE profiles for solubility models when measurement
system noise increases

related to lack of fit). During the modeling process, the goal is to eliminate
the model error.

However, there is another component that contributes to σ2 that cannot be
eliminated through the modeling process. If the outcome contains significant
measurement noise, the irreducible error is increased in magnitude. The root
mean squared error and R2 then have respective lower and upper bounds due
to this error. Therefore, the error term, in addition to containing the variation
in the response that is not explained by the model, collects measurement
system error. The better we understand the measurement system and its
limits as well as the relationship between predictors and the response, the
better we can foresee the limits of model performance. As mentioned in the
introduction to this chapter, a similar problem occurs in classification.

To illustrate the impact of the degree of error in the response on model
performance we will revisit the solubility QSAR data (Chaps. 6 through 9).
The response for these data is the log of the solubility measurement (Fig. 6.2),
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Fig. 20.2: Test set R2 profiles for solubility models when measurement system
noise increases

and the predictors were either continuous and binary (Sect. 6.1). The best lin-
ear regression model for these data had an RMSE of 0.7, which comprises the
measurement system error, lack of fit error, and errors due to relevant predic-
tors that are not included in the model. For our illustration, we will use this
value as a base level for error and increase the error in the response propor-
tionally. To do this, we have added noise to each compound’s log solubility
value that comes from a normal distribution with a mean of zero and a stan-
dard deviation of the linear regression model RMSE multiplied by a factor
ranging from 0 to 3. For each level of additional noise, we trained and tuned
the following models: linear regression, partial least squares, single regression
trees, multivariate adaptive regression splines, random forests, neural net-
works, and radial basis function support vector machines. Performance for
each of these models is evaluated based on RMSE and R2 for the test set
and the results are shown in Figs. 20.1 and 20.2. Clearly performance gets
worse regardless of model type (linear models, nonlinear models, or trees)
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and worsens proportionally to the degree of additional error incorporated
into the response.

There are two important take-aways from this simple illustration. First,
this type of noise is, noise that no model can predict—we’re simply stuck with
it and we cannot break through the RMSE floor or R2 ceiling. Thus, the more
the modeler knows about the measurement system, the better one can under-
stand expectations about model performance. Second, as noise increases, the
models become virtually indistinguishable in terms of their predictive per-
formance. This means that the advantages that some of the more complex
models, like ensembles, bring are only advantageous when the measurement
system error is relatively low. This makes sense because the complex under-
lying structure that a model (such as an ensemble) can find will become more
fuzzy as the noise increases. Therefore, we will likely be able to perform just
as well with a simple, computationally efficient model when measurement
system noise is high.

20.3 Measurement Error in the Predictors

As shown in several of the data sets, many of the predictors are calculated. For
example, the solubility data contained fingerprints that indicated the presence
or absence of a particular chemical structure. In text mining, predictors may
be the frequency of certain important words or phrases contained in the text.
In other cases, the predictors are observed or may be the produce of some
external process. For example:

• The cell segmentation data measured different aspects of cells, such as the
area of the nucleus.

• The grant data collected information about the number of successful and
unsuccessful grants.

Traditional statistical models typically assume that the predictors are mea-
sured without error, but this is not always the case. The effect of randomness
in the predictors can be drastic, depending on several factors: the amount
of randomness, the importances of the predictors, the type of model being
used, as well as others. In some cases, if the initial data that are in the train-
ing set are generated in very controlled conditions, then the randomness can
be hidden. For example, suppose data are generated by a person manually
measuring an object (such as a rating). There may be differences in how peo-
ple perceive the object, resulting in rater-to-rater noise. If a single rater is
used for the training set data but another rate is used for new data, the bias
between raters is likely to cause issues.

As another example, consider the concrete mixture data discussed previ-
ously. Even though the exact proportions and amounts of each mixture ingre-
dient are known, there is some deviation in these values when the mixtures
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are created. If the process of creating the concrete is complicated, the actual
amount used may be different from the formula (although this difference is
not measured or observed).

To illustrate the effect of random predictor noise on models, a simple sin
wave was simulated with random error. Figure 20.3 shows the original data
in the panel labeled “SD = 0”. Here, the data on the x-axis are evenly spaced
values between 2 and 10. The outcome was created by adding a small amount
of normally distributed noise to the data. In each panel, the true relationship
between the predictor and the response is shown as a solid black line. Two
different regression models were used to fit the data. The left-hand column of
panels shows an ordinary linear regression model where the true model form
(i.e., sin(x)) is fit to the data. The right-hand column of panels corresponds
to fits from a CART regression tree. The fitted curves from these models are
shown as thick red lines.

The rows in Fig. 20.3 are the same data with no noise (in the top row) and
when random error is incrementally added to the predictor values. Specif-
ically, random normal values are added to the true values with different
standard deviations. The small blue bell-shaped curves in this figure show
the probability distribution of a data point with a mean of six and the corre-
sponding standard deviation. The y-axis values are the same across all panels.

Linear regression is able to effectively model the true relationship with no
additional noise. As noise is added to the predictors, the linear regression
model begins to become poor at the apex and nadir points of the curve. The
effect becomes very pronounced with a standard deviation of 0.75. However,
the illustration is a somewhat optimistic assessment since it assumes that
the modeler already knows the true relationship between x and y and has
specified the model with this knowledge.

With no additional noise, the regression tree also approximates the pattern
within the range of the observed data fairly well. The regression tree results
are more problematic since the algorithm is having to determine the pattern in
the data empirically. Additionally, this particular model is unstable (i.e., low
bias but high variance). In this case, the difference between the predicted and
true relationship begins to become more pronounced with smaller amounts
of random error.

Measurement errors in the predictors can cause considerable issues when
building models, especially in terms of reproducibility of the results on future
data sets (similar in effect to over-fitting). In this case, future results may be
poor because the underlying predictor data are different than the values used
in the training set.

Case Study: Predicting Unwanted Side Effects

Pharmaceutical companies have departments for derisking compounds, that
is, trying to detect if the candidate drug will have harmful side-effects or
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Fig. 20.3: A simulated sin wave and two model fits when different amounts
of noise are added to the predictor values

toxicities in humans. One technique for detecting these issues is to create
cell-based assays that signal if the compound is potentially dangerous. In
conjunction with these lab results, a set of compounds with known issues
are identified as well as a set of “clean” compounds with no known issues.
Biological assays are created and used as inputs to predictive models. Much
like the earlier example where solubility was predicted from chemical struc-
tures, these models use measurements of how cell lines react to the compounds
to predict potential safety issues.
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In the example presented here, the goal was to develop a predictive model
for a specific toxicity. A set of about ten assays were created that measured
the amount of RNA transcription (otherwise known as gene expression) in
a specific type of cell. Around 250 compounds (either toxic or clean) were
assayed and these results were used to train a set of models. The models
resulted in sensitivities and specificities around 80%.

However, when a new set of compounds was tested (along with several
controls from the original training set), the results were no better than a ran-
dom guessing. After reviewing the model building process for methodological
errors, the quality of the assays was investigated.

An experiment was run where subset of 46 compounds were measured in
three distinct batches (run over non-consecutive days). Within each batch,
there were several replicates of each compound. A visualization of the in-
dividual data points for one of the assays is shown in Fig. 20.4, where the
compounds are ordered by their average value. Clearly, there are batch-to-
batch effects in the data, especially for some compounds. The trends are not
uniform; in many cases, batch three had the largest values but not for ev-
ery compound. Additionally, within a batch, the predictor values can range
dramatically—sometimes across two logs. For example, compound 35 spans
the entire range of the predictor data.

Statistical methods called variance component models (sometimes called
gauge reproducibility and repeatability methods (Montgomery and Runger
1993)) quantify the source of the noise in the data. In this experimental
design, the best possible case would be that the compound-to-compound vari-
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ation in the data would account for 100% of the noise (i.e., there would be no
batch-to-batch or within-batch noise). Using a variance component analysis,
the compounds accounted for about 38% of the noise in the data. The batch-
to-batch variation was 13% of the total, and the within-batch variation was
49%. Clearly, this is not an optimal situation since a large majority of the
variation in the data is unwanted noise.2 Since some of these compounds are
toxic and others are not, it is unlikely that these measurements will help dif-
ferentiate toxic and clean compounds. The other assays had similar results. It
should be noted that these assays were chosen based on the data from other
experiments that produced a sound biological rational for using them in this
context. Therefore, we believe that there is some signal in these predictors,
but it is being drowned out by the noise of the measurement system.

20.4 Discretizing Continuous Outcomes

In many fields, it may be desirable to work with a categorical response even
if the original response is on a continuous scale.3 This could be due to the
fact that the underlying distribution of the response is truly bimodal. Con-
sider Fig. 20.5 which illustrates two histograms of numeric outcomes from
different data sets. The top histogram is the solubility data discussed thus
far in the chapter while the histogram in the bottom of the figure represents
the distribution of a measurement for another data set. While the solubility
distribution is symmetric, the bottom distribution is clearly bimodal where
most of the data are found at either end of the response, with relatively few
in the midrange. Trying to categorize the data in the top distribution will be
difficult, since there is no natural categorical distinction. Categorizing data
in the bottom distribution, however, is more natural.

In other situations, the desire to work with the response on a categori-
cal scale may be due to practical reasons. For the data that we have been
examining thus far, solubility may be one of many characteristics that sci-
entists evaluate in order to move forward in the drug discovery process. To
simplify this multidimensional optimization problem, decision makers may
prefer to know whether or not a compound is predicted to be soluble enough
rather than the compound’s predicted log solubility value. The selection of
an optimal set of compounds can then be simplified into a checklist across
the conditions of interest where the preferred compounds are the ones that
satisfy the most properties of interest. While this process can grossly identify
the most promising compounds for further research, more nuanced distinc-

2 Note that, in this case, the noise in the predictors is systematic and random. In
other words, we can attribute the source of variation to a specific cause.
3 An example of this is the job scheduling data where the execution time of a job was
binned into four groups. In this case, the queuing system cannot utilize estimates of
job length but can use binned versions of this outcome.
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Fig. 20.5: Comparison of distributions between two data sets. Top: Solubility
measurements on compounds previously discussed throughout this chapter.
The dotted vertical line is the mean log solubility value which will be used
to categorize these data. Bottom: Outcome values for another data set. This
distribution is clearly bimodal and a categorization of data into two categories
would be more natural

tions among compounds are lost because information in the outcome is being
discarded.

When the response is bimodal (or multimodal), categorizing the response
is appropriate. However, if the response follows a continuous distribution,
as the solubility data do, then categorizing the response prior to modeling
induces a loss of information, which weakens the overall utility of the model.

To illustrate this loss of information, we will continue to work with the sol-
ubility data. For this illustration, we have categorized the response as being
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above or below the mean (-2.72 log units) and tuned each classification model
with a couple of necessary modifications. Linear regression has been replaced
with logistic regression, MARS has been replaced with FDA, and the LASSO
has been replaced with glmnet, where each replacement is the parallel clas-
sification technique. After training each model, we predict the probability of
each compound in the test set in addition to the Kappa value for the test set.
For each test set compound we also have the predicted continuous response
which we can align with the predicted probability of a compound being solu-
ble. We can then compare the scatter plots of the continuous prediction with
the probability prediction across compounds.

Figure 20.6 illustrates the test set results for the regression and classi-
fication approaches for PLS, SVM, and random forests (results from other
models are similar and are presented in Exercise 20.1). For each of the re-
gression models, the observed and predicted log(solubility) values follow a
line of agreement with predicted values falling within approximately four
log(solubility) units of the actual values across the range of response. Look-
ing at the center of the distribution, a predicted log(solubility) value of −4
traces back to observed values ranging between approximately −6 and −2
log units across the models. On the other hand, a predicted probability of
0.5 for the classification models traces back to actual values ranging between
approximately −6 and 0 for PLS and −4 and 0 for SVM and random forests.
The range of predictions at the extremes of the classification models is even
wider. For example, a predicted probability near zero for SVM corresponds
to actual log(solubility) values in the range of −10 to −2, and predicted prob-
abilities near one correspond to actual values between −3.5 and 2 (similarly
for random forests). In this example, working with the data in on the original
scale provides more accurate predictions across the range of response for all
models. Further comparisons of model results for these data are presented in
Exercise 20.1.

A second common reason for wanting to categorize a continuous response
is that the scientist may believe that the continuous response contains a high
degree of error, so much so that only the response values in either extreme
of the distribution are likely to be correctly categorized. If this is the case,
then the data can be partitioned into three categories, where data in either
extreme are classified generically as positive and negative, while the data in
the midrange are classified as unknown or indeterminate. The middle category
can be included as such in a model (or specifically excluded from the model
tuning process) to help the model more easily discriminant between the two
categories.



534 20 Factors That Can Affect Model Performance

Observed

P
re

di
ct

io
n

0.
2

0.
4

0.
6

0.
8

−10 −8 −6 −4 −2 0

P
LS

−
8

−
6

−
4

−
2

0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

−
10

−
8

−
6

−
4

−
2

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classification

S
V

M

−10 −8 −6 −4 −2 0

−
10

−
8

−
6

−
4

−
2

0

Regression

Fig. 20.6: Test set performance comparison of solubility models when response
is modeled as a continuous and categorical value

20.5 When Should You Trust Your Model’s Prediction?

We could view this section as “when should you not trust your model’s pre-
diction?”The predictive modeling process assumes that the underlying mech-
anism that generated the current, existing data for both the predictors and
the response will continue to generate data from the same mechanism. For
a simple example of a data-generating mechanism, consider the commercial
food manufacturing business. Commercial food companies strive to create
the same product over time so that customers can consistently have the same
food tasting experience. Therefore companies keep the recipe, ingredients,
and preparation process the same over time. If we were modeling moisture
content of chocolate chip cookies from a commercial bakery, then we would
expect that the predictors measured on a new batch of cookies would likely
fall in the range as the predictors of the training set (collected at some past
points in time). This means that new data will have similar characteristics
and will occupy similar parts of the predictor space as the data on which the
model was built.
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For the examples used throughout this book, we have taken appropri-
ate steps to create test sets that had similar properties across the predictor
space as the training set. Principles underlying this process were described
in Sect. 4.3. If new data are generated by the same data-generating mech-
anism as the training set, then we can have the confidence that the model
will make sensible predictions for the new data. However, if the new data
are not generated by the same mechanism, or if the training set was too
small or sparse to adequately cover the range of space typically covered by
the data-generating mechanism, then predictions from the model may not be
trustworthy. Extrapolation is commonly defined as using a model to predict
samples that are outside the range of the training data (Armitage and Berry
1994). It is important to recognize for high-dimensional data, however, that
there may be regions within the predictors’ range where no training data
exist. Therefore, we need to extend our notion of extrapolation to include
these vacuous interior regions of predictor space. Extrapolated predictions,
whether outside the range of the predictors or within vacant regions of space,
may not be trustworthy and can lead to poor decision making.

Understanding when a model is producing an extrapolated prediction can
be difficult to diagnose, and the practitioner’s first defense is a deep under-
standing of the mechanism used to generate both the training set and the new
set of samples for which a prediction will be generated. Consider again the
commercial chocolate chip cookie manufacturing process, and suppose that
the manufacturer had changed the recipe, ingredients, and baking process.
Using a previously developed model to predict moisture content for cookies
from the current process may yield inaccurate predictions since the predictors
for the new data are likely in a different part of space as those in the training
data. If the practitioner knows this information about the data at hand, then
she can use appropriate caution in applying the model and interpreting the
resulting predictions.

Many times though, the practitioner does not know if the underlying data-
generating mechanism is the same for the new data as the training data.
Data sets with few predictors are much easier to understand and relationships
between predictors in the training set and new set of samples can be examined
via simple scatter plots and a comparison of distributions of each predictor.
But as the dimension of the space increases, examining scatter plots and
distributions is very inefficient and may not lead to a correct understanding
of the predictor space between the training data and new data. In these
circumstances there are a few tools that can be employed to better understand
the similarity of the new data to the training data.

The applicability domain of a model is the region of predictor space where
“the model makes predictions with a given reliability” (Netzeva et al. 2005).
Different variations of this definition exist, but the most simplistic is to define
the domain in terms of similarity to the training set data. If the new data
being predicted are similar enough to the training set, the assumption would
be that these points would, on average, have reliability that is characterized
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Fig. 20.7: PCA plots for the solubility data

by the model performance estimates (e.g., the accuracy rate derived from a
test set).

A gross comparison of the space covered by the predictors from the training
set and the new set can be made using routine dimension reduction techniques
such as principal components analysis (Sect. 3.3) or multidimensional scaling
(Davison 1983). If the training data and new data are generated from the
same mechanism, then the projection of these data will overlap in the scatter
plot. However, if the training data and new data occupy different parts of
the scatter plot, then the data may not be generated by the same mechanism
and predictions for the new data should be used with caution. Figure 20.7
displays the projection of the training and testing sets for the solubility data
onto the first two principal components of the training data. In this case, the
training and testing data appear to occupy the same space as determined by
these components. Of course, this result is expected since the training set and
test set were randomly partitioned from the original data set. But a further
examination of similarity between training and test set samples is developed
in Sect. 20.7 and Exercise 20.3.

When projecting many predictors into two dimensions, intricate predictor
relationships as well as sparse and dense pockets of space can be masked.
This means that while the training data and new data may appear to overlap
in the projection plot, there may be regions within the predictor space where
the model will inadequately predict new samples.

To address this problem, Hastie et al. (2008) describe an approach for
quantifying the likelihood that a new sample is a member of the training
data. In this approach, the training predictors are selected. Then a random
multivariate uniform sample based on the ranges of the training predictors is
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1 Compute the variable importance for the original model and identify
the top 20 predictors

2 Randomly permute these predictors from the training set

3 Row-wise concatenate the original training set’s top predictors and
the randomly permuted version of these predictors

4 Create a classification vector that identifies the rows of the original
training set and the rows of the permuted training set

5 Train a classification model on the newly created data

6 Use the classification model to predict the probability of new data
being in the class of the training set.

Algorithm 20.1: Algorithm for determining similarity to the train-
ing set

generated such that it has the same number of samples as the training data.
The response vector is categorical with the original training data identified
as the training set and the random uniform sample identified as the random
set. Any classification model can then be built on this set, and the resulting
model can be used to predict the probability that a new sample is a member
of the training set.

We propose two slight alterations to this method, to better address real
data. First, given that many data sets contain different types of predictors,
we recommend randomly permuting predictors rather than sampling from a
uniform distribution across the range of predictors. By doing this, we achieve
a random distribution across the entire space, while keeping within the per-
missible values of each predictor. Therefore categorical predictors will only
receive appropriate categorical values. Second, given that data are large both
in terms of predictors and dimensions, we recommend building the categorical
model on a subset of the original predictors. Specifically, we suggest selecting
the top 20 (or some reasonable fraction based on the context of the prob-
lem and model) important predictors from the original model of the training
data. This will greatly reduce model building time, while still generating a
model that can assist in assessing if the model is producing an extrapolated
prediction. The steps of this process are listed in Algorithm 20.1.

To illustrate this method, we return to the two-dimensional example orig-
inally displayed in Fig. 4.1. Of course, here we omit variable selection and
proceed to step 2. We augmented the original data with randomly permuted
values of the original predictors (Fig. 20.8) and built a bagged classification
tree. We then generated 50 random samples and moved them further away
from the original data in sequential steps and used the bagged classification
tree to predict the probability that the samples were from the training data.
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Fig. 20.8: Random uniform data have been added to the example data orig-
inally displayed in Fig. 4.1 in order to cover the range of space of the two
predictors

The placement of the new samples as well as the probability of the samples
being members of the training set are illustrated in Fig. 20.9. Clearly, as sam-
ples move farther from the original training data, the likelihood of training
set membership decreases.

20.6 The Impact of a Large Sample

Our focus on performance thus far has been through the lens of the predictors
and the response. Now we turn to the impact of the number of samples on
model performance. An underlying presumption is that the more samples we
have, the better model we can produce. This presumption is certainly fueled
by our ability to now easily attain as many samples as we desire. As an
example of the ease at which data can be obtained, consider Ayres (2007),
who described the process he followed for naming his book Super Crunchers.
To understand the reader population’s opinion on his choices of titles, he used
several variations of targeted Google Ads, each with a different candidate
name for the book. After a short period of time, he collected a quarter of a
million samples related to which ad was clicked on most. Since the ads were
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Fig. 20.9: An illustration for detecting model extrapolation. The left column
of figures depicts three test set scenarios with the proximity ranging from
near the training data (top) to far from the training data (bottom). The
right column of figures present the probability that the test set samples are
members of the original training data
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served at random, this large-scale test provided strong evidence of which book
name the reader population liked best.

This straightforward and clever approach to understanding a population
provides a positive example of how a large number of samples can be ben-
eficially used. But as we have seen from previous sections, noise in the pre-
dictors or the response can minimize any advantages that may be brought
by an increase in the number of samples. Furthermore, an increase in the
number of samples can have less positive consequences. First, many of the
predictive models have significant computational burdens as the number of
samples (and predictors) grows. For example, a single classification tree does
many exhaustive searches across the samples and predictors to find optimal
splits of the data. As the dimensions of the data increase, computation time
likewise increases. Moreover the computational burden for ensembles of trees
is even greater, often requiring more expensive hardware and/or special im-
plementations of models that make the computations feasible. Second, there
are diminishing returns on adding more of the same data from the same pop-
ulation. Since models stabilize with a sufficiently large number of samples,
garnering more samples is less likely to change the model fit.

For example, web search technology initially used the content of a web
site to rank search results. If one searched on a term such as “predictive
modeling”, the search algorithm would focus on terms in the collection of web
sites in their collection and use these to predict which web pages were relevant.
For this particular search term, web sites related to “machine learning”,
“pattern recognition”, “data mining”, and others may also be relevant
and the algorithm would need to understand. For these algorithms, adding
more web sites to their collection is unlikely to substantially improve the
search results, but adding different data may. A web search portal like Google
can also track user interaction. This leverages more direct, and higher quality,
information for each search. For example, if a large proportion of users who
searched for “predictive modeling”clicked on web site A, this should raise
the likelihood that it is relevant. In this example, adding different data is more
effective than adding more realizations of the same data attributes. In short,
“Big P” usually helps more than “Big n”. There are cases where adding more
samples may materially improve the quality of predictions, but one should
remember that big data may not mean better data.

In summary, a large number of samples can be beneficial, especially if the
samples contain information throughout the predictor space, the noise in the
predictors and the response can be minimized, or new content is being added.
At the same time, the cost of these samples increases computational burden.
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20.7 Computing

Computing details for training models discussed in this chapter can be found
in the earlier sections of the book. One new computing thread presented here
addresses the implementation of Algorithm 20.1. To illustrate this method,
the R caret package will be referenced.

To illustrate the implementation of the similarity algorithm, first load the
solubility data and define the control structure for training. Here we will use
the training structure used throughout the text for these data.

> library(AppliedPredictiveModeling)

> data(solubility)

> set.seed(100)

> indx <- createFolds(solTrainY, returnTrain = TRUE)

> ctrl <- trainControl(method = "cv", index = indx)

Next, tune the desired model and compute variable importance, since the
similarity algorithm can be made more efficient by working with the most
important predictors. Here we tune a random forests model and create a
subset of the training and test data using the top 20 predictors (step 1) for
inclusion in the similarity algorithm:

> set.seed(100)

> mtryVals <- floor(seq(10, ncol(solTrainXtrans), length = 10))

> mtryGrid <- data.frame(.mtry = mtryVals)

> rfTune <- train(x = solTrainXtrans, y = solTrainY,

+ method = "rf",

+ tuneGrid = mtryGrid,

+ ntree = 1000,

+ importance = TRUE,

+ trControl = ctrl)

> ImportanceOrder <- order(rfTune$finalModel$importance[,1],

+ decreasing = TRUE)

> top20 <- rownames(rfTune$finalModel$importance[ImportanceOrder,])[1:20]

> solTrainXimp <- subset(solTrainX, select = top20)

> solTestXimp <- subset(solTestX, select = top20)

The subset of predictors are then permuted to create the random set.
There are many ways to permute data in R; a simple and direct way is by
using the apply and sample functions together. The original subset of data and
permuted set are then combined and a new classification variable is created
to identify each row’s membership. This defines steps 2–4 of the algorithm
which can be implemented as follows:

> permutesolTrainXimp <- apply(solTrainXimp, 2, function(x) sample(x))

> solSimX <- rbind(solTrainXimp, permutesolTrainXimp)

> groupVals <- c("Training", "Random")

> groupY <- factor(rep(groupVals, each = nrow(solTrainX)))

Finally, we tune a model on the newly created classification data and use
the model to predict the training set membership probability.
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> rfSolClass <- train(x = solSimX, y = groupY,

+ method = "rf",

+ tuneLength = 5,

+ ntree = 1000,

+ control = trainControl(method = "LGOCV"))

> solTestGroupProbs <- predict(rfSolClass, solTestXimp, type = "prob")

Exercises

20.1. Figure 20.10 provides a comparison across several models when the
response is modeled as both a continuous and categorical value. The x-axis
represents the observed test set solubility value, and the y-axis represents the
predicted solubility value or predicted solubility probability.

(a) Based on the figure, which continuous model performs best (and worst)
on the test set? Which categorical model performs best (and worst)?

(b) Examine the results from the neural net models. If the predicted probabil-
ity for a compound is close to zero, what is the range of actual solubility
values for the test set? If the predicted solubility value (from the contin-
uous model) is close to −10, what is the range of actual solubility values?
Which model (categorical or continuous) gives more precise results at this
extreme?

(c) Are any of the categorical models better than the corresponding regression
models? If yes, then explain.

20.2. As discussed in Sect. 20.4, categorizing a continuous outcome can have
detrimental impacts on model performance especially when the distribution
does not have distinct groupings. Sometimes, however, there may be a plau-
sible rationale for binning continuous data. If this is the case, but the data
have a distribution like the solubility data (Fig. 20.5), then a possible option
for the modeler is to construct a response that partitions data into three
groups for which there is higher confidence in the data at the extremes. For
example, the solubility data could be partitioned into groups such as “Insol-
uble,”“Soluble,” and “Indeterminate,” where the indeterminate group is the
data centered around the mean of the response.

Load the solubility data and create two training sets. For the first set, split
the data at the mean of the response. For the second set, define compounds
to be indeterminate if they are within one standard deviation of the mean of
the response. This can be done with the following code:

> library(AppliedPredictiveModeling)

> data(solubility)
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Fig. 20.10: Test set performance comparison of solubility models when the
response is modeled as a continuous and categorical value
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> trainData <- solTrainXtrans

> lowcut <- mean(solTrainY) - sd(solTrainY)

> highcut <- mean(solTrainY) + sd(solTrainY)

> breakpoints <- c(min(solTrainY), lowcut, highcut, max(solTrainY))

> groupNames <- c("Insoluble", "MidRange", "Soluble")

> solTrainY3bin <- cut(solTrainY,

+ breaks = breakpoints,

+ include.lowest = TRUE,

+ labels = groupNames)

> solTestY3bin <- cut(solTestY,

+ breaks = breakpoints,

+ include.lowest = TRUE,

+ labels = groupNames)

(a) Fit a linear model, a nonlinear model, and a tree-based model to the
three-bin data. For example, the following code could be used to generate
a recursive partitioning model:

> set.seed(100)

> indx3bin <- createFolds(solTrainY3bin, returnTrain = TRUE)

> ctrl3bin <- trainControl(method = "cv",

+ index = indx3bin,

+ classProbs = TRUE,

+ savePredictions = TRUE)

> Rpart3bin <- train(x = trainXfiltered, y = solTrainY3bin,

+ method = "rpart",

+ metric = "Kappa",

+ tuneLength = 30,

+ trControl = ctrl3bin)

>

(b) Predict test set performance using the performance measure of your choice
for each of the models in (a). Which model performs best for the three-bin
data?

(c) Now exclude the “MidRange” data from the training set, rebuild each
model, and predict the test set. This can be done with recursive parti-
tioning as follows:

> trainXfiltered2bin <- trainXfiltered[solTrainY3bin != "MidRange",]

> solTrainY2bin <- solTrainY3bin[solTrainY3bin != "MidRange"]

> testXfiltered2bin <- testXfiltered[solTestY3bin != "MidRange",]

> solTestY2bin <- solTestY3bin[solTestY3bin != "MidRange"]

> set.seed(100)

> indx2bin <- createFolds(solTrainY2bin, returnTrain = TRUE)

> ctrl2bin <- trainControl(method = "cv",

+ index = indx2bin,

+ classProbs = TRUE,

+ savePredictions = TRUE)

> Rpart2bin <- train(x = trainXfiltered2bin, y = solTrainY2bin,

+ method = "rpart",
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the test set from the recursive partitioning model. Probabilities have been
slightly jittered in order to see relative numbers of samples

+ metric = "Kappa",

+ tuneLength = 30,

+ trControl = ctrl2bin)

> Rpart2binPred <- predict(Rpart2bin, newdata = testXfiltered)

> Rpart2binCM <- confusionMatrix(Rpart2binPred, solTestY3bin)

(d) How do sensitivity and specificity compare for the insoluble and soluble
classes for the binning approaches in (b) and (c) within each model and
between models?

(e) Figure 20.11 compares the predicted class probabilities from the two-bin
and three-bin models for both the insoluble and soluble test set com-
pounds. Based on class probabilities, does the two- or three-class model
provide any distinct prediction advantages for the insoluble and/or soluble
compounds? How do the predicted class probabilities within the insoluble
and soluble groups compare for the other models you have developed?

20.3. Computing details for Algorithm 20.1 applied to the solubility data are
presented in Sect. 20.7. Run this code and plot the distribution of the test set
samples’ probability of training set membership. How many test set samples
are unlikely to have been part of the training set distribution?

20.4. Exercise 4.4 describes a data set in which food oils were analyzed for
the content of seven types of fatty acids. Load the data and create a training
and testing set as follows:
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in the training set

> data(oil)

> set.seed(314)

> sampleRows <- sample.int(nrow(fattyAcids), size = 0.5*nrow(fattyAcids))

> fattyAcidsTrain <- fattyAcids[sampleRows,]

> fattyAcidsTest <- fattyAcids[-sampleRows,]

(a) Run Algorithm 20.1 using the training set. Which test set samples are
not likely to be members of the training set? Why are these samples not
likely to be members of the training set?

(b) Figure 20.12 presents the projections of the test set data onto the first
three PCA components as determined by the training set. Samples are
colored and shaped by their probability of membership in the training
set. What does this plot reveal about the location of the samples that are
not likely to be members of the training set?

(c) What steps could be taken to better ensure that the training and test
sets cover the same region of predictor space?
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Appendix A

A Summary of Various Models

Table A.1 shows a short summary of several characteristics of the models
discussed here. These properties generally hold, but are not always true for
every problem. For example, linear discriminant analysis models do not per-
form feature selection, but there are specialized versions of the model that use
regularization to eliminate predictors. Also, the interpretability of a model is
subjective. A single tree might be understandable if it is not excessively large
and the splits do not involve a large number of categories.

As stated in Chap. 2, no one model is uniformly better than the others. The
applicability of a technique is dependent on the type of data being analyzed,
the needs of the modeler, and the context of how the model will be used.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
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Appendix B

An Introduction to R

The R language (Ihaka and Gentleman 1996; R Development Core Team
2010) is a platform for mathematical and statistical computations. It is free
in two senses. First, R can be obtained free of charge (although commercial
versions exist). Second, anyone can examine or modify the source code. R is
released under the General Public License (Free Software Foundation June
2007), which outlines how the program can be redistributed.

R is used extensively in this book for several reasons. As just mentioned,
anyone can download and use the program. Second, R is an extremely pow-
erful and flexible tool for data analysis, and it contains extensive capabilities
for predictive modeling.

The Comprehensive R Archive Network (CRAN) web site contains the
source code for the program, as well as compiled versions that are ready to
use:

http://cran.r-project.org/

This appendix is intended to be a crash course in basic concepts and
syntax for R. More in-depth guides to the language basics are Spector (2008)
and Gentleman (2008). The software development life cycle is detailed in R
Development Core Team (2008).

B.1 Start-Up and Getting Help

CRAN contains pre-compiled versions of R for Microsoft Windows, Apple OS
X, and several versions of Linux. For Windows and OS X, the program comes
with a graphical user interface (GUI). When installing complied versions of R
for these two operating systems, an icon for R is installed on the computer. To
start an interactive session, launch the program using the icon. Alternatively,
R can be started at the command line by typing R.

Once the program is started, the q function (for quit) ends the session.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3,
© Springer Science+Business Media New York 2013
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> # Comments occur after '#' symbols and are not executed

> # Use this command to quit

> q()

When quitting, the user will be prompted for options for saving their current
work. Note the language is case-sensitive: Q could not be used to quit the
session.

To get help on a specific topic, such as a function, put a question mark
before the function and press enter:

> # Get help on the Sweave function

> ?Sweave

This opens the Sweave help page. One common challenge with R is finding
an appropriate function. To search within all the local R functions on your
computer, apropos will match a keyword against the available functions:

> apropos("prop")

[1] "apropos" "getProperties"
[3] "pairwise.prop.test" "power.prop.test"
[5] "prop.table" "prop.test"
[7] "prop.trend.test" "reconcilePropertiesAndPrototype"

Alternatively, the RSiteSearch function conducts an online search of all func-
tions, manuals, contributed documentation, the R-Help newsgroup, and other
sources for a keyword. For example, to search for different methods to produce
ROC curves,

> RSiteSearch("roc")

will open a web browser and show the matches. The restrict argument of
this function widens the search (see ?RSiteSearch for more details).

B.2 Packages

Base R is the nominal system that encompasses the core language features
(e.g., the executable program, the fundamental programming framework).
Most of the actual R code is contained in distinct modules called packages.
When R is installed, a small set of core packages is also installed (see R De-
velopment Core Team (2008) for the definitive list). However, a large number
of packages exist outside of this set. The CRAN web site contains over 4,150
packages for download while the Bioconductor project (Gentleman et al.
2004), an R-based system for computational biology, includes over 600 R
packages.

To load a package, the library function is used:

> # Load the random forests package

> library(randomForest)

> # Show the list of currently loaded packages and other information

> sessionInfo()
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R version 2.15.2 (2012-10-26)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:
[1] C

attached base packages:
[1] splines tools stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] randomForest_4.6-7 BiocInstaller_1.8.3 caret_5.15-045
[4] foreach_1.4.0 cluster_1.14.3 reshape_0.8.4
[7] plyr_1.7.1 lattice_0.20-10 Hmisc_3.10-1
[10] survival_2.36-14 weaver_1.24.0 codetools_0.2-8
[13] digest_0.6.0

loaded via a namespace (and not attached):
[1] grid_2.15.2 iterators_1.0.6

The function install.packages can be used to install additional modules.
For example, to install the rpart package for classification and regression trees
discussed in Sects. 8.1 and 14.1, the code

> install.packages("rpart")

can be used. Alternatively, the CRAN web site includes “task views” which
group similar packages together. For example, the task view for “Machine
Learning” would install a set of predictive modeling packages:

> # First install the task view package

> install.packages("ctv")

> # Load the library prior to first use

> library(ctv)

> install.views("MachineLearning")

Some packages depend on other packages (or specific versions). The func-
tions install.packages and install.views will determine additional package
requirements and install the necessary dependencies.

B.3 Creating Objects

Anything created in R is an object. Objects can be assigned values using “<-”.
For example:

> pages <- 97

> town <- "Richmond"

> ## Equals also works, but see Section B.9 below

To see the value of an object, simply type it and hit enter. Also, you can
explicitly tell R to print the value of the object
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> pages

[1] 97
> print(town)

[1] "Richmond"

Another helpful function for understanding the contents of an object is str

(for structure). As an example, R automatically comes with an object that
contains the abbreviated month names.

> month.abb

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
[12] "Dec"

> str(month.abb)

chr [1:12] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" ...

This shows that month.abb is a character object with twelve elements. We can
also determine the structure of objects that do not contain data, such as the
print function discussed earlier:

> str(print)

function (x, ...)
> str(sessionInfo)

function (package = NULL)

This is handy for looking up the names of the function arguments. Functions
will be discussed in more detail below.

B.4 Data Types and Basic Structures

There are many different core data types in R. The relevant types are numeric,
character, factor, and logical types. Logical data can take on value of TRUE or
FALSE. For example, these values can be used to make comparisons or can be
assigned to an object:

> if(3 > 2) print("greater") else print("less")

[1] "greater"
> isGreater <- 3 > 2

> isGreater

[1] TRUE
> is.logical(isGreater)

[1] TRUE

Numeric data encompass integers and double precision (i.e., decimal valued)
numbers. To assign a single numeric value to an R object:

> x <- 3.6

> is.numeric(x)
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[1] TRUE
> is.integer(x)

[1] FALSE
> is.double(x)

[1] TRUE
> typeof(x)

[1] "double"

Character strings can be created by putting text inside of quotes:

> y <- "your ad here"

> typeof(y)

[1] "character"
> z <- "you can also 'quote' text too"

> z

[1] "you can also 'quote' text too"

Note that R does not restrict the length of character strings.
There are several helpful functions that work on strings. First, char counts

the number of characters:

> nchar(y)

[1] 12
> nchar(z)

[1] 29

The grep function can be used to determine if a substring exists in the char-
acter string

> grep("ad", y)

[1] 1
> grep("my", y)

integer(0)
> # If the string is present, return the whole value

> grep("too", z, value = TRUE)

[1] "you can also 'quote' text too"

So far, the R objects shown have a single value or element. The most
basic data structure for holding multiple values of the same type of data is a
vector. The most basic method of creating a vector is to use the c function
(for combine). To create a vector of numeric data:

> weights <- c(90, 150, 111, 123)

> is.vector(weights)

[1] TRUE
> typeof(weights)

[1] "double"
> length(weights)

[1] 4



556 An Introduction to R

> weights + .25

[1] 90.25 150.25 111.25 123.25

Note that the last command is an example of vector operations. Instead of
looping over the elements of the vector, vector operations are more concise
and efficient operations.

Many functions work on vectors:

> mean(weights)

[1] 118.5
> colors <- c("green", "red", "blue", "red", "white")

> grep("red", colors)

[1] 2 4
> nchar(colors)

[1] 5 3 4 3 5

An alternate method for storing character data in a vector is to use factors.
Factors store character data by first determining all unique values in the data,
called the factor levels. The character data is then stored as integers that
correspond to the factor levels:

> colors2 <- as.factor(colors)

> colors2

[1] green red blue red white
Levels: blue green red white

> levels(colors2)

[1] "blue" "green" "red" "white"
> as.numeric(colors2)

[1] 2 3 1 3 4

There are a few advantages to storing data in factors. First, less memory is
required to store the values since potentially long character strings are saved
only once (in the levels) and their occurrences are saved as vectors. Second,
the factor vector “remembers” all of the possible values. Suppose we subset
the factor vector by removing the first value using a negative integer value:

> colors2[-1]

[1] red blue red white
Levels: blue green red white

Even though the element with a value of “green” was removed, the factor
still keeps the same levels. Factors are the primary means of storing discrete
variables in R and many classification models use them to specify the outcome
data.

To work with a subset of a vector, single brackets can be used in different
ways:

> weights

[1] 90 150 111 123



B.4 Data Types and Basic Structures 557

> # positive integers indicate which elements to keep

> weights[c(1, 4)]

[1] 90 123
> # negative integers correspond to elements to exclude

> weights[-c(1, 4)]

[1] 150 111
> # A vector of logical values can be used also but there should

> # be as many logical values as elements

> weights[c(TRUE, TRUE, FALSE, TRUE)]

[1] 90 150 123

Vectors must store the same type of data. An alternative is a list; this is
a type of vector that can store objects of any type as elements:

> both <- list(colors = colors2, weight = weights)

> is.vector(both)

[1] TRUE
> is.list(both)

[1] TRUE
> length(both)

[1] 2
> names(both)

[1] "colors" "weight"

Lists can be filtered in a similar manner as vectors. However, double brackets
return only the element, while single brackets return another list:

> both[[1]]

[1] green red blue red white
Levels: blue green red white

> is.list(both[[1]])

[1] FALSE
> both[1]

$colors
[1] green red blue red white
Levels: blue green red white

> is.list(both[1])

[1] TRUE
> # We can also subset using the name of the list

> both[["colors"]]

[1] green red blue red white
Levels: blue green red white

Missing values in R are encoded as NA values:

> probabilities <- c(.05, .67, NA, .32, .90)

> is.na(probabilities)

[1] FALSE FALSE TRUE FALSE FALSE



558 An Introduction to R

> # NA is not treated as a character string

> probabilities == "NA"

[1] FALSE FALSE NA FALSE FALSE
> # Most functions propagate missing values...

> mean(probabilities)

[1] NA
> # ... unless told otherwise

> mean(probabilities, na.rm = TRUE)

[1] 0.485

B.5 Working with Rectangular Data Sets

Rectangular data sets usually refer to situations where samples are in rows
of a data set while columns correspond to variables (in some domains, this
convention is reversed). There are two main structures for rectangular data:
matrices and data frames. The main difference between these two types of
objects is the type of data that can be stored within them. A matrix can only
contain data of the same type (e.g., character or numeric) while data frames
must contain columns of the same data type. Matrices are more computa-
tionally efficient but are obviously limited.

We can create a matrix using the matrix function. Here, we create a numeric
vector of integers from one to twelve and use three rows and four columns:

> mat <- matrix(1:12, nrow = 3)

> mat

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The rows and columns can be given names:

> rownames(mat) <- c("row 1", "row 2", "row 3")

> colnames(mat) <- c("col1", "col2", "col3", "col4")

> mat

col1 col2 col3 col4
row 1 1 4 7 10
row 2 2 5 8 11
row 3 3 6 9 12

> rownames(mat)

[1] "row 1" "row 2" "row 3"

Matrices can be subset using method similar to vectors, but rows and columns
can be subset separately:

> mat[1, 2:3]
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col2 col3
4 7

> mat["row 1", "col3"]

[1] 7
> mat[1,]

col1 col2 col3 col4
1 4 7 10

One difficulty with subsetting matrices is that dimensions can be dropped;
if either a single row or column is produced by subsetting a matrix, then a
vector is the result:

> is.matrix(mat[1,])

[1] FALSE
> is.vector(mat[1,])

[1] TRUE

One method for avoiding this is to pass the drop option to the matrix when
subsetting:

> mat[1,]

col1 col2 col3 col4
1 4 7 10

> mat[1,,drop = FALSE]

col1 col2 col3 col4
row 1 1 4 7 10

> is.matrix(mat[1,,drop = FALSE])

[1] TRUE
> is.vector(mat[1,,drop = FALSE])

[1] FALSE

Data frames can be created using the data.frame function:

> df <- data.frame(colors = colors2,

+ time = 1:5)

> df

colors time
1 green 1
2 red 2
3 blue 3
4 red 4
5 white 5

> dim(df)

[1] 5 2
> colnames(df)

[1] "colors" "time"
> rownames(df)

[1] "1" "2" "3" "4" "5"
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In addition to the subsetting techniques previously shown for matrices, the $

operator can be used to return single columns while the subset function can
be used to return more complicated subsets of rows:

> df$colors

[1] green red blue red white
Levels: blue green red white

> subset(df, colors %in% c("red", "green") & time <= 2)

colors time
1 green 1
2 red 2

A helpful function for determining if there are any missing values in a row
of a matrix or data frame is the complete.cases function, which returns TRUE

if there are no missing values:

> df2 <- df

> # Add missing values to the data frame

> df2[1, 1] <- NA

> df2[5, 2] <- NA

> df2

colors time
1 <NA> 1
2 red 2
3 blue 3
4 red 4
5 white NA

> complete.cases(df2)

[1] FALSE TRUE TRUE TRUE FALSE

B.6 Objects and Classes

Each object has at least one type or class associated with it. The class of
an object declares what it is (e.g., a character string, linear model, web site
URL). The class defines the structure of an object (i.e., how it is stored) and
the possible operations associated with this type of object (called methods
for the class). For example, if some sort of model object is created, it may be
of interest to:

• Print the model details for understanding
• Plot the model for visualization, or
• Predict new samples

In this case, print, plot, and predict are some of the possible methods for
that particular type of model (as determined by its class). This paradigm is
called object-oriented programming.
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We can quickly determine the class of the previous objects:

> pages

[1] 97
> class(pages)

[1] "numeric"
> town

[1] "Richmond"
> class(town)

[1] "character"

When the user directs R to perform some operation, such as creating pre-
dictions from a model object, the class determines the specific code for the
prediction equation. This is called method dispatch. There are two main tech-
niques for object-oriented programming in R: S3 classes and S4 classes. The
S3 approach is more simplistic than S4 and is used by many packages. S4
methods are more powerful than S3 methods but are too complex to ade-
quately describe in this overview. Chambers (2008) describes these techniques
in greater detail.

With S3 methods, the naming convention is to use dots to separate classes
and methods. For example, summary.lm is the function that is used to compute
summary values for an object that has the lm class (this class is to fit linear
models, such as linear regression analysis). Suppose a user created an object
called myModel using the lm function. The command

modelSummary <- summary(myModel)

calculates the common descriptive statistics for the model. R sees that myModel
has class lm, so it executes the code in the function summary.lm.

For this text, it is important to understand the concept of objects, classes,
and methods. However, these concepts will be used at a high level; the code
contained in the book rarely delves into the technical minutia “under the
hood.” For example, the predict function will be used extensively, but the
use will not be required to know which specific method is executed.

B.7 R Functions

In R, modular pieces of code can be collected in functions. Many functions
have already been used in this section, such as the library function that
loads packages. Functions have arguments: specific slots that are used to pass
objects into the function. In R, arguments are named (unlike other languages,
such as matlab). For example, the function for reading data stored in comma
delimited format (CSV) into an R object has these arguments:

> str(read.csv)

function (file, header = TRUE, sep = ",", quote = ""̈, dec = ".",
fill = TRUE, comment.char = "", ...)
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where file is a character string that points to the CSV file and header in-
dicates whether the initial row corresponds to variable names. The file ar-
gument has no default value and the function will result in an error if no
file name is specified. Since these functions are named, they can be called in
several different ways:

> read.csv("data.csv")

> read.csv(header = FALSE, file = "data.csv")

Notice that the read.csv function has an argument at the end with three dots.
This means that other arguments can be added to the read.csv function call
that are passed to a specific function within the code for read.csv. In this
case, the code uses another function called read.table that is more general.
The read.table contains an argument called na.strings that is absent from
read.csv. This argument tells R which character values indicate a missing
value in the file. Using

> read.csv("data.csv", na.strings = "?")

has the effect of passing the argument na.strings = "?" from the read.csv

function to the read.table function. Note that this argument must be named
if it is to be passed through. The three dots are used extensively in the
computing sections of each chapter.

B.8 The Three Faces of =

So far, the = symbol has been used in several different contexts:

1. Creating objects, such as x = 3

2. Testing for equivalence: x == 4

3. Specifying values to function arguments: read.csv(header = FALSE)

This can be confusing for newcomers. For example:

> new = subset(old, subset = value == "blue", drop = FALSE)

uses the symbol four times across all three cases. One method for avoiding
confusion is to use <- as the assignment operator.

B.9 The AppliedPredictiveModeling Package

This package serves as a companion to the book and includes many of the
data sets used here that are not already available in other R packages. It
also includes the R code used throughout the chapters and R functions. The
package is available on CRAN.
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Table B.1: A survey of commands to produce class probabilities across dif-
ferent packages

Object class Package predict Function syntax
lda MASS predict(object) (no options needed)
glm stats predict(object, type = "response")

gbm gbm predict(object, type = "response", n.trees)

mda mda predict(object, type = "posterior")

rpart rpart predict(object, type = "prob")

Weka_classifier RWeka predict(object, type = "probability")

LogitBoost caTools predict(object, type = "raw", nIter)

The train function in the caret package uses a common syntax of
predict(object, type = "prob")

B.10 The caret Package

The caret package (short for Classification And REgression Training) was
created to streamline the process for building and evaluating predictive mod-
els. Using the package, a practitioner can quickly evaluate many different
types of models to find the more appropriate tool for their data.

The beauty of R is that it provides a large and diverse set of modeling pack-
ages. However, since these packages are created by many different people over
time, there are a minimal set of conventions that are common to each model.
For example, Table B.1 shows the syntax for calculating class probabilities for
several different types of classification models. Remembering the syntactical
variations can be difficult and this discourages users from evaluating a variety
of models. One method to reduce this complexity is to provide a unified in-
terface to functions for model building and prediction. caret provides such an
interface for across a wide vary of models (over 140). The package also pro-
vides many options for data pre-processing and resampling-based parameter
tuning techniques (Chaps. 3 and 4).

In this text, resampling is the primary approach for optimizing predictive
models with tuning parameters. To do this, many alternate versions of the
training set are used to train the model and predict a holdout set. This pro-
cess is repeated many times to get performance estimates that generalize to
new data sets. Each of the resampled data sets is independent of the others,
so there is no formal requirement that the models must be run sequentially.
If a computer with multiple processors or cores is available, the computa-
tions could be spread across these “workers” to increase the computational
efficiency. caret leverages one of the parallel processing frameworks in R to do
just this. The foreach package allows R code to be run either sequentially or
in parallel using several different technologies, such as the multicore or Rmpi
packages (see Schmidberger et al. (2009) for summaries and descriptions of
the available options). There are several R packages that work with foreach
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to implement these techniques, such as doMC (for multicore) or doMPI (for
Rmpi).

To tune a predictive model using multiple workers, the syntax in the caret
package functions (e.g., train, rfe or sbf) does not change. A separate function
is used to “register” the parallel processing technique and specify the number
of workers to use. For example, to use the multicore package (not available
on Windows) with five cores on the same machine, the package is loaded and
then registered:

> library(doMC)

> registerDoMC(cores = 5)

> ## All subsequent models are then run in parallel

> model <- train(y ~ ., data = training, method = "rf")

The syntax for other packages associated with foreach is very similar. Note
that as the number of workers increases, the memory required also increases.
For example, using five workers would keep a total of six versions of the data
in memory. If the data are large or the computational model is demanding,
performance can be affected if the amount of required memory exceeds the
physical amount available.

Does this help reduce the time to fit models? The job scheduling data
(Chap. 17) was modeled multiple times with different number of workers for
several models. Random forest was used with 2,000 trees and tuned over 10
values of mtry. Variable importance calculations were also conducted during
each model fit. Linear discriminant analysis was also run, as was a cost-
sensitive radial basis function support vector machine (tuned over 15 cost
values). All models were tuned using five repeats of 10-fold cross-validation.
The results are shown in Fig.B.1. The y-axis corresponds to the total exe-
cution time (encompassing model tuning and the final model fit) versus the
number of workers. Random forest clearly took the longest to train and the
LDA models were very computationally efficient. The total time (in minutes)
decreased as the number of workers increase but stabilized around seven
workers. The data for this plot were generated in a randomized fashion so
that there should be no bias in the run order. The bottom right panel shows
the speedup which is the sequential time divided by the parallel time. For ex-
ample, a speedup of three indicates that the parallel version was three times
faster than the sequential version. At best, parallelization can achieve linear
speedups; that is, for M workers, the parallel time is 1/M . For these models,
the speedup is close to linear until four or five workers are used. After this,
there is a small improvement in performance. Since LDA is already computa-
tionally efficient, the speed-up levels off more rapidly than the other models.
While not linear, the decrease in execution time is helpful—a nearly 10 h
model fit was decreased to about 90min.

Note that some models, especially those using the RWeka package, may
not be able to be run in parallel due to the underlying code structure.

One additional “trick” that train exploits to increase computational ef-
ficiency is to use sub-models; a single model fit can produce predictions for
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Fig. B.1: Three models run using different numbers of workers. The y-axis
is either the execution time in minutes or the speed-up (in the bottom right
panel)

multiple tuning parameters. For example, in most implementations of boosted
models, a model trained on B boosting iterations can produce predictions for
models for iterations less than B. For the grant data, a gbm model was fit
that evaluated 200 distinct combinations of the three tuning parameters (see
Fig. 14.10). In reality, train only created objects for 40 models and derived
the other predictions from these objects.

More detail on the caret package can be found in Kuhn (2008) or the four
extended manuals (called “vignettes”) on the package web site (Kuhn 2010).

B.11 Software Used in this Text

The excellent Sweave function (Leisch 2002a,b) in R enabled data analysis code
to be integrated within the content of this text. The function executed the R
code and replaced the code with the items produced by the code, such as text,
figures, and tables. All the software and data used here are publicly available
at the time of this writing. The R packages AppliedPredictiveModeling and
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caret include many of the data sets. For data that could not be included, the
AppliedPredictiveModeling package includes R code to recreate the data set
used in this text. An extensive list of packages and functions in R related to
reproducible research can be found on CRAN:

http://cran.r-project.org/web/views/ReproducibleResearch.html

Version 2.15.2 (2012-10-26) of R was used in conjunction with the following
package versions: AppliedPredictiveModeling (1.01), arules (1.0-12), C50 (0.1.0-
013), caret (5.15-045), coin (1.0-21), CORElearn (0.9.40), corrplot (0.70), ctv
(0.7-4), Cubist (0.0.12), desirability (1.05), DMwR (0.2.3), doBy (4.5-5), doMC
(1.2.5), DWD (0.10), e1071 (1.6-1), earth (3.2-3), elasticnet (1.1), ellipse (0.3-
7), gbm (1.6-3.2), glmnet (1.8-2), Hmisc (3.10-1), ipred (0.9-1), kernlab (0.9-
15), klaR (0.6-7), lars (1.1), latticeExtra (0.6-24), lattice (0.20-10), MASS (7.3-
22), mda (0.4-2), minerva (1.2), mlbench (2.1-1), nnet (7.3-5), pamr (1.54),
partykit (0.1-4), party (1.0-3), pls (2.3-0), plyr (1.7.1), pROC (1.5.4), proxy (0.4-
9), QSARdata (1.02), randomForest (4.6-7), RColorBrewer (1.0-5), reshape2
(1.2.1), reshape (0.8.4), rms (3.6-0), rpart (4.0-3), RWeka (0.4-12), sparseLDA
(0.1-6), subselect (0.12-2), svmpath (0.952), and tabplot (0.12). Some of these
packages are not directly related to predictive modeling but were used to
compile or format the content or for visualization.

http://cran.r-project.org/web/views/ReproducibleResearch.html


Appendix C

Interesting Web Sites

Software

http://www.r-project.org
This is the main R web site with links to announcements, manuals, books,
conference, and other information.

http://cran.r-project.org
CRAN, or the Comprehensive R Archive Network, is the primary repository
for R and numerous add-on packages.

http://cran.r-project.org/web/views/MachineLearning.html
The machine learning Task View is a list of many predictive modeling pack-
ages in R.

http://caret.r-forge.r-project.org
The caret package is hosted here.

http://www.rulequest.com
RuleQuest releases commercial and open-source versions of Cubist and C5.0.

http://rattle.togaware.com
Rattle (Williams 2011) is a graphical user interface for R predictive models.

http://www.cs.waikato.ac.nz/ml/weka/
Weka is collection of Java programs for data mining.

http://orange.biolab.si
Orange is an open-source, cross-platform graphical user interface to many
machine learning tools. The interface is a“pipeline”where users piece together
components to create a workflow.

http://www.knime.org
“KNIME (Konstanz Information Miner) is a user-friendly and comprehensive
open-source data integration, processing, analysis, and exploration platform.”

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3,
© Springer Science+Business Media New York 2013
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http://www.spss.com/software/modeler
The IBM SPSS Modeler, formerly called Clemintine, is a visual platform for
model building.

http://www.sas.com/technologies/analytics/datamining/miner
A SAS product for data mining.

Other programs are listed at http://www.kdnuggets.com/software/suites.
html.

Competitions

http://www.kaggle.com

http://tunedit.org

Data Sets

http://archive.ics.uci.edu/ml
The University of California (Irvine) is a well-known location for classification
and regression data sets.

http://www.kdnuggets.com/datasets
The Association For Computing Machinery (ACM) has a special interest
group on Knowledge Discovery in Data (KDD). The KDD group organizes
annual machine learning competitions.

http://fueleconomy.gov
A web site run by the U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy and the U.S. Environmental Protection Agency that
lists different estimates of fuel economy for passenger cars and trucks.

http://www.cheminformatics.org
This web site contains many examples of computational chemistry data sets.

http://www.ncbi.nlm.nih.gov/geo
The NCBI GEO web site is “a public repository that archives and freely
distributes microarray, next-generation sequencing, and other forms of high-
throughput functional genomic data submitted by the scientific community.”

http://www.spss.com/software/modeler
http://www.sas.com/technologies/analytics/datamining/miner
http://www.kdnuggets.com/software/suites.html
http://www.kdnuggets.com/software/suites.html
http://www.kaggle.com
http://tunedit.org
http://archive.ics.uci.edu/ml
http://www.kdnuggets.com/datasets
http://fueleconomy.gov
http://www.cheminformatics.org
http://www.ncbi.nlm.nih.gov/geo
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475–476
Positive Predicted Value, 258
Posterior Probability, 258, 287,

354
Principal Component Analysis

(PCA), 35–40, 105, 107,
113, 297, 536

Principal Component Regression,
113, 115–116, 118

Principal Components, 35
Prior Probability, 255, 300, 354,

356, 426
Pruning

C4.5, 381
Cubist, 209, 210
MARS, 148
Model Trees, 186

Quadratic Discriminant Analysis
(QDA), 330

R2, 95–97
Random Forest, 79, 420, 428, 453,

456–457, 489, 504, 505,
508–509

Rank Correlation, 97, 100
Receiver Operating Characteristic

(ROC) Curve, 257,
262–264, 421–425,
468–470, 476

Recursive Feature Elimination,
494–495, 500–502,
504–508

Regularization, 122–128, 143–144,
153, 302–306, 346–347

Regularized Discriminant
Analysis (RDA),
330–331

Relevance Vector Machines,
157–159, 349

Relief Scores, 470, 472–476
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Resampling, 69–73
k–Fold Cross–Validation, 21,

69
Bootstrap, 70, 72–73, 76, 78,

110, 501
Bootstrap 632 Method, 73
For Comparing Models,

79–80
Leave-One-Out

Cross–Validation, 70
Out-of-Bag Estimate, 197,

200
Pitfalls, 500–501
Repeated Cross–Validation,

70, 452
Repeated Training/Test

Splits, 71
Stratified Cross–Validation,

70
Residuals, 95, 97, 101, 108, 109,

112, 117, 119, 143,
151–153, 156, 204–206,
209, 230, 232, 282, 524

Restricted Cubic Splines, 285
Ridge Regression, 123–124, 303
Robust Regression, 109, 151–153
Root Mean Squared Error

(RMSE), 95
Rule–Based Models

C4.5Rules, 383–384
C5.0, 395–396
Classification Model Rules,

383–385
Cubist, 208–212
PART, 385
Regression Model Rules,

190–192, 211–212

Sampling, 427–429
Down–Sampling, 427–429
Synthetic Minority

Over-sampling
TEchnique (SMOTE),
428–429

Up–Sampling, 427, 429

Selection Bias, 149, 299, 500–501
Sensitivity, 256, 421, 423–425,

432, 433
Shrinkage, see Regularization
Simulated Annealing, 233,

495–497
Skewness, 31–33, 104, 105, 111,

458
Softmax Transformation, 248,

300
Specificity, 256, 421, 423
Stochastic Gradient Boosting,

206, 391
String Kernels, 349
Supervised Methods, 27, 115
Support Vector Machines, 79,

280–281, 490, 500, 505
Class Weights, 431–432,

453–456
Classification, 343–350
Kernels, 155–157, 347, 349
Over–Fitting, 65
Regression, 151–157
Tuning, 74

Support Vectors, 155, 155, 345
Systemic Inflammatory Response

Syndrome (SIRS), 49

Table Plot, 448, 451
Tree–Based Models

Bagged, 192–194, 385–386,
453, 456

Boosting, 203–208, 221, 230,
389–392, 396–397

C4.5, 377–383
C5.0, 394–395, 400, 432, 434,

454, 456
Classification, 370–383
Classification and Regression

Trees, 370–377, 453, 454,
456–457

Cost–Complexity Pruning,
177–178, 372

Cost–Sensitive, 432–434, 455,
456
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Generalized, Unbiased,
Interaction Detection
and Estimation
(GUIDE), 182

Model Trees, 184–190
One-Standard Error Rule,

178
Pessimistic Pruning, 381
Random Forest, 198–203,

386–389, 453, 456–457,
489, 504, 505, 508–509

Regression, 175–183
Selection Bias, 182–183
Smoothing, 185–186, 209

Tuning Parameters, 22–23, 65
Type III Error, 522–524

Ultimate Answer to the Ultimate
Question of Life, The
Universe, and
Everything, 42

Unsupervised Methods, 27, 115,
278, 299, 488

Uplift Modeling, 522–524

Variable Importance, 463–477,
505

Bagged Trees, 198
Boosted Trees, 207–208
C5.0, 398
Cubist, 212–213
Logistic Regression, 286
MARS, 150
Maximal Information

Coefficient (MIC), 466,
470, 476–477

Partial Least Squares,
118–120, 302

Random Forest, 201–203, 464
Relief Scores, 470, 472–476
Single Trees, 180–182

Variable Selection, see Feature
Selection

Variance Inflation Factors (VIF),
47

Variance–Bias Tradeoff, 97–98,
122–123, 192, 194

Winnowing, 398–399

Youden Index, 424

Zero Variance Predictors, 44




